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Abstract

Low-dimensional (2- or 3-dimensional) visual representations of large, high-
dimensional datasets with complicated cluster structures play a fundamental role in the
discovery and identification of such structures. Visualization exploits the unmatched
pattern recognition capability of humans for accurate and detailed cluster extraction,
which is not possible with current automated methods because the latter still lack the
power of the exceptional human reasoning. For explanatory and interactive visualiza-
tion, a powerful tool is the use of self-organizing maps (SOMs). In general, by pro-
ducing a spatially ordered set of quantization prototypes of large, higher-dimensional
data, SOMs enable the visualization of various similarity information (such as proto-
type distances, distribution, topology) on a rigid lattice, without reducing the feature
dimensionality. Information discovery further depends on the expressive power of the
similarity measure and its visual representation. In this study, we compare the capabil-
ities of our recent SOM visualization scheme, CONNuvis, with prominent dimensionality
reduction methods and show its superiority for visual assessment of intricate cluster
structures.
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Abstract

Low-dimensional (2- or 3-dimensional) visual represdotet of large, high-dimensional datasets with complicatedter struc-
tures play a fundamental role in the discovery and identiicaof such structures. Visualization exploits the unrhatt pattern
recognition capability of humans for accurate and detailaster extraction, which is not possible with current andabed methods
because the latter still lack the power of the exceptionaldmreasoning. For explanatory and interactive visuatinag powerful
tool is the use of self-organizing maps (SOMs). In generaptoducing a spatially ordered set of quantization prqiesjof large,
higher-dimensional data, SOMs enable the visualizatiormabus similarity information (such as prototype distesiadistribution,
topology) on a rigid lattice, without reducing the featurmdnsionality. Information discovery further depends loa &€xpressive
power of the similarity measure and its visual represemtatin this study, we compare the capabilities of our rec&ivSsisu-
alization scheme, CONNvis, with prominent dimensionaléguction methods and show its superiority for visual assest of
intricate cluster structures.
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1. Dimensionality reduction ver susvolumereduction for vi- reconstruction of a single underlying low-dimensional -sub
sualization of large datasets manifold rather than for visual discrimination and disagve

of various structures — clusters — that may exist in the data.

Lovr\]/-dlmenspnall(z or 3-d|me_n5|onall, deno;gdha; ,2D or 3DHence, they are often suboptimal for discovery of cluster
from here on) visual representations of large, high-dirreeras structure, and for classification, as shown in various Eper

datasets with complicated cluster structures play a furedah (Yang, 2002; Polito and Perona, 2001; Vlachos et al., 2002)

rolle in the d|sc9very and identification of such str_qctukgsu- that propose augmentations to previously published mihifo
alization exploits the unmatched pattern recognition baia learning/ dimensionality reduction methods. For example,

of hurﬂa_ns. While Cl_TSt_er capture Wit:h a hluman-ir?-the-lqmpa Yang (2002) and Zhang et al. (2004) additionally use Fisher
proach is necessarily interactive, thus slower tf an_aukmlna inear discriminant analysis for face recognition. Vlasho
methods, the insight game_d by human mteractl_on IS unparag 5, (2002) modified Isomap and LLE so that both local and
Ieled' I.n many cases detailed structure extraction Is net po global distances are considered for better visualizatiod a
sible with current automated clustering methods. Theezfor classification. However, the performances of the modified

it is of great importance to bring to the visualizatio.n as muc Isomap and LLE are not very promising for identifyingfef-
knowledge about the structure of the data as possible, ghrou ¢ patterns due to the use of the same reconstruction iveiect
in_tellige_nt information extraction and representatioraifow- (single underlying manifold) as with the originial Isomapda
dimensional space. LLE. Since the data clusters may lie infirent submanifolds,

For visualization of high-dimensional data in low- visualization of the separation boundaries between grofips
dimensional representations, there has been much resmarchpatterns is of far greater interest for structure discotban
manifold learning based on dimensionality reduction, weher showing the precise underlying manifold. A novel approaxh f
all n-dimensional data vectors in a data set are transformegsualization of datasets with fiierent underlying manifolds is
into 2D or 3D data vectors. This is motivated by the ideat-distributed SNE (t-SNE) (van der Maaten and Hinton, 2008)
that the data may lie on a low-dimensional manifold embeda variation of stochastic neighbor embedding (Hinton and
ded in a high-dimensional space. Dimensionality reductiorRoweis, 2002) with an easier-to-optimize cost functiomgsi
methods such as multi-dimensional scaling (MDS) (Cox andtudent-t distribution for similarity calculation. Despithe
Cox, 2001), Isomap (Tenenbaum et al., 2000), locally lineahon-convexity of the t-SNE cost function, t-SNE represtoita
embedding (LLE) (Roweis and Soul, 2000), Hessian LLEoflocal similarities provides better visual separatiomhef data
(hLLE) (Donoho and Grimes, 2003) are mainly developed for
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clusters than other dimensionality reduction methods @lem visualizations of five dferent data sets by eight dimensionality
Maaten and Hinton, 2008). reduction methods and by CONNvis, pointing out the partic-
ular challenges in each data set, and then compares computa-
tional complexities of the presented knowledge represienta
emethods. Section 5 concludes the paper.

A major issue with all dimensionality reduction methods
for interactive visualization is that they scale exporahi
with the number of data points. This makes them infeasibl
for large datasets (such as remote sensing images, text docu
ments, streaming video, flow simulations, analysis of copu 2. SOM for visualization of high-dimensional data
code performance, etc.). In contrast, prototype based-meth
ods (where the data are first summarized in prototype vectors . . . ]
through vector quantization (VQ)) exploit the knowledge en In general, dimensionality reduction does not reduce data
coded in the data representatives for interactive visatin, Volume, and conversely, VQ methods do not reduce feature
which can have very attractive scaling properties for tiseai- ~ SPace dimensionality. Ideally, arffective visualization of
ization of large datasets, depending on the VQ approachpAda@ large, complicated, high-dimensional dataset shoulgzeiti
tive VQ algorithms, which show the data topology on the proto both. - Self-Organizing Maps (SOMs) provide a unique com-
type level and aim to faithfully represent the local sinitias of ~ Pination of adaptive vector quantization of the data spaxe a
the quantization prototypes, are well suited for interactiata ~ topological ordering of the quantization prototypes onvado
analysis (Kohonen, 1997; Martinetz et al., 1993; Cottredle dimensional grid. This enables visualization of the togglof
2006; Aupetit, 2006; Bishop et al., 1998). These a|gorithmehigh-dimensional data spaces without needing dimenstgnal
are either inspired by nature as in the case of Self-Orgagizi reduction of the data vectors. Thus, visualization on tht4SO
Maps (SOMs) (Kohonen, 1997), derived as stochastic graO”g_rid does not depend on the _dir_nensionality of the data space
ent descent from a cost function as in Neural Gas (Martinetglirectly, and therefore is not limited to data reduced to 3 or
et al., 1993) and its batch version (Cottrell et al., 2006pkp ~ dimensions.
tained by expectation-maximization algorithm (Bishop ket a
1998; Aupetit, 2006). Variants of these methods, which use 2 1. sgif-Organizing Maps
magnification factor in quantization, are also analyzedrto e
hance the representation of complex structures including r  The SOM algorithm can be briefly summarized as follows:
patterns (Merényi et al., 2007b; Villmann and Clausse520 Let M c RY be a d-dimensional data manifold, agtbe
Hammer et al., 2007). the (lower-dimensional) fixed SOM lattice &f neural units.
Fach neural unij has an associated weight vectoy which
is adapted through a learning process as defined by Kohonen
IO&kohonen, 1997). The process consists of cycling through tw
steps:i) finding the best matching unit (BMU); for a ran-
domly picked data vectore M, such that

SOMs (Kohonen, 1997) stand out in the representation o
the data structure because they have two advantageous{ro
ties: providing an adaptive vector quantization that ressial a
placement of prototypes in the data space that follows tee da
distribution; and ordering of these prototypes on a rigid-lo
dimensional lattice according to their similarity relat® Due
to these properties, the density distribution — and theectioe
structure — of a high-dimensional manifold can be mapped and
visualized on a low-dimensional grid without reducing thie d
mensionality of the data vectors. This allows capture of comandii) updatingw; and its neighbors according to
plicated cluster structures in high-dimensional spaceutin
interactive visualizations. wi(t + 1) = wj(t) + a()hi () (v — w;(t)) 2)

IV-will <lv-wjll Vjeg (1)

Various components of the learned SOM’s knowledge are ofwheret is time, a(t) is a learning parameter aridl;(t) is the
ten processed through visualizations to capture clusiéggac-  neighborhood function, often defined by a Gaussian kernel
tively. Our visualization scheme, CONNuvis, first proposed i around the best matching unit. After learning, the weight
(Tagdemir and Merényi, 2009), isftérent from other SOM vi-  vectors become the vector quantization prototypes of the da
sualization schemes in that it represents the data diftsibu manifold M. Fig. 1 shows an example organization of the SOM

on a subprototype level, and it achieves detailed delioratf  quantization prototypes in the data space and in a 2D regtang
cluster boundaries by rendering the data topology on the SON4r SOM lattice.

lattice. The CONNuvis is successful in interactive clustgrof
datasets with complex structures. We show this through dat]%

sets of progressive dimensionalities and complexitiassfer ing (with the precision fiorded by the given number of pro-

structures)_, cul_mmatl.ng with a 28-cluster, 8-band, laed re _totypes). While the Kohonen SOM follows@(w) ~ P(v)®
mote sensing image; and we show and analyze comparisons . e :

) ) . ) : power law witha = 2/3 magnification exponent (Ritter and
with prominent dimension reduction approaches.

Schulten, 1986), the Conscience SOM produees: 1 for
Section 2 briefly reviews SOMs and their interactive visual-higher-dimensional, complex data as demonstrated inéMer”
izations. Section 3 summarizes CONNvis. Section 4 presentst al., 2007b; Merényi, 2000).

2

In our work, we use the Conscience SOM (DeSieno, 1988)
r real data, because it achieves undistorted densitylmatc
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Figure 1: Organization of the SOM quantization prototypes (shown ibgles) in the data space and in the SOM lattice. Each prpéoty the
centroid of its Voronoi polyhedron (receptive field). Thefatypes that are neighbors in the data spaeg,their Voronoi polyhedra share an
edge, are (ideally) neighbors in the SOM. When there are thare8 neighbors in the data space, (with correct SOM leg)@irof them will be
the 8 immediate SOM neighbors in a rectangular lattice, hade¢maining ones are expected to be in the next immediate Sgiborhood.

2.2. Interactive Misualization Schemes for Self-Organiziing  simple data sets. For identification and interpretationudters
Maps on the SOM lattice, an enhanced version of the U-matrix views
The SOM facilitates the visualization of the structure of athe SOM as an undirected planar graph and clusyers as con-
. . . . ; nected components where a connected componentis a subgraph
higher-dimensional data space in lower (usually one or tir0) . . .
mensions by preserving the neighborhood relations on d rigi|n which two vertices (prototypes) are connected to eachroth
by a path constructed by using the gradient of the smoothed

lattice. However, post-processing is required for infotiea :
representation of the raw knowledge of the SOM. The two SOI\/P'mamX (Hamel and Brc_)wn, 2011). Thege conne_cted_ com-
ponents are then overlaid on the U-matrix, resulting in im-

knowledge components (most) commonly visualized are Eu_rovement in cluster identification especially in case gfhi
clidean distances of those prototypes that belong to imatedi P! . . P y

- . A0 . dimensional real world data with small number of data sam-
neighbor neurons in the SOM lattice; and the size of the recep les. Himberg (2000): Kaski et al. (1998, 2000): Villmanman
tive fields of the SOM neurons (data density). Various sctemel &> 9 ’ ) ’ ’

have been proposed to display these quantities over the SO erényi (2001) apply automated color assignments to proto
lattice ype distances for exploration of the approximate clusteics

. . . ture. Some methods examine the distances based on individua
The most common, and earliest, method for displaying thgeature component planes of the SOM to discover information
Euclidean (data space) distances — or dissimilarities —@f p  specific to the corresponding component, which may be hid-

totypes of neighboring SOM neurons is the U-matrix (Ultsch,den when all planes are examined together (Kaski et al.,;1998
1993), which colors the grid cell of a prototype to a gray  Vesanto, 1999).

shade proportional to the average distancevofo its SOM

neighbor prototypes. The U-matrix and various subsequent . . .
modifications (e.g., (Kraaijveld et al., 1995; Ultsch, 2J)03 rI)een proposed in the form of data histograms by drawing ver-

work well for small data sets with a low number of clusterst'caI bars or curves, and by using gray shading in the grits cel

mapped to a relatively large SOM grid. However, they tend to(e'g" (Kas_ki et_al., 1_996; Vesanto, 199.9; U_Itsc_:h, .20039))( &
obscure finer delineations between clusters in complicaed more precise visualization of the density distributiongipalk

large data sets because of averaging of prototype distanees etal (2002) smooth data histograms by assigning a_weighted
neighboring SOM grid cells, or thresholding (Merényi et, al membership of data vectors to the prototypes. Data histogra

2007b). Another variant changes the size of the grid cells acOf the prototypes may conceal finer structure in complicated

cording to the average distances to neighbors (Hakkinen an(i!nata since the density representation on the prototypkdees

Koikkalainen, 1997) but this has similar problems as the U-nOt reveal prototype simila_rities. Therefqre, data hisangs are
matrix, with less visual separation. Cottrell and de Bo@9@) also employed together with prototype distances in the same

use polygons for grid cells where the distance of the vesrticesual'z""t'On such as in Cott_rell and (_je Bodt (1996) and Mgren
from the cell center are inversely proportional to the dists et al. (2007b). Yet, there is more mformaﬂqn, Igarngd y th
of each of eight immediate SOM neighbor prototypes. (TheSOM’ that remains untapped by the above visualizations.
boundaries of neighboring cells are “pushed apart” — thiscel In order to provide visual separation of the clusters withou
are shrunken — proportional to the distances of the res@ecti post-processing the SOM, Adaptive Coordinates (Merkl and
pair of SOM neighbor prototypes in each lattice directidrh)s ~ Rauber, 1997) and the Double SOM (Su and Chang, 2001) up-
method works well for manual cluster extraction for relaly ~ date not only the prototypes but also their positions in tB#MS

3

Visualization of the receptive field sizes of prototypes has



lattice while learning. By these methods, the SOM does not where RF;; is that section of the receptive field (Voronoi
have a rigid grid anymore and the dissimilarities between th polyhedron) of the prototype; wherew; is the second BMU,
prototypes are visually exposed by their lattice distanklesv-  and|RF;j| is the number of data vectors RF;;. CONN thusi)
ever, it is uncertain how these methods would work for largeshows the data structure as expressed by the Delaunay draph o
data volumes and for high-dimensional data. Another vagan the SOM prototypes (whose distribution follows the data-den
the SOM that enables a direct and visually appealing measusgty), ii) indicates local connectivities of the manifold by ex-
of inter-point distances on the grid is the visualizatioduined pressing how the data is distributed within the receptividsie
SOM (ViSOM) (Yin, 2002). The ViISOM produces a smooth with respect to prototypes that are neighbors in the dateespa
and evenly partitioned mesh through the data points whieh re(Neighbor prototypes in the data space are those which are ce
veals the discontinuities in the manifold. The ViSOM is com-troids of adjacent Voronoi cells. See Martinetz and Schulte
putationally complex for large datasets due to the requérgm (1994) for exact definition). It facilitates identificatiad the

of a large number of prototypes even for small datasets. discontinuities within the data set which indicate natyaatti-

SOMs have been used for more than two decades for data VioNns in the data. This is in contrast to the density reprsen
sualization. However, most studies described above efitigs ~ tions mentioned above, which express distribution on tiee pr
than the full potential of the SOM knowledge. Our work, CON- {otype level, thus giving neither information of local dips
Nvis, first proposed in Tasdemir and Merényi (2009), fesus 2nisotropies, nor any sense of topology violations.

on advancing SOM-based visualization by For visualization, CONN is rendered on the 2D rigid SOM

e enriching the knowledge representation with resource&dttice by connecting the grid locations of the SOM protetyp

(data topology and detailed local data distribution) netcu With lines of various widths and colors. The line widths are
tomarily used, proportional to connectivity strength€ONN(i, j), therefore

. . R reflect the density distribution among the connected pyptes,
« employing a (density-based) similarity measure for proto-showing theglobal importance of the connections. The connec-
types that is not a distance based metric, and tions of a prototypaev; are ranked according to their strengths

« increasing the quantitative aspect of the evaluation of th&® 'éveal the most-to-least similar neighbors (Voronoghebors
visualization by computing “natural” thresholds (as Op_ln data space) ta. The rankings are indicated either by line

posed to user selected) from the data characteristics. ~ c°!ors: red, blue, green, yellow and dark to light gray leve
by dark to light gray levels. Since the ranking does not ddpen

We summarize CONNvis next. on the size of the receptive field of, but only on the relative
contribution of each neighbor, line colors indicate tbeal im-
3. CONNvis: visualizing the connectivity structure of the ~ portance of a prototype’s connections. Line widths and colors
data manifold effectively represent the intricate details of the data stmagt
and enable relatively easy interpretation and capture t&y-in
CONNUvis is a graph-based similarity visualization for SOM g¢tive visual clustering. In addition, topology preseisatof
prototypes. The graph rendered on the SOM grid reprethe SOM mapping can be assessed using the line lengths and

sents prototype similarities, defined by teennectivity mea-  the grid neighborhood, as detailed in (Tasdemir and Mgrén
sure CONN. CONN is derived from the neighborhood rela- 20009).

tions (topology) of the data manifold together with the loca _ _

density distribution. CONNvis enables evaluation of samil ~ For low-dimensional (1D to 3D) datasets, CONN can also
ities between prototypes that are not SOM grid neighbors pupe Visualized in the data space by connecting the locatibns o
are neighbors in the data manifold. It also shows a rankingrototypes, similarly to its rendering on the SOM latticey.R2

of prototype similarities, and separation between subfolas shows example representations for two simple 2D datasets, a

available at httgiwww.uni-marburg.déb12/datenbionikdata,
are constructed by (Ultsch, 2005). The first dataset “Lswas’ h

. . ’ X hree well-separated clusters, two rectangular and onerisph
of the prototype vectors, which was defined in (Martinetz andtcal. The second dataset, “Wingnut”, has two rectangula-clu

Schulten, 1994) as the intersection of the Delaunay triang L Lo e
lation with the data manifold. CONN assigns weights to th(t,-Jters with inhomogeneous density distribution within ofirst

d f the induced Del h. Th iaht of d and similar intra-cluster and inter-cluster distancesr bath
edges of the induced Defaunay grapn. 1he weignt ot an € g(?ases, the cluster structure can be expressed by CONN,ras see
connecting two prototypes is the number of data samples f

0t'hrough its visualization, CONNVvis, both in the data spaue a
which these two prototypes constitute a pair of best-matghi h . . ! St )
: . . M, fth lust
unit (BMU) and second BMU. CONN is the matrix represen-On the SOM, in spite of the variations across clustersent

tation of this weighted Delaunay graph where each elemen hapes, proximities and inhomogeneous density distabiti

CONN(i, ), is the connectivity strength between prototypes espectively). For the “Chainlink” dataset, CONNvis inalies
wi ,w; and is equal to the weight of the edge betwéemd the separation between the two rings as well as the topologi-

CE I cal ordering of the data points on the SOM, by connecting the
J. Formatly, two ends of a ring with a prototype lying in the middle of the
CONN = |RFij| + |RFj;| 3) other ring. Line widths are best binned when the number @t dat

The connectivity matrix (Tasdemir and Merényi, 2009),
CONN, is a refinement of thimduced Delaunay triangulation



points is much larger than the number of prototypes, as in thaf a prototypew; at the boundaries dfclusters are removed as
case individual connectivity strengths cannot be disakrie follows and as illustrated for¥2 in Fig. 4.a:

sually. Binning can be done with automated thresholdingthas
on internal data characteristics, which results in eachréin
flecting the global importance of one rank of connectiongsTh
binning method is described in detail in (Tasdemir andéver,

1. If the numbers of connections of a boundary prototype
to each ofk clusters difer, keep the connections to the
cluster with the highest numbers of connections, and re-

2009). The resolution of the selected thresholds not orsirui move all connections to other clusters. _

guishes strong connections but also reveals weak connsctio 2- |f the number of connections to each cluster is the same but

between (separated) clusters. the connections haveftitrent strengths, keep the strongest
set of connections, and remove all connections to other

An example for a more complex case than in Fig. 2 is given
through a simple synthetic spectral image, which has<233
pixels with a 6D feature vector at each pixel. It has 20 spéctr
classes distributed spatially as shown in Fig. 3.a. The raigan
natures of these classes, displayed to the right of the olaps

are quite similar to each other, which poses a clustering cha  Fig. 4.b-c shows this interactive clustering on the 20<las
lenge. 4 of the 20 classes, P, R, Q, S and T, are relatively smabjataset. The prototypes at the boundaries of coarse duster
class R has only one pixel, for additional complexity. Distai highlighted in black. Removal of the connections according

of this data set are at htjfierra.ece.rice.edu and in (Merényi the above procedure results in the extraction of all 20 known
et al., 2007b) A 2620 SOM is used to obtain the quantlzatlon clusters in the data, inc]uding the 0ne-pixe| cluster R.

prototypes of this data. The statistics of the ranked catiwisc
strengths indicate that the maximum number of connections f
a prototype is 16 (Fig. 3.b). The average connectivity gftien
is as high as 37« u1) for the first ranking connections whereas
it drops sharply after the fourth-ranking connections € 6).

clusters.

3. If both the number and the strengths of connections to each
cluster is the same then keep the highest ranking set of
connections and remove the rest.

4. Comparison of CONNvis with different dimensionality
reduction methods for visualization in 2D space

! i . . . . We compare the dimensionality reduction methods tSNE,
The CONNuvis of this data is obtained by using a 4-level b'n'SNE Isomap, Sammon’s mapping, PCA, Kernel PCA, LLE

ning SfCT]emgo"Kilt’ilﬁ‘l_’“?”l‘:?{’ 0 gs the threds_hollds. Visulal inspecl— and Hessian LLE with the quantization based topology visual
tion of the vis In Fig. 3.c. immediately reveals strongl ;, »iiop, by CONNVvis, for interactive visual assessment okel

connected groups of prototypes (clusters) with some weak co ter separation. To obtain the mappings produced by the di-

nections across the clusters. mensionality reduction methods we use the Matlab toolbex de
veloped by van der Maaten and Hinton (2008) (available at
httpy/homepage.tudelft.fl9j49), with default parameters. We
Graph-based visualization of prototype similarities édet also use CONNvis with default parameters automatically-com
mined according to the data manifold) on the SOM grid en{puted from the data statistics to produce coarse clusters.
ables their interactive evaluation to find separation bawied First, we use the three simple datasets in Fig. 2, for which

between dierent patterns in the dataset. Interactive clusteringsonNvis clearly displays the cluster separations. Fig$, 5,
from CONNuvis is performed by removing weak connectionsghaw the mappings for the Lsun, the Wingnut, and the Chain-
(represented by the line widths) which are of low importancjnk gatasets, respectively. For the 2D datasets Lsun and
in terms of cluster similarities. First, topology violati® (iden- Wingnut, Sammon’s mapping and PCA provide a linear map-
tified by line lengths) are investigated and weak global ones,inq \yith no efect on the visualization of separation bound-
are removed. Any strong global connections (not present iRy jes whereas for the entangled clusters of the 3D Chéinlin
the SOMs of the datasets in Figures 2-3) are examined fugney fail to express the cluster separation in the 2D projec-
ther to determine whether they are due to defective learningg, Similarly, while kernel PCA and SNE separate the clus-
or correctly express a structural relationship. For exaqle  tors of the Lsun and Wingnut data, they are unsuccessfuiéor t
CONNvis of Lsun or of Wingnut, shown in Fig. 2 have no chgainjink data. Due to the fact that Isomap and LLE are fo-
topology violations for mapping of 2D datasets to 2D surface ,seq on single-underlying manifold based on local neighbo
The CONNuis of the 20-class dataset (Fig. 3) has many —butooq, they can map the well-separated clusters of the Lstin an
weak— violations, mostly contained within the obvious €lus he chainlink as disconnected components, and thus they can
ters. The global violations for this dataset are those collOTes g, ccessfully embed each component separately into 2D space
with length > 2 since a prototype has at most 16 neighbors ingy e though separate mapping of disconnected components —
the data space (from Fig. 3.b), and these 16 can fit in the 8ecoR,siers— may not show their similarity relations, it helps
immediate SOM neighborhood as shown in Fig. 1. We remove,ster visualization. However, it is also possible to ethal
the weak global connections, which (in this case) are thade w | ;sters at once, by setting the neighborhood paramkter (
CONN(i, j) < ua, and visually determine strongly connected nmper of nearest data neighbors) accordingly (i.e., fahgen
groups of prototypes (coarse clusters). the number of data samples in a cluster) to obtain one con-
Remaining weak connections across coarse clusters needrnected component of all data samples and have it projected as
be analyzed and removed for crisp delineation. The cormesti in Figs. 5, 7. For the inhomogeneously distributed Wingnut

5

3.1. Interactive clustering from CONNvis
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Figure 2: Example CONN visualization (CONNVvis) in the data space amthe SOM, for three simple datasets from (Ultsch, 2005). A1®
SOM is used to obtain prototypes. Data points are shown al greg dots in the left and middle columns, prototypes akelad with unique
symbols according to their known clusters. Top: (a) Lsun (2a with three clusters) and its prototypes with true kalieldata space. (b)
CONN of Lsun prototypes, visualized in the data space. (cN@s of Lsun prototypes on the SOM. Middle: (d) Wingnut dagi(two 2D
clusters with inhomogeneous density distribution) and S@btotypes (e) CONN of Wingnut prototypes in the data spd€eCONNuvis of
Wingnut prototypes on the SOM. Bottom: (g) 3D Chainlink déteo linked 2D rings). (h) CONNvis of Chainlink prototypes the 3D space
(i) CONNvis on the SOM grid. The clusters of Lsun, Wingnut &iahinlink can be seen using CONNvis, through lack of coriaast(empty
corridors) between clusters. (Figure is in color on-line.)
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Figure 3:(a) Left: the spatial distribution of the data vectors in 28 x 128 pixel 6D synthetic image. Four clusters are relativehals, one
(R) has only one pixel. Right: the mean signatures of the a6sels, vertically féset for clarity. (b) Mean connectivity strengths (indichtey
1 — g ) for each rank of the first four ranks of the connections. (©ONDIvis, obtained by the 4-level binning scheme based ontttestics of
the connections. Coarse clusters (strongly connectecpgrofiprototypes) can be detected despite many (weak) tgpeiolations, shown as
connections between prototypes that are not neighborgi8@M lattice. Because of the connectivity strengths, ote @yieimmediate sense of
the relative importance of topology violations caused bgrged or small number of data points. For cluster captur@logpy violations that occur
within clusters are inconsequential. More details on tha,daONN and CONNUvis in the example are in (Merényi et alQ74f) and in (Tasdemir
and Merényi, 2009). (Figure is in color on-line.)
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Figure 4:lllustration of interactive clustering from CONNvis. Sorgeoups of prototypes — coarse clusters — are already odtlime®ugh the
lack of connections when the visualization starts. Theqtypies at the cluster boundaries, determined by visuaétigm of the coarse clusters
and the connections across them, are shown by black dotCir@¢&d numbers indicate three situations in interactivsstering described in
Section 3.1. 1: dferent numbers of connections to each neighboring coarséecluThe prototype at the boundary of the cluster on the lef
has 4 within-cluster and 1 between-cluster connectiongreds the other —the one on the right— has 3 within-clustdrlabetween-cluster
connections.) 2: the same number of connections to eacteclugh different connectivity strengths 3: the same number of cororeto each
cluster with the same strengths buffeient rankings. The connections to be removed are drawndieddines. (b) CONNvis of the 20-class
data set (with weak global violationkefigth > 2, strength < u4) removed). Letters indicate the truth labels of clustersQusters resulting from
the interactive clustering (by removing connections ofgtetotypes at the cluster boundaries). All clusters, idiclg the one-pixel cluster R, are
captured. (Figure is in color on-line.)
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Figure 5: Visualization of the 2D Lsun dataset, shown with truth lakesi the upper left, by eight filerent dimension reduction methods. Each
project the data into 2D space. All but the Hessian LLE anch&ePCA do a very good job separating the three clusters. tShiftls out by
exaggerating the separations. For 2D datasets, Sammopfmgaand PCA are linear transformations, with ifikeet on the visual separation of
clusters. (Figure is in color on-line.)
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Figure 6: Visualization of the 2D Wingnut dataset (shown at upper, lgfth truth labels superimposed), in 2D space, by the sagi# eiethods

as in Fig. 5. While all methods provide perfect visual sefanathe gaps tSNE and Isomap produce are larger than ahjnvagluster distances
thus could also be used for automated extraction of theeastsis(Figure is in color on-line.)

Data
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Hessian LLE

Figure 7: Visualization of the 3D Chainlink dataset (at upper leftthmiruth labels), through projection to 2D space by the samthats as
in Figs. 5, 6. (Note that the data is visualized in 3D spac8NHE, LLE and the Hessian LLE map two clusters separatelyregseSammon’s

mapping, PCA, Kernel PCA and SNE fail to produce visual d=diion of these clusters with nonlinear separation boyn@&sae more explanation
in the text. (Figure is in color on-line.)
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Figure 8: Visualization of the 2D Clown dataset by projection to 2DpaThis dataset has more clusters (with more varying stajghan the
previous ones. tSNE visually separates the clusters wittegmints projected incorrectly apart from their true adasged dots next to the green
cluster) and with extra delineation of a cluster. (In somesriti partitions the cyan cluster into sub-parts, which dbexist in the data.). Neither
the linear transformations of Sammon’s mapping and PCAthmnonlinear projections of kernel PCA, SNE, LLE and Isorpegduce a better
visual delineation of the cluster structure. For Isomap lao, only the mapping of the largest connected componenisigalyed.

. =

right eye

left eye

left eye
3 subclusters

(b) rrrrrrrr 1 / (C)

Figure 9: (a) The Clown dataset by Vesanto and Alhoniemi (2000) ctingi®f 2220 data points (gray dots) and itsx247 SOM prototypes

(graciously provided by Dr. Alhoniemi). (b) CONNuvis in thatd space. Prototypes are labeled witfedent symbols according to their clusters.
(c) CONNvis on the SOM. (Figure is in color on-line.)
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clusters whose distance is smaller than some of the within- Finally, we study the projections of a real dataset, an 8D
cluster distances, (i.e., close enough to construct thghber-  remote sensing image of Ocean City (Csath6 et al., 1998).
hood graph as one connected graph), the use of geodesic diEhis dataset has 262,144 data points (51212 pixel image)
tances in Isomap helps better delineation of the boundany. F where each point is an 8D vector (a measured surface radiance
all these three datasets, tSNE not only displays the chisegg-  in eight spectral band passes). In earlier work 28 clustérs o
arately but also increases the visual separation betwesan,th widely varying statistics (including several relativelre clus-

due to its locally optimal cost function. ters) were identified and verified in this dataset (Merénylg

Second, we use another 2D dataset, the Clown (Fig. 8, u 2007a, 2009). We gauge the performances of the dimensional-

- ity reduction methods and CONNVvis against these verified ear
per left) constructed by Vesanto and Alho_nlem| (2090)' Theligr results. Due to the computational c%allenges we £26@
Clown datase.t has several c.I'uste?rs of varying Stat'St'ﬁ@(d data points per class with stratified random sampling using a
ent shapes, sizes and densities): an elliptical nose @ise)y

. riori class information. This makes the comparisons &litt

a u-shaped mouth (green), a spherical eye (blue), thred sm . S .
clusters (brown, orange, and yellow) representing theraye, ess tha}n fair for CONNvis since th.e other methods are given

. . : equal-sized clusters, and also considerably fewer datatu
and a sparse body (red); and some outliers. Fig. 8 also showr%
the diferent mappings of the Clown dataset. Due to the map-
ping from 2D to 2D, Sammon’s mapping and PCA are neither Fig. 11 shows the projections with superimposed class la-
better nor worse than the original representation in teffivi-o ~ bels known from previous studies. While the majority of the
sual cluster separation, although Sammon’s mapping clsangéimensionality reduction methods group the data points rea
the spatial relationship of the mouth and body. Isomap arfel LL sonably well in the respective projections, from most ofithe
produce disconnected components, where the largest ore cdhis not possible to discriminate separation boundariesram
sists of the two largest clusters (turquoise and green, dise n classes without the a priori class labels. Thanks to itsfoost
and the mouth) of the Clown dataset. Kernel PCA slightly im-tion, emphasizing local similarities in a way that helps radd
proves the separation between disconnected parts of theadat the crowding problem, tSNE is considerably more successful
producing a relatively more intelligible delineation thére  than the other methods, for visual cluster identificatiotthis
original representation. Despite reordering of the cheste ~ dataset. As seen in Fig.11, it produces disconnected groups
a more compact layout (due to crowding problem discussethat indicate major dissimilarities among the data poiHtsw-
in van der Maaten and Hinton (2008)), SNE keeps the visua@Ver, even this representation can distinguish only somepg:
separation between the clusters and improves delineafion §We note that, due to its cost function aiming to reach a local
three small ones (orange, yellow and brown). By addressinglinimum, tSNE may produce ffierent mappings at each run.
the crowding problem in SNE, tSNE maps all clusters apart, af herefore, orientation of clusters and splitting of sulstdus
the expense of extra separations for relatively large efash ~ may difer at each mapping; however, the same result appears
some runs. Although our focus in this paper is on the evainati at all runs: tSNE indicates major dissimilarities at the exge
of cluster separation in visualizations, we note that, deshe  Of unnecessary splitting of some clusters.)

fact that the mapping is from 2D to 2D, the topological order-  Fig. 12 shows in more detail that each of these tSNE groups
ing of the clusters is preserved only by the PCA and the Kercomprises several of the known clusters which are moreaimil
nel PCA. The CONNuvis representation of similarities betwee to one another than to clusters contained in other groups. As
quantization prototypes, shown in Fig. 9 clearly indicates  an example, the boomerang-shaped contiguous set of pnints i
different clusters in the Clown dataset, as well as preserves thige center represents a smooth change-over across fiverslust
topology. (Eyes are on either sides of the nose, the mouth b&tarting with the dark green cluster L and continuing on the d
tween the nose and body, like in the data set.) agonal toward the upper right with clusters O (split-peagje

Third, we map the synthetic 6D 20-class data into 2D spacd (0range), P (brown), and Q (ocher). While no boundaries
(Fig. 10). Due to the computational complexities of the dime €a" be discerned, the spectral signatures in Fig. 15 corffain t

sionality reduction methods, it is infeasible to use allaédata  (heSe clusters are not only similar but their similaritatiins
points. Therefore, using a priori class information, a tereof ~ 7€ correctly reflected by the tSNE layout. A s!mllar case can
the data points is randomly selected from each class (excePfj made for other (smaller) groups such as (A, j, G) or (I, R, J)
for the 1-pixel class) to reduce the number of data pointdawhi It IS @IS0 easy to see that the spectral signatures of theectus
preserving the respective ratio of the class sizes. Mogtoast  Within the (L,O,N,P,Q) group are more similar to one another
(PCA, LLE, Isomap, and SNE) are successful in mapping thesi'an to those in clusters in the (A, j, G) and (I, R, J) groups.
classes onto separate points. This is due to the Gaussian d\e leave it to the reader to inspect that the same holds feroth
tribution of the data points in the classes of this synthesita ~ 9"OUPS-

set. Sammon’s mapping, however, obtains additional sstariu An opposing tendency is also revealed in the tSNE map.
structures to reduce the mapping error in large clustersreds  Some known clusters are split and assigned into two or more
kernel PCA lumps data points into twelve mapping pointsgos groups at dierent locations. For example, cluster D (hot pink)
eight clusters). Surprisingly, tSNE is unsuccessful ifjgoting  appears near the top center and also as part of the (C, V, X, D)
the 20 classes separately, despite the fact that the cleessd®  group at the bottom; cluster E (light blue) is an appendix of
visually delineated by traditional approaches. the (A, j, G) group and also appears near other clusters tbwar

10



Figure 10:Visualization of the 6D 20-class dataset in 2D by projecti®b % of the data points are selected from each class exaeibiefd.-pixel
class) to keep MATLAB processing time manageable. Due td3hessian construction of this synthetic dataset, PCA, ddPCA, and SNE
map each class to a single point in the 2D projection. In &@idiSNE provides a clear separation of the 1-pixel clasth(@ignificantly diferent
mean feature vector from others as shown in Fig. 3), by mapipifar from the others. Surprisingly, tSNE does not prodacgear separation.
(We note, however, that when 1-pixel class is removed, tSidgsmemaining classes to 19 points representing the comdsp classes.)
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Figure 11:Visualization of the 8D Ocean City data in 2D projection. 288domly selected points are used from each of the 28 cldssesuse

of computational constraints on the MATLAB toolbox. Thetlrlabels are shown asffirent colors. tSNE provides some separation among
clusters, however, none of these dimensionality reductiethods provides detailed visualization for interactigptare of all known groups in
the data. (Figure is in color on-line.)
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Figure 12:A magnified version of the tSNE projection of the 8D Ocean @aya in 2D, from Fig. 11. (Figure is in color on-line.)
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Figure 13:28 clusters of the 8D Ocean City dataset identified from SQMteking and shown over the spatial image. The completeamaity
the known clusters can be seen in (Merényi et al., 2007b)rafiderényi et al., 2007a). (Figure is in color on-line.)
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Figure 14:(a) Clusters of the Ocean City image identified from CONNv&ialization of the SOM (colored groups of cells), and @usabels
(letters) shown. (b) The CONNuvis of the lower left quadrdior feasons of space limitations) of the SOM at left. Sevelalious clusters,
indicated by detached islands of protoypes, are circlectlinehted by lines, for examples of cluster extractiongFe is in color on-line.)
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data. However, even this representation can separate ighly e
groups, and it seems to overemphasize some possibly very
slight differences, which may result in undue splitting of clus-
: 056 ters.
[;‘:;\\/,_a a z? From a CONNvis representation we were able to identify the
051 s 28 known clusters. We show, in Fig. 13, part of the spatial im-
; L age with the pixels color-coded according to the identified s
. face material clusters. The corresponding SOM and a magni-
m fied portion of the CONNVis visualization of the correspargli
SOM is in Fig.14. On the SOM the colors show thé&elient
identified clusters, while the letters give the correspngda-
'ﬂ,i‘j\\/\/\ ’ bels to tie with the mean cluster spectra in Fig. 15. Becafise o
\\N/\* Lo space constraints we only show the lower left quadrant of the
D vetengthium " iavelength(umy CONNUvis. Discontinuities in the data space are expressed by

the lack of connectivity in the CONNvis between adjacent SOM
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Figure 15:Mean spectral signatures of the 28 clusters extracted fnemt ~ . . . .
8D Ocean City dataset. Clusters are excellent match to trersfieed grid locations. In Fig.14(b), completely isolated grouppr-

in earlier work (Merényi et al., 2007a,b) and therefore weve the ~ LOLYPES are obvious (several are circled or delineatedrigg)i
mean spectra of CONNuvis clusters here. Spectra are véytiniset 1 hese helped immediate identification of clusters such etV (

for clarity. The numbers on the y axis indicate the radianmleesof ~ the lower right of the CONNvis detail), C, a, or g. The full im-
each spectrum in the first spectral band. The small veriidahtarks ~ ages and more details about the CONNvis mapping including
on the spectra show the standard deviation of the respesttisses in  comparison with earlier results can be found in (Tasdemir a
the corresponding band passes. (Figure is in color on}line. Merényi, 2009; Merényi et al., 2007a).

the top center (between M (yellow) and T (salmon)). Clusterst.1. Computational complexity

G (magenta), C (white), g (purple) are further instancepbi s \ye pote that all dimensionality reduction methods (used in
clusters. As the standard deviations of the clusters ieguitall  hig study) are seriously limited in their ability to handéege

(as indicated in Fig. 15, especially for clusters (E, D, G, 9) gatasets, due to their computational complexities and mgmo
substantially dierent subclusters, warranting the splits are UNyequirements. As an evidence of this, we had to subsample

likely. Perhaps more interestingly, we can see two groups, ( even relatively small datasets such as the 6D syntheticémag
W) and (J, R, 1), which contain clusters with similar signe@si ¢ he which contains 16,386 data vectors. Our real 8D re-

but are mapped at veryfigrent locations. mote sensing spectral image had to be subsampled even more
In summary, tSNE produces a sensible grouping of theseverely: 28 (classes) 200(= 5600) points were used out of
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512x 512 = 256 000 points. In general, Isomap, Sammon’sin the data. While this is true, SOM learning — specifically
mapping, and kernel PCA have a computational complexity ofhe Conscience SOM that we use — transfers the maximum
O(n®) (nis the number of data samples), with a memory requireinformation content from data to (the given number of) proto
ment ofO(n?); whereas LLE and Hessian LLE have a computa-types. With precise evaluation and monitoring the quality o
tional complexity ofO(r,n?) (rp < 1 is the ratio of positive ele- SOM learning details important for the characterizationhef
ments in a sparse matrix to the total number of elementd),avit manifold structure can be separated from the unimportaat (s
memory requirement dd(r,n?) (van der Maaten et al., 2009). noise), thus critical information preserved and propeuns
SNE and tSNE have similar limitation, due to their computa-marized (Merényi et al., 2009) to a manageable size. CON-
tional complexity and memory requirement©fn?) (van der  Nvis further enriches previous SOM visualizations by summa
Maaten and Hinton, 2008). CONNvis, in contrast, can handlgizing data characteristics on a sub-prototype level ¢adtof
large data volumes easily, due to its relatively low computaprototype level) and bringing the local, unisotropic digition
tional load —O(i = n = ny) (i is number of iterationsh,, is information to the “surface, for more nuanced delineatién o
the number of SOM neural units, which is considerably smalle clusters than SOM visualizations showing only the dissimil
thann for large datasets)— and significantly less memory re4ties of the SOM-neighbor prototypes andr the size of their
quirement ofO(ny?). receptive fields (as in U-matrix type visualizations). Isal
shows the topological relations of all prototypes, not dioly
neighbors in the SOM lattice, unlike U-matrix type reprdsen
tions. These properties considerably enhance the repatieen

CONNvis is a 2D graph-based visualization of datasets,Of data structure, which is the primary goal of exploratory v
ualization. We recognize that CONNvis is mordidult to

based on) the spatially ordered set of quantization prototypesS ) .
obtained by an SOM, anii) prototype similarities expressed look at and t‘? mte_rprgt than (for example) the U-lmatnx, anq

by a topology representing CONN graph (a weighted version ofany other wsuahzqtlons. However, the U-matrix an(_j vari-

induced Delaunay graph). CONNvis thus enables informativ@nts: Which are routinely used today, also took some time for
visualization of prototype similarities defined by detdilecal Fhe commuany to get used to. I;)ata_l mining needs increas-
data distribution. Experiments on various datasets (wiified ingly expressive tools for the navigation of high-D, comple

ent dimensionalities and with varying cluster statistingljcate data ser. In this era of “big d-ata" wsug-llzatlonts.that cso a
that CONNVis is a successful 2D visualization for intenaeti scale with the data volume fulfill an additional critical deanal.

interpretation of complex data structures. For these reasons we believe théibd invested in understand-

. . . . o ing the CONNvis representation and visualization conthals
Among dimensionality reduction methods used in this studyg rewarding pay-8.

only tSNE comes close to CONNvis for expressive visualiza-

tion of high-dimensional data with complex structure. Thle r

ative success of tSNE is mainly due to its cost function emphaAcknowledgements

sizing local similarities in the projected space using avilea

tailed distribution to compensate the dimensionality naitrh Many thanks to Prof. B. Csatho, from the Department of
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5. Discussion and conclusions

Except for CONNuvis, all methods discussed in this paper vi
sualize data directly in the data space or in a 2D projectfon o
the data space. More precisely, they visualize the distaote
data points or projections of data points according to aimetr
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