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2nd Mittweida Workshop on Computational Intelligence (MiWoCi) 2010

2nd Mittweida Workshop on Computational
Intelligence

F.-M. Schleif!

1 The 2nd Mittweida Workshop on Computational Intelligence (Mi-
WoCi’2010)

From June 29th to July 03rd, 2010, 12 scientists from the University of Bielefeld, Uni-
versity of Siegen, University of Groningen (NL), the University of Applied Sciences
Mittweida, the Fraunhofer Insitute FIT and the Fraunhofer Institute IFF met in Mit-
tweida, Germany to continue the tradition of the Mittweida Workshops on Computa-
tional Intelligence. The aim was to present their current research, discuss scientific
questions, and exchange their ideas. The seminar centered around topics in machine
learning, signal processing and data analysis, covering fundamental theoretical aspects
as well as recent applications, partially in the frame of innovative industrial coopera-
tions. This volume contains a collection of extended abstracts which accompany these
talks to give some insight into the research presented in Mittweida.

Apart from the scientific merrits, this year’s seminar came up with a few highlights
which demonstrate the excellent possibilities offered by the surroundings of Mittweida.
Feared by the last year journey in the caves and mines of muria the this year adventures
were explored under sunlight. The participants climbed to the high forests of Mittweida
(Kletterwald) and enjoyed the exciting and fearing adventures provided on the top of the
trees. During a wild water journey (Paddeltour) the outstanding fitness of the researcher
was demonstrated and some of them also demonstrated their braveness by swimming
in the rapids.

Our particular thanks for a perfect local organization of the workshop go to Thomas
Villmann as spiritus movens of the seminar.

Bielefeld, November, 2010
Frank-M. Schleif

'E-mail: fschleif@techfak.uni-bielefeld.de
2University of Bielefeld, CITEC, Chair of Theoretical Computer Science, Leipzig, Germany
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Linear Data Association Mapping by
Supervised Metric Adaptation

Marc Strickert'

Keywords: Matrix metric learning, supervised linear mappings, generalized regres-
sion, association mapping, distance matrix correlation, dimension reduction.

1 Introduction

Linear mappings are ubiquitous in all areas of science. They are often used for the
reduction of data dimensionality with visualization being a special case, and for in-
verse problems where coefficients for the superposition of known vectors to an ob-
served mixture are sought. The results are well interpretable as a linear mixture of data
attributes. Since, in many cases, algebraic solutions can be obtained, linear methods are
supposed to be fast compared to nonlinear or iterative methods such as artificial neural
networks [11]. The *zoo’ of linear methods includes popular approaches like

PCA Principal component analysis [9] projects vector data to axes of maximum vari-
ance, a concept connected to Euclidean space.

PCOA Principal coordinates analysis [15] turns a distance matrix into a cloud of points
in Euclidean space where the original distances are approximated.

ICA Independent component analysis [10] seeks for unmixing linearly superimposed
data using the assumption of independent non-Gaussian sources.

PP Projection pursuit [14] iteratively finds projections according to a custom PP cri-
terion permitting concepts like information-optimized data spreading and class
label-driven separation.

LDA Linear discriminant analysis [8] projects data on the axis best separating the class
categories connected to the data vectors.

!University of Siegen, Institute for Vision and Graphics,
E-mail: strickert@informatik.uni-siegen.de
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Association Mapping by Metric Adaptation

GLS Generalized least squares regression [13] allows to associate the input vectors
with real-valued dependent variables, thereby accounting for heteroscedasticity
of the data.

CCA Canonical correlation analysis [7] transforms both vectors from input space and
a their dependent vectors to a common subspace with maximum correlation of
the projections.

The ordering of these methods roughly reflects the amount of prior knowledge about the
data that can be integrated into the model, ranging from implicit assumptions like the
level of variance (PCA) via discrete labels (LDA) to associated vector spaces (CCA).
This corresponds to label-free and label-based, i.e. unsupervised and supervised, data
processing.

Generally, input data vectors and their dependent categories, variables, or vectors can
be considered as association context. Another level of abstraction is the connection of
an input data relationship matrix to a target relationship matrix, with relationships being
distances, divergence measures or (dis)similarity relations. Here, the input vector rela-
tionships are quantified by an adaptive data metric, while the output relationships are
calculated as Euclidean distance for intuitive interpretation or a symmetric dissimilarity
matrix.

2 Linear mappings from matrix metric adaptation

Recently the idea of adaptive subspace mapping was proposed [1] which seeks for

a mapping transformation of N M -dimensional data vectors x/ € X C RM x/ =

(@] )k=1..m,1 < j < N in such a way that their pairwise distances Df{ are in maxi-

mum correlation with those distances Dy defined on the label space L with g-dimensional
labels I € L € R9, 17 = (I )1, q» i€

r(D, DY) = max. (1)

Therein, DQ is the matrix of adaptive input vector distances which depend on the pa-
rameter matrix A € RM X% to maximize the Pearson correlation (r) between the distance
matrices of input and label space. For two input vectors &’ and 2/ € X being column
vectors the data-driven adaptive distance is defined as

(D) = /(@i — i) A AT (@ — i), @)

Despite of its similarity to the Mahalanobis distance the rank of A = X - A s in
practice not of full rank but u < M. Instead of learning A the matrix A is adapted to
ensure that A gets positive semi-definite and thus Eqn. [2]is a metric.

Since Eqn. [2can be decomposed into transposed and non-transposed linear mappings

Ak , choices of u < 3 could be used for visualizations of the data space mapped

DEPARTMENT OF MATHEMATICS 6



&L MIWOCI 2010, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

according to the requirements imposed by the label space. Locally optimum solutions
for A are by obtained by maximizing Eqn. I} for example, by using the memory limited
quasi Newton Broyden-Fletcher-Goldfarb-Shanno method.

The run time depends a lot on the data. For example, many equidistant points lead
to an ill-structured distance matrix, preventing efficient correlation-based optimization.
Of course, the size of the data set is another important factor. While the label distance
matrix is only calculated once, the distance matrix of the transformed data is calculated
repeatedly. This yields a run time and memory complexity of O(u- M - N?). Despite of
this potential run time and memory bottleneck, the proposed method is very appealing
in many domains of application. Specifically, computations may need to be carried out
only once, or existing mappings may just be re-adjusted with a few iterations for new
data. Once computed, the mappings are very fast in the applications.

3 Matrix Initialization

The simplified expression ' - A - x taken from Eqn. [2|describes the mixing of the k-th
and m-th attribute of « by the matrix components (A)gy,. The identity matrix A = E
leads to the squared Euclidean norm of x, accounting only for attributes paired with
themselves, while A = % - (E + 1) leads to an equal contribution of all attribute pairs.

Without prior knowledge both choices are desirable options for starting the matrix
adaptation in an unbiased way. Yet, A gets adapted, not A, which leads to low ranks

of A =X X\ being incompatible with full rank of the identity matrix or its average
with the unity matrix. Despite this clash the discrepancy between the possible and the
desired initialization matrix should be minimum. A gradient descent can be used for an
initialization approach targeting all attribute pairs, starting with a random matrix V" on

the cost function
2

S:HV-VT—;-(E—Fl) 3)

F

Therein, the squared Frobenius norm || - ||Z is used to express a minimum least square
approach for optimizing Vi.,,. The final matrix V' is used to initialize A for the desired
metric adaptation.

Certainly, rank discrepancies will always lead to sub-optimum solutions with S > 0,
but the optimization will distribute the mismatches evenly over the matrix, such that
for each column and row the same accumulated mismatch will occur. In other words:
mismatches are distributed equally over all data attributes and, consequently, the sum
of all mixing coefficients per attribute, i.e. the initial influence of each attribute, is the
same, which is a desirable property.

Note that for a large number of data attributes such as M > 10000 the involved
matrices get quite big, but the structurally very simple cost function in Eqn. [3] allows
a C or CUDA solution with a memory footprint of O(1). Furthermore, in case of
A mapping M -dimensional data to a one-dimensional target subspace, i.e. for regres-
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sion or binary classification problems, an optimum analytical initialization is the vector
Ni=+(M-1)/2+1)/M,i=1...M.

4 Matrix Interpretation

For the interpretation of the finally obtained parameter matrix A it is natural to look at

the mixing matrix A = A - A" connected to the learned metric expressed by Eqn.
Basically, large absolute values |A;;| denote important contributions of attribute pairs
1, 7 to the given association task.

Yet, the covariance level of the attributes affect the magnitude of the mixing factors,
i.e. two merely noisy attribute pairs would carry the same semantic of being to the same
degree irrelevant, but their corresponding mixing magnitudes are inversely related to
their different variances in order to suppress these two noise sources. Thus, a scaled
mixing matrix that erases the covariance structure the same ways as if the data was
whitened before matrix adaptation is obtained by inserting K into the central expression
of Eqn.RJto ™. [K - (A-A")- K] @, where K - K" = cov(X) is the M x M covariance
matrix of the data attributes. Thus, K = cov(X)'/2 can be multiplied to the parameter
matrix A prior to calculating the transformed mixing matrix A.

Likewise the influence of attribute variances, disregarding further covariance struc-
ture, can be removed by multiplying the k-th row of X by the standard deviation of the
k-th data attribute prior to calculating A.

5 Application domains

The proposed method provides a very flexible approach to tasks including classifica-
tion, regression, and faithful data visualization, as will be demonstrated in the examples
below. Currently, the method is able to deal with data sets of medium size such as 1000
samples by 1000 dimensions, 100 samples by 10 000 dimensions, or 10 000 samples by
100 dimensions. This allows to deal with important practical applications in bioinfor-
matics, where some thousands of metabolite abundances or gene expression intensities
are available, but only some tens or hundreds of samples. Also spectrum-based medical
analyses or technical diagnosis tasks can be approached.

As an important feature, the label space, i.e. the costly and usually reliable part of
the measurements will be unchanged. Complementarily, many screening technologies
deliver massive array data or wide-band spectra with partially unnecessary or redundant
information to be transformed for better matching the label space.

As additional benefit, missing values can be quite easily dealt with. In the label data,
only few missing values are to be expected anyway, and the distance matrix can still
be approximated despite of some missing attributes. In the set of data measurements
missing data attributes can be also easily handled, because the matrix product in Eqn.[2]
can be decomposed into many scalar products for which missing values set to zero
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do not contribute to the final value. This way, missing and undesired values can be
conveniently masked out.

To give some notes on the selection of the dimensionality u of the subspace. From the
global perspective, in a t-class classification problem a no more than (¢t—1)-dimensional
Euclidean subspace should suffice to host the corresponding category simplex. In other
words, the number of classes, i.e. the number of dimensions of the label space, is a
convenient upper bound for the rank of the metric’s matrix. Alternatively, for an auto-
encoding problem with N samples and M dimensions, the maximum required dimen-
sion of a subspace for a perfect linear mapping is min(M, N) — 1. In other words, you
can perfectly map a 10 000-dimensional array data set containing 100 samples into a 99
dimensional subspace without loosing information about the relationships between the
samples. This offers a great compression potential if only relational classification and
clustering methods are subsequently used.

It is important to note that the proposed method does not provide a classification
system; it just yields reasonable transformations for being subsequently used by exist-
ing classifiers. Recently, integrated methods have been proposed to combine matrix
learning and classification, such as limited rank learning vector quantization (LiRaM-
LVQ) [3, 2] and the large margin nearest neighbor classifier [6]. In the two-class case,
the method presented here allows to generate receiver operating characteristic (ROC)
curves, because a threshold can be easily varied between those results obtained for the
solved regression task.

Matrix inversion might be considered as another application by just setting the label
space to the identity matrix. Unfortunately, this does not work, because the off-diagonal
elements of the distance matrix of the identity matrix are all one, and due to an induced
zero denominator in the correlation term proper optimization becomes impossible.

6 Examples for spectral data

A benchmark spectral data set taken from the StatLib repository of machine learn-
ing [12] is taken for illustrating several features of adaptive subspace mapping. The
data set contains 215 samples of 100-dimensional infrared absorption spectra recorded
on a Tecator Infratec Food and Feed Analyzer working at a wavelength range of 850—
1050nm in Near Infrared Transmission (NIT) mode. An overview of the spectra is given
in Fig.

The regression problem consists of predicting fat content of meat from these publicly
available spectra. The benchmark data comes split into training set (samples 1-172) and
test set (samples 173-215). The following three subsections address illustrative tasks
related to this data set, only varying in the use of prior knowledge: (a) only related to
the real-valued variable of fat content, (b) related to the fat content discretized into three
disjoint classes of about the same size, and (c) related to the data set itself.
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Original Tecator spectra PCA projection of Tecator data
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Figure 1: Tecator spectra, raw (left) and a PCA projection (right). For illustration, fat
content below a value of 20% is displayed by black dashed lines, high fat content above
20% is indicated by red solid lines.

6.1 Multiple regression

The dependent real-valued variable of fat content is provided along with the data set.
Prior to optimization the parameter vector A is initialized with identical components.
The results are compared with the left division operator \’, A = XT\L, and the more
stable Moore-Penrose pseudoinverse "pinv’ A = pinv(X") - L, both available in MAT-
LAB and GNU Octave. A summary of the correlation results of the models r(L, A" - X)
is given in Tab. [T}

] r | ASM | Octave V3: "pinv’ | Octave V3:°V

train | 0.9875 0.9980 0.9964
test | 0.9879 0.9595 0.9022

Table 1: Regression results as Pearson correlation of the new method compared to
two different approaches based on matrix pseudoinverse calculations. Best values for
training and test set are in highlighted in bold.

On the training data set, the proposed model, based on distance matrices rather
than the data and label vectors, performs relatively poorly compared to the other two
methods. For example, the Moore-Penrose approach ’pinv’ provides close to optimum
(r = 1) solutions. Yet, the new model provides by far the best generalization, expressed
by both the high correlation values and by the small discrepancy between training and
test performance. Similar observations not reported here were made for other data
sets too. In contrast to plain data matrix inversion the squared number of pairwise
relationships contained in distance matrices may lead to a more representative model,
compensating for outliers or too specific traits. Thus, the proposed model is empirically
well-suited for dealing with a few number of samples of high-dimensional data.
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The model allows to interpret A - A" as mixing matrix. This does also apply to
the matrix inversion models, because X" - A ~ L = X" - X-AT-X = L - L" being
transfered to (z' — @7)" - X - AT (x' — x7) ~ (I' — 17)? yields the corresponding
squared distance matrices for ¢, 7 = 1... N. Four mixing matrices with absolute entries
are shown in Fig. 2] The columns in Tab. [T] correspond to the top left, bottom right,
and bottom left sub-panels, respectively. These matrices share the properties of more
intensity of pairwise channels around 40, 50, and 80, and some suppression in the
right upper area corresponding to pairwise intervals between 55 and 75. The overall
structures are somewhat different though. Interestingly, a much more pronounced and
smoother structure is displayed in the top right matrix panel of Fig. 2] for the parameter
vector transformed according to whitened data.

Based on the mean square error measure, the model performance is further compared
with a multivariate regression model for functional data (FMR) [4]. Two comparison
variants are studied here: one with original data, and one with z-score transformed
spectra as used in the reference publication. Note that this spectrum z-score cannot
be realized like the attribute z-score by a linear transformation, because each spectrum
mean and variance require completely independent calculations.

Results are summarized in Table 2} Basically, FMR provides the best test set result,
although the noticeable drop of error compared to the training set is not explained by
the authors. Using non-transformed data the proposed methods performs well in terms
of training, and it is average for the test data. These results are completely different
from those for the z-score transformed spectra which result in a very low training error
and an exceedingly high test set error.

For a better understanding of this strong discrepancy the original data was checked.
It turned out that one sample (sample number 13 in the test set, being spectrum number
185 in the whole data set) exhibited both maximum mean and variance values. Conse-
quently these values create maximum impact during the z-score transformation. A PCA
plot of the non-transformed test set (not shown) confirms a very outlier status of that
sample. Despite of being extremal terms of the mean, the variance, and the location in
the PCA scatter plot, its associated meat content value of 34.8, representing the overall
85% percentile threshold, is not extremal. If these rather handwaving arguments are
used to eliminate only that critical data point, the test set MSE drops down from 9.42
to an excellent value of 2.26. In a fair comparison this removal should not be done,
but we will come across that data point again in the next section. Finally, the authors’
indication of channels 60—80 being relevant to fat content association [4] is in contrast
to the identified channels around 40 being of interest using the method proposed here.
This trivially reminds us that attribute importance is strongly connected to the method
of choice and not an intrinsic property of the data.

11 Technical Report MLR-2010-05
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| MSE | ASM [ ASM (z-score) | MR [ FMR |
train | 2.43 1.32 294 | 427
test | 3.73 | 9.42/226* | 4.00 | 3.52

Table 2: Mean square errors, from left to right for the proposed method using original
data and z-score transformed spectra, using standard multivariate regression (MR) and
functional MR (FMR) [4]. The result indicated by * refers to a test set with spectrum
number 13 (185 in complete data set) eliminated.

6.2 Multiclass subspace regression

In the previous section a very good association of the spectra and their corresponding
meat content values was shown. Here, an artificial problem is defined by creating three
partition labels for low, middle, and high value percentiles, i.e. a split of the training
data set into 57:58:57 samples. The two partition boundaries are used to also categorize
the test labels. Instead of the ordinal categories O, 1, and 2 an orthogonal encoding of
a = (0,0,1), b =(0,1,0), and ¢ = (1,0, 0) is chosen in order to provide maximum
independence of the labels. The task is to map the data into a subspace with equidistant
data arrangement between the three categories, i.e. corners of an equilateral triangle.
Obviously such target arrangement fits into a 2D space, thus, motivating to a choice of
u = 2 columns for the parameter matrix .

A representative result of the optimization is shown in Fig.[3] No equilateral triangle,
yet, a faint triangular scattering can be observed in the left plot, leading to a relatively
poor correlation of r = 0.68 of the projection and the label space distances. According
to the 'nature’ of the data to associate with real-valued fat content, the categories are
arranged in a rather cloudy structure along the original partition ordering. Still the
clouds of the training categories and of the a posteriori mapped test set spectra do not
overlap strongly. Getting back to ordinal categories of high, middle, and low fat content,
a better separation of the high label (green) from the middle (red) and low (blue) content
can be observed than for the red and the blue category. The green outlier point in the
top left is again the critical test spectrum number 13 identified for z-score transformed
data in the previous section.

Looking at the mixing matrix in the right panel of Fig. 3] we find an intensity dis-
tribution similar but more structured than for the regression task displayed in Fig. [
This observation coincides with the fact of a rank-2 matrix allowing more structure
than the just the rank-1 matrix needed for scalar regression tasks. To conclude, the pro-
posed method cannot override the intrinsic characteristics of the data, but it provides
considerable results to fulfill the desired, maybe ill-posed, mapping problem.
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ASM using canonic relevances ASM using relevances of whitened data
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Figure 2: Tecator attribute mixing matrices with absolute mixing components. Darker
pairs have more influence on the regression task.

6.3 Multivariate regression for multi-dimensional scaling

In this section traditional label information is ignored. Instead an interesting task is to
associate data vectors with themselves by setting L = X. This is a non-trivial problem,
because it requires finding an u-dimensional subspace in which the high-dimensional
data relationships are best approximated. This is very similar to the principal coordinate
extraction problem (PCOA), but instead of a mere reconstruction of a given distance
matrix, a linear mapping operation is sought such that adding one point leads to map-
ping that point rather than to compute new reconstruction of an (N 4+ 1) x (N + 1)
matrix.

Here, rather than aiming at the Euclidean distance withL = X — r(Dy, DQ) = max
a dissimilarity matrix Dy is defined based on the 1 minus Kendall correlation values
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ASM 3-class relevances
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Figure 3: Three-class association for Tecator data set. Left: scatter plot of 2D projection
space. Colored points refer to blue=low, red=medium, and green=high fat content.
Small points denote the training set, large points the test set. Right: corresponding
attribute mixing matrix, cf. Fig.[2]top right.

between all pairs of spectra. Thus, an adapted Mahalanobis-like distance is wanted of
which the induced linear mapping approximates the given correlationships in Dy . The
results of the optimization is shown in the right panel of Fig.[4] providing a correlation
of r(Dy, Dy) = 0.958. For comparison, a PCOA reconstruction based on MDSLocal-
ize [5] is shown in the left panel of Fig. [d] A strong visual correspondence between
both scatter plots can be stated, although the PCOA approach yields a much higher cor-
relation of r(Dy, D))(‘) = 0.996. This very good reconstruction is achieved at the cost of
losing the data mapping functionality. In practice many algorithms for computing the
Kendall correlation coefficient possess an O(M?) time complexity, which gets exces-
sive for some thousand-dimensional spectra. Thus, turning the reconstruction problem
into a linear mapping operation, new data points can be integrated at very low costs.
This feature makes the proposed optimization method attractive for processing large
incoming data sets exhibiting complex relationships between the samples.

7 Summary and Conclusions

A generalized linear projection pursuit method has been discussed for illustrating the
open potential for using linear mappings in tasks aiming at the association of data trans-
formable vectors with their constant label space. In the current version, for a given
training set the set size must remain constant during training because of the underlying
batch optimization scheme. Optimization is rather stable, because no critical numerical
operation like matrix inversion is needed. Training itself is limited to medium size data
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Spread transformation on Kendall's tau ASM MDS mode Kendall's tau
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Figure 4: Low-dimensional representation of the 1 minus Kendall correlation dissimi-
larity matrix of Tecator spectra. Left: Reconstruction by an MDSLocalize-based spread
transformation. Right: Mapping result of the proposed method. Colors representing fat
content (red=high, green=medium, blue=low) are only for orientation purposes and
don’t affect computations.

sets, because of the squared complexity induced by the utilization of distance matrices.
After optimization, though, mappings of new data vectors can be easily computed by
applying the trained linear model. In addition, the distance matrix approach allows for
labels to be expressed as pairwise relationships rather than as associated scalar values
or vectors.

In practice, initialization of the mapping is not a critical issue, because the conver-
gence is usually quite good. Still, a way of initialization was presented compensating
for the lack of rank by distributing overall attribute mixing equally to all attributes.

The interpretation of the linear models is supposed to be easier by looking at the

attribute mixing matrix A = X - A" rather than at the obtained parameter matrix A.
Absolute entries of A can be related to the strength of their attribute pairs to contribute
to the association task. Additionally to the original data view, alternative views com-
pensating for attribute variance and covariance have been indicated.

The well-known Tecator spectral benchmark data set has been used for illustrating
the versatility of the method by doing classical regression, multi-class regression, and
a self-association auto-encoder task. These examples are not yet very systematic, but
they give an initial impression of the potential of the proposed optimization scheme for
the supervised calculation of linear mappings.
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Methods

Methods for validating the results of fuzzy
cluster and classification algorithms

Tina Geweniger'->

1 Introduction

In the course of our research we developed a variety of fuzzy cluster and classifica-
tion algorithms like Median Fuzzy c-Means (M-FCM, [1]), Fuzzy Robust Soft Learn-
ing Vector Quantization (FRSLVQ, [2]), or Fuzzy Neural Gas (FNG, [7]). Some of
them work with fuzzy data sets, others result in fuzzy cluster or classification solutions.
While trying to compare the results, either for several trial runs or for different methods,
we noticed a lack of methods to measure the quality of the solutions. Inspired by the
discussion following my presentation at the workshop I discovered a couple of publi-
cations which are addressing exactly this topic. The purpose of this paper is to give an
overview of already available evaluation measures for fuzzy data sets and comment on
them if applicable.

2 Summary of available evaluation methods

To compare fuzzy cluster or classification results it is necessary to use special measures
designed to handle fuzzy data. The measures or indexes listed in this chapter commonly
are derived from their crisp versions and employ #-norms to handle the fuzzy aspects.
In the following subsections a short description of the original measure and its adaption
to fuzzy data is given. Detailed descriptions can be found in the referenced articles.

2.1 Kappa value

Cohen’s k¢ [10] and Fleiss’ x  [8] are two statistical measures of inter-rater agreement
of two (Cohen) ore more (Fleiss) crisp classifiers C; and C5 or C to C) respectively,
taking into account the agreement occurring by chance. They are both given by

'E-mail: tina@geweniger.org
2University of Applied Sciences Mittweida, AG Computational Intelligence, Germany
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_ Po —DPc
B 1- De
where py is the relative agreement among the classifiers and p.. is the expected agree-
ment by chance, which is the expected value of the joined event that the classifiers clas-
sify a data point to the same one of the C' class. In [5] and [4] the fuzzy versions of both
Kappa values have been derived. pg and p, are then defined as

Fuzzy Cohen’s Kappa

1 N C
RN D 39 DL ATTAICANTLCNN)

c 1 1
pe = ZL 1_0/#02 (T (™ i g 2 dpi

N C
1
bo = NZZT(/“L'LCI (Xk)a ) Ky M (Xk))
k=11=1
C 1 1 M o
De = Z/cl 0.../CM . HP(MJ) '(T(ugl,...,u?“))dylcl.‘.d,uiCM
i=1"7H = i =0 \j=1

where © (x) is the fuzzy assignment of data point x to class 4. NN is the number of
data points and M the number of classes or clusters. The function 7T : [0,1]2 — [0, 1]
is a t-norm and the values p; 1 o pCM the densities picj =+ Zszl uiCj (xx),] =
1...M.

For both kappa the relation x € [—1,1] is valid and the values are interpreted ac-
cording to the scheme given in table[T]

Remark 1 Using different t-norms like Minimum, Sum or Lukasiewicz leads to
different Kappa values. In [4] it is recommended to use the Minimum norm.

Remark 2 If this measure is to be used to compare two or more cluster solutions
with each other, all the possible permutations of the clusters have to be considered.

2.2 Rand Index and related indexes

A further criterion for evaluating cluster or classification solutions is the Rand Index as
proposed by Rand [9]. This measure compares pairs of objects, counts their agreements
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k-value meaning

k<0 poor agreement
0=rk<02 slight agreement

0.2 <k <0.4 fair agreement

0.4 <k <0.6 moderate agreement
0.6 <k < 0.8 substantial agreement
08<k<1 perfect agreement

Table 1: Interpretation of the x-values

in terms of class memberships and calculates the index value. There are four different
possibilities to define pairwise class memberships:

a- an object pair belongs to one class or cluster in the first solution and also belongs
to one class or cluster in the second solution

b - an object pair belongs to one class or cluster in the first solution, but to different
classes or clusters in the second solution

c - an object pair belongs to different classes or clusters in the first solution, but to
one class or cluster in the second solution

d - an object pair belongs to different classes or clusters in the first solution, and also
to different classes or clusters in the second solution

Based on the values for a to d the Rand index can be calculated by

Rand Index

B a+d
at+b+c+d

In [6] Campello derived a Fuzzy Rand Index using #-norms and t-conorms to obtain
valid values for a to d based on fuzzy assignments. Detailed descriptions can be found
in [6].

The resulting index is value a in [0, 1], where 1 implies complete agreement.

Remark 1 Using different t-norms like Minimum, Sum or Lukasiewicz leads to
different values for the Fuzzy Rand Index.

Remark 2 The Fuzzy Rand Index can only be used to compare a crisp with an fuzzy
solution. It is not suitable for comparing two fuzzy solutions with each other, since
in the case of perfect agreement, the Fuzzy Rand Index does not result in 1, which is
caused by the use of the #-norms.

There are a couple of related indexes like
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Adjusted Rand Index
a— (a+c)(a+b)
d
ARI (a+d)+(atb) _ (atc)(atb)
2 d
Jaccard coefficient
_ a
at+b+c
Fowlkes-Mallows Index
No—
(a+b)(a+c)
Minkowski Measure
M - b+c
b+a

T" Statistics
Ma— (a+b)(a+c)

r —
Via+b)(a+c) (M- (a+0b))(M—(a+c))

with M = N(N —1)/2

which are also suitable measures and are also using a to d. Each of them shows some
special characteristics. For further details I again refer to the article by Campello [6]
and also to the literature mentioned there.

2.3 Fuzzy variant of the Rand Index

In this measure, proposed by Hiillermeier in [3], the pairwise comparing and counting
of class memberships as employed for the Rand Index is replaced by comparing the
pairwise distances between two data points for two different cluster or classification
solutions. Normalizing the sum over the differences between all the pairwise distances
respectively gives the proposed measure

S Y B (x5, %) — B (x5, %))
d(C1,Cy) = === n(n—1)/2

where

B9 (x5, %5) = || (xi) — 1 (x)]
with 1€ (x) as the fuzzy assignments of data point z to the clusters of the solution
C). The same yields for E©2 respectively.
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The value of this measure again is in [0, 1], where 1 implies complete agreement.

Remark Although called Fuzzy Rand Index by the author of [3], this claim holds
only for the very special case that both cluster or classification solutions are crisp.
Which again is equivalent with the normal Rand Index.
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1 Introduction

Hyperspectral imaging is a powerful method to transform the abundance of different
molecules of a sample into a set of images. Each of these images contains a spatial
distribution of the reflected light of the acquired scenery at a particular and typically
narrow wavelength band. The reflected light intensity depends on the molecule structure
of the sample near to its surface. All images together form a reflectance spectrum. Each
pixel of the acquired image set can be considered as a vector that contains the so-called
spectral fingerprint at this very local position. Fig. [5] shows an example of a spectral
fingerprint.

This technique and its utilization to characterize and quantify biochemical com-
pounds in plants has been known for decades [14, 13]. Due to a strong demand by plant
breeders and farmers along with a recently higher availability of suitable hyperspectral
cameras, applications in plant phenotyping and precision agriculture can increasingly
be noticed [11, 4, 5, 1].

Besides specific and always required preprocessing and possibly some visualization
of the acquired image sets (see Fig. [6), the analysis of the obtained hyperspectral sig-
natures is a complex and delicate task. This generally ranges from
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Figure 5: Sample spectral fingerprint (reflectance spectrum) at one pixel of an ac-
quired scenery within the wavelength range of about 1,340 nm...2,500 nm. Besides
the molecule specific details of the sample the general physical effect of decreasing
energy along with decreasing frequency (increasing wavelength) can be seen as well.

e unsupervised clustering to find similar spectral fingerprints to

e classification that links the data to some a-priori known categories, such as geno-
type or nutrition conditions, up to

e regression where typically the obtained spectra are mapped to externally obtained
biochemical reference data.

Due to its complexity, both in terms of the number of variables (dimensions = spectral
bands) and the number of sample vectors (pixels), and the fact that the analyses are data
driven (analytical context is typically unknown), artificial neural networks and machine
learning paradigms [12, 7] can beneficially be applied to tackle it [9, 3, 1].

2 Neural networks based spectral data analysis

Whereas regression (refer to list in previous chapter) requires a mapping of two differ-
ent functions and one of them (output function) needs to be obtained by external wet
lab analysis, clustering and classification are basically based on calculating similarities
between per se available input samples. This leads to the discussion of suitable simi-
larity or dissimilarity measures [10, 8]. In particular, prototype-based neural networks
offer an elegant way to implement different metrics.

This is the starting point to develop task or application specific dissimilarity mea-
sures. One possible way is to consider the spectral fingerprint as pattern of positive-
valued finite measures — a statistical distribution. In this case divergences can be applied
to characterize and distinguish spectral fingerprints [6, 2].
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Figure 6: Demonstration of spectral properties: Sample leaf as gray-scale intensity im-
age at an arbitrarily chosen wavelength and in false color coding after clustering the
spectral fingerprints of all pixels. The circular structure on the right is the calibration
pad (used for spectral calibration), that obviously forms an intrinsically separate cluster
(orange color). Some pixels in the shade of the leaf (right edge) share the same cluster
as the calibration pad, since this shaded background has similar neutral spectral proper-
ties. In contrast, the illuminated background has its own molecular structure that forms
another separate cluster (cyan color).

Although this needs to be further developed in detail, parametric gamma-divergences
seem to be a suitable option — not only due to their robustness in terms of outliers. Since
these divergences are set in a machine learning environment now, the adaptation (train-
ing) of the gamma parameter itself in addition to the regular neural network training
seems to be a promising approach.

3 Conclusions and outlook

The described work in progress is to develop specific application-adaptive dissimilar-
ity measures that respect the particular properties of spectral signatures much better
than standard options, such as Euclidean and correlation-based ones. The availability
and implementation of these measures will further advance hyperspectral imaging to
monitor biochemical compounds of plant leaves and beyond.
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