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Abstract

Low-dimensional (2- or 3-dimensional) visual representations of large, high-
dimensional datasets with complicated cluster structures play a fundamental role in the
discovery and identification of such structures. Visualization exploits the unmatched
pattern recognition capability of humans for accurate and detailed cluster extraction,
which is not possible with current automated methods because the latter still lack the
power of the exceptional human reasoning. For explanatory and interactive visualiza-
tion, a powerful tool is the use of self-organizing maps (SOMs). In general, by pro-
ducing a spatially ordered set of quantization prototypes of large, higher-dimensional
data, SOMs enable the visualization of various similarity information (such as proto-
type distances, distribution, topology) on a rigid lattice, without reducing the feature
dimensionality. Information discovery further depends on the expressive power of the
similarity measure and its visual representation. In this study, we compare the capabil-
ities of our recent SOM visualization scheme, CONNvis, with prominent dimensionality
reduction methods and show its superiority for visual assessment of intricate cluster
structures.
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Abstract

Low-dimensional (2- or 3-dimensional) visual representations of large, high-dimensional datasets with complicatedcluster struc-
tures play a fundamental role in the discovery and identification of such structures. Visualization exploits the unmatched pattern
recognition capability of humans for accurate and detailedcluster extraction, which is not possible with current automated methods
because the latter still lack the power of the exceptional human reasoning. For explanatory and interactive visualization, a powerful
tool is the use of self-organizing maps (SOMs). In general, by producing a spatially ordered set of quantization prototypes of large,
higher-dimensional data, SOMs enable the visualization ofvarious similarity information (such as prototype distances, distribution,
topology) on a rigid lattice, without reducing the feature dimensionality. Information discovery further depends on the expressive
power of the similarity measure and its visual representation. In this study, we compare the capabilities of our recent SOM visu-
alization scheme, CONNvis, with prominent dimensionalityreduction methods and show its superiority for visual assessment of
intricate cluster structures.
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1. Dimensionality reduction versus volume reduction for vi-
sualization of large datasets

Low-dimensional (2 or 3-dimensional, denoted as 2D or 3D
from here on) visual representations of large, high-dimensional
datasets with complicated cluster structures play a fundamental
role in the discovery and identification of such structures.Visu-
alization exploits the unmatched pattern recognition capability
of humans. While cluster capture with a human-in-the-loop ap-
proach is necessarily interactive, thus slower than automated
methods, the insight gained by human interaction is unparal-
leled. In many cases detailed structure extraction is not pos-
sible with current automated clustering methods. Therefore,
it is of great importance to bring to the visualization as much
knowledge about the structure of the data as possible, through
intelligent information extraction and representation ina low-
dimensional space.

For visualization of high-dimensional data in low-
dimensional representations, there has been much researchon
manifold learning based on dimensionality reduction, where
all n-dimensional data vectors in a data set are transformed
into 2D or 3D data vectors. This is motivated by the idea
that the data may lie on a low-dimensional manifold embed-
ded in a high-dimensional space. Dimensionality reduction
methods such as multi-dimensional scaling (MDS) (Cox and
Cox, 2001), Isomap (Tenenbaum et al., 2000), locally linear
embedding (LLE) (Roweis and Soul, 2000), Hessian LLE
(hLLE) (Donoho and Grimes, 2003) are mainly developed for

reconstruction of a single underlying low-dimensional sub-
manifold rather than for visual discrimination and discovery
of various structures — clusters — that may exist in the data.
Hence, they are often suboptimal for discovery of cluster
structure, and for classification, as shown in various papers
(Yang, 2002; Polito and Perona, 2001; Vlachos et al., 2002)
that propose augmentations to previously published manifold
learning / dimensionality reduction methods. For example,
Yang (2002) and Zhang et al. (2004) additionally use Fisher
linear discriminant analysis for face recognition. Vlachos
et al. (2002) modified Isomap and LLE so that both local and
global distances are considered for better visualization and
classification. However, the performances of the modified
Isomap and LLE are not very promising for identifying differ-
ent patterns due to the use of the same reconstruction objective
(single underlying manifold) as with the originial Isomap and
LLE. Since the data clusters may lie in different submanifolds,
visualization of the separation boundaries between groupsof
patterns is of far greater interest for structure discoverythan
showing the precise underlying manifold. A novel approach for
visualization of datasets with different underlying manifolds is
t-distributed SNE (t-SNE) (van der Maaten and Hinton, 2008),
a variation of stochastic neighbor embedding (Hinton and
Roweis, 2002) with an easier-to-optimize cost function using
student-t distribution for similarity calculation. Despite the
non-convexity of the t-SNE cost function, t-SNE representation
of local similarities provides better visual separation ofthe data
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clusters than other dimensionality reduction methods (vander
Maaten and Hinton, 2008).

A major issue with all dimensionality reduction methods
for interactive visualization is that they scale exponentially
with the number of data points. This makes them infeasible
for large datasets (such as remote sensing images, text docu-
ments, streaming video, flow simulations, analysis of computer
code performance, etc.). In contrast, prototype based meth-
ods (where the data are first summarized in prototype vectors
through vector quantization (VQ)) exploit the knowledge en-
coded in the data representatives for interactive visualization,
which can have very attractive scaling properties for the visual-
ization of large datasets, depending on the VQ approach. Adap-
tive VQ algorithms, which show the data topology on the proto-
type level and aim to faithfully represent the local similarities of
the quantization prototypes, are well suited for interactive data
analysis (Kohonen, 1997; Martinetz et al., 1993; Cottrell et al.,
2006; Aupetit, 2006; Bishop et al., 1998). These algorithms
are either inspired by nature as in the case of Self-Organizing
Maps (SOMs) (Kohonen, 1997), derived as stochastic gradi-
ent descent from a cost function as in Neural Gas (Martinetz
et al., 1993) and its batch version (Cottrell et al., 2006), or ob-
tained by expectation-maximization algorithm (Bishop et al.,
1998; Aupetit, 2006). Variants of these methods, which use a
magnification factor in quantization, are also analyzed to en-
hance the representation of complex structures including rare
patterns (Merényi et al., 2007b; Villmann and Claussen, 2005;
Hammer et al., 2007).

SOMs (Kohonen, 1997) stand out in the representation of
the data structure because they have two advantageous proper-
ties: providing an adaptive vector quantization that results in a
placement of prototypes in the data space that follows the data
distribution; and ordering of these prototypes on a rigid low-
dimensional lattice according to their similarity relations. Due
to these properties, the density distribution – and therefore the
structure – of a high-dimensional manifold can be mapped and
visualized on a low-dimensional grid without reducing the di-
mensionality of the data vectors. This allows capture of com-
plicated cluster structures in high-dimensional space through
interactive visualizations.

Various components of the learned SOM’s knowledge are of-
ten processed through visualizations to capture clusters interac-
tively. Our visualization scheme, CONNvis, first proposed in
(Taşdemir and Merényi, 2009), is different from other SOM vi-
sualization schemes in that it represents the data distribution
on a subprototype level, and it achieves detailed delineation of
cluster boundaries by rendering the data topology on the SOM
lattice. The CONNvis is successful in interactive clustering of
datasets with complex structures. We show this through data
sets of progressive dimensionalities and complexities (cluster
structures), culminating with a 28-cluster, 8-band, largereal re-
mote sensing image; and we show and analyze comparisons
with prominent dimension reduction approaches.

Section 2 briefly reviews SOMs and their interactive visual-
izations. Section 3 summarizes CONNvis. Section 4 presents

visualizations of five different data sets by eight dimensionality
reduction methods and by CONNvis, pointing out the partic-
ular challenges in each data set, and then compares computa-
tional complexities of the presented knowledge representation
methods. Section 5 concludes the paper.

2. SOM for visualization of high-dimensional data

In general, dimensionality reduction does not reduce data
volume, and conversely, VQ methods do not reduce feature
space dimensionality. Ideally, an effective visualization of
a large, complicated, high-dimensional dataset should utilize
both. Self-Organizing Maps (SOMs) provide a unique com-
bination of adaptive vector quantization of the data space and
topological ordering of the quantization prototypes on a lower-
dimensional grid. This enables visualization of the topology of
high-dimensional data spaces without needing dimensionality
reduction of the data vectors. Thus, visualization on the SOM
grid does not depend on the dimensionality of the data space
directly, and therefore is not limited to data reduced to 2 or3
dimensions.

2.1. Self-Organizing Maps

The SOM algorithm can be briefly summarized as follows:
Let M ⊂ Rd be a d-dimensional data manifold, andG be
the (lower-dimensional) fixed SOM lattice ofN neural units.
Each neural unitj has an associated weight vectorw j which
is adapted through a learning process as defined by Kohonen
(Kohonen, 1997). The process consists of cycling through two
steps: i) finding the best matching unit (BMU)wi for a ran-
domly picked data vectorv ∈ M, such that

‖v − wi‖ ≤ ‖v − w j‖ ∀ j ∈ G (1)

andii) updatingwi and its neighbors according to

w j(t + 1) = w j(t) + α(t)hi, j(t)(v − w j(t)) (2)

wheret is time, α(t) is a learning parameter andhi, j(t) is the
neighborhood function, often defined by a Gaussian kernel
around the best matching unitwi. After learning, the weight
vectors become the vector quantization prototypes of the data
manifoldM. Fig. 1 shows an example organization of the SOM
quantization prototypes in the data space and in a 2D rectangu-
lar SOM lattice.

In our work, we use the Conscience SOM (DeSieno, 1988)
for real data, because it achieves undistorted density match-
ing (with the precision afforded by the given number of pro-
totypes). While the Kohonen SOM follows aQ(w) ∼ P(v)α

power law withα = 2/3 magnification exponent (Ritter and
Schulten, 1986), the Conscience SOM producesα = 1 for
higher-dimensional, complex data as demonstrated in (Mer´enyi
et al., 2007b; Merényi, 2000).
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Figure 1: Organization of the SOM quantization prototypes (shown by circles) in the data space and in the SOM lattice. Each prototype is the
centroid of its Voronoi polyhedron (receptive field). The prototypes that are neighbors in the data space,i.e., their Voronoi polyhedra share an
edge, are (ideally) neighbors in the SOM. When there are morethan 8 neighbors in the data space, (with correct SOM learning) 8 of them will be
the 8 immediate SOM neighbors in a rectangular lattice, and the remaining ones are expected to be in the next immediate SOMneighborhood.

2.2. Interactive Visualization Schemes for Self-Organizing
Maps

The SOM facilitates the visualization of the structure of a
higher-dimensional data space in lower (usually one or two)di-
mensions by preserving the neighborhood relations on a rigid
lattice. However, post-processing is required for informative
representation of the raw knowledge of the SOM. The two SOM
knowledge components (most) commonly visualized are Eu-
clidean distances of those prototypes that belong to immediate
neighbor neurons in the SOM lattice; and the size of the recep-
tive fields of the SOM neurons (data density). Various schemes
have been proposed to display these quantities over the SOM
lattice.

The most common, and earliest, method for displaying the
Euclidean (data space) distances — or dissimilarities — of pro-
totypes of neighboring SOM neurons is the U-matrix (Ultsch,
1993), which colors the grid cell of a prototypewi to a gray
shade proportional to the average distance ofwi to its SOM
neighbor prototypes. The U-matrix and various subsequent
modifications (e.g., (Kraaijveld et al., 1995; Ultsch, 2003))
work well for small data sets with a low number of clusters
mapped to a relatively large SOM grid. However, they tend to
obscure finer delineations between clusters in complicatedand
large data sets because of averaging of prototype distancesover
neighboring SOM grid cells, or thresholding (Merényi et al.,
2007b). Another variant changes the size of the grid cells ac-
cording to the average distances to neighbors (Hakkinen and
Koikkalainen, 1997) but this has similar problems as the U-
matrix, with less visual separation. Cottrell and de Bodt (1996)
use polygons for grid cells where the distance of the vertices
from the cell center are inversely proportional to the distances
of each of eight immediate SOM neighbor prototypes. (The
boundaries of neighboring cells are “pushed apart” — the cells
are shrunken – proportional to the distances of the respective
pair of SOM neighbor prototypes in each lattice direction.)This
method works well for manual cluster extraction for relatively

simple data sets. For identification and interpretation of clusters
on the SOM lattice, an enhanced version of the U-matrix views
the SOM as an undirected planar graph and clusters as con-
nected components where a connected component is a subgraph
in which two vertices (prototypes) are connected to each other
by a path constructed by using the gradient of the smoothed
U-matrix (Hamel and Brown, 2011). These connected com-
ponents are then overlaid on the U-matrix, resulting in im-
provement in cluster identification especially in case of high-
dimensional real world data with small number of data sam-
ples. Himberg (2000); Kaski et al. (1998, 2000); Villmann and
Merényi (2001) apply automated color assignments to proto-
type distances for exploration of the approximate cluster struc-
ture. Some methods examine the distances based on individual
feature component planes of the SOM to discover information
specific to the corresponding component, which may be hid-
den when all planes are examined together (Kaski et al., 1998;
Vesanto, 1999).

Visualization of the receptive field sizes of prototypes has
been proposed in the form of data histograms by drawing ver-
tical bars or curves, and by using gray shading in the grid cells
(e.g., (Kaski et al., 1998; Vesanto, 1999; Ultsch, 2003)). For a
more precise visualization of the density distribution, Pampalk
et al. (2002) smooth data histograms by assigning a weighted
membership of data vectors to the prototypes. Data histograms
of the prototypes may conceal finer structure in complicated
data since the density representation on the prototype level does
not reveal prototype similarities. Therefore, data histograms are
also employed together with prototype distances in the samevi-
sualization such as in Cottrell and de Bodt (1996) and Merényi
et al. (2007b). Yet, there is more information, learned by the
SOM, that remains untapped by the above visualizations.

In order to provide visual separation of the clusters without
post-processing the SOM, Adaptive Coordinates (Merkl and
Rauber, 1997) and the Double SOM (Su and Chang, 2001) up-
date not only the prototypes but also their positions in the SOM
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lattice while learning. By these methods, the SOM does not
have a rigid grid anymore and the dissimilarities between the
prototypes are visually exposed by their lattice distances. How-
ever, it is uncertain how these methods would work for large
data volumes and for high-dimensional data. Another variant of
the SOM that enables a direct and visually appealing measure
of inter-point distances on the grid is the visualization induced
SOM (ViSOM) (Yin, 2002). The ViSOM produces a smooth
and evenly partitioned mesh through the data points which re-
veals the discontinuities in the manifold. The ViSOM is com-
putationally complex for large datasets due to the requirement
of a large number of prototypes even for small datasets.

SOMs have been used for more than two decades for data vi-
sualization. However, most studies described above utilize less
than the full potential of the SOM knowledge. Our work, CON-
Nvis, first proposed in Taşdemir and Merényi (2009), focuses
on advancing SOM-based visualization by

• enriching the knowledge representation with resources
(data topology and detailed local data distribution) not cus-
tomarily used,

• employing a (density-based) similarity measure for proto-
types that is not a distance based metric, and

• increasing the quantitative aspect of the evaluation of the
visualization by computing “natural” thresholds (as op-
posed to user selected) from the data characteristics.

We summarize CONNvis next.

3. CONNvis: visualizing the connectivity structure of the
data manifold

CONNvis is a graph-based similarity visualization for SOM
prototypes. The graph rendered on the SOM grid repre-
sents prototype similarities, defined by theconnectivity mea-
sure CONN. CONN is derived from the neighborhood rela-
tions (topology) of the data manifold together with the local
density distribution. CONNvis enables evaluation of similar-
ities between prototypes that are not SOM grid neighbors but
are neighbors in the data manifold. It also shows a ranking
of prototype similarities, and separation between submanifolds
(through lack of connection between prototypes).

The connectivity matrix (Taşdemir and Merényi, 2009),
CONN, is a refinement of theinduced Delaunay triangulation
of the prototype vectors, which was defined in (Martinetz and
Schulten, 1994) as the intersection of the Delaunay triangu-
lation with the data manifold. CONN assigns weights to the
edges of the induced Delaunay graph. The weight of an edge
connecting two prototypes is the number of data samples for
which these two prototypes constitute a pair of best-matching
unit (BMU) and second BMU. CONN is the matrix represen-
tation of this weighted Delaunay graph where each element,
CONN(i, j), is the connectivity strength between prototypes
wi ,w j and is equal to the weight of the edge betweeni and
j. Formally,

CONN = |RFi j| + |RF ji| (3)

where RFi j is that section of the receptive field (Voronoi
polyhedron) of the prototypewi wherew j is the second BMU,
and|RFi j| is the number of data vectors inRFi j. CONN thusi)
shows the data structure as expressed by the Delaunay graph of
the SOM prototypes (whose distribution follows the data den-
sity), ii) indicates local connectivities of the manifold by ex-
pressing how the data is distributed within the receptive fields
with respect to prototypes that are neighbors in the data space.
(Neighbor prototypes in the data space are those which are cen-
troids of adjacent Voronoi cells. See Martinetz and Schulten
(1994) for exact definition). It facilitates identificationof the
discontinuities within the data set which indicate naturalparti-
tions in the data. This is in contrast to the density representa-
tions mentioned above, which express distribution on the pro-
totype level, thus giving neither information of local density
anisotropies, nor any sense of topology violations.

For visualization, CONN is rendered on the 2D rigid SOM
lattice by connecting the grid locations of the SOM prototypes
with lines of various widths and colors. The line widths are
proportional to connectivity strengths,CONN(i, j), therefore
reflect the density distribution among the connected prototypes,
showing theglobal importance of the connections. The connec-
tions of a prototypewi are ranked according to their strengths
to reveal the most-to-least similar neighbors (Voronoi neighbors
in data space) towi. The rankings are indicated either by line
colors, red, blue, green, yellow and dark to light gray levels or
by dark to light gray levels. Since the ranking does not depend
on the size of the receptive field ofwi, but only on the relative
contribution of each neighbor, line colors indicate thelocal im-
portance of a prototype’s connections. Line widths and colors
effectively represent the intricate details of the data structure,
and enable relatively easy interpretation and capture by inter-
active visual clustering. In addition, topology preservation of
the SOM mapping can be assessed using the line lengths and
the grid neighborhood, as detailed in (Taşdemir and Merényi,
2009).

For low-dimensional (1D to 3D) datasets, CONN can also
be visualized in the data space by connecting the locations of
prototypes, similarly to its rendering on the SOM lattice. Fig. 2
shows example representations for two simple 2D datasets, and
for the well-known 3D “Chainlink” dataset. These datasets,
available at http://www.uni-marburg.de/fb12/datenbionik/data,
are constructed by (Ultsch, 2005). The first dataset “Lsun” has
three well-separated clusters, two rectangular and one spheri-
cal. The second dataset, “Wingnut”, has two rectangular clus-
ters with inhomogeneous density distribution within clusters
and similar intra-cluster and inter-cluster distances. For both
cases, the cluster structure can be expressed by CONN, as seen
through its visualization, CONNvis, both in the data space and
on the SOM, in spite of the variations across clusters (different
shapes, proximities and inhomogeneous density distribution,
respectively). For the “Chainlink” dataset, CONNvis indicates
the separation between the two rings as well as the topologi-
cal ordering of the data points on the SOM, by connecting the
two ends of a ring with a prototype lying in the middle of the
other ring. Line widths are best binned when the number of data
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points is much larger than the number of prototypes, as in that
case individual connectivity strengths cannot be discerned vi-
sually. Binning can be done with automated thresholding based
on internal data characteristics, which results in each binre-
flecting the global importance of one rank of connections. This
binning method is described in detail in (Taşdemir and Mer´enyi,
2009). The resolution of the selected thresholds not only distin-
guishes strong connections but also reveals weak connections
between (separated) clusters.

An example for a more complex case than in Fig. 2 is given
through a simple synthetic spectral image, which has 128×128
pixels with a 6D feature vector at each pixel. It has 20 spectral
classes distributed spatially as shown in Fig. 3.a. The meansig-
natures of these classes, displayed to the right of the classmap,
are quite similar to each other, which poses a clustering chal-
lenge. 4 of the 20 classes, P, R, Q, S and T, are relatively small,
class R has only one pixel, for additional complexity. Details
of this data set are at http://terra.ece.rice.edu and in (Merényi
et al., 2007b). A 20×20 SOM is used to obtain the quantization
prototypes of this data. The statistics of the ranked connectivity
strengths indicate that the maximum number of connections for
a prototype is 16 (Fig. 3.b). The average connectivity strength
is as high as 37 (= µ1) for the first ranking connections whereas
it drops sharply after the fourth-ranking connections (µ4 = 6).
The CONNvis of this data is obtained by using a 4-level bin-
ning scheme withµ1, µ2, µ3, 0 as the thresholds. Visual inspec-
tion of the CONNvis in Fig. 3.c. immediately reveals strongly
connected groups of prototypes (clusters) with some weak con-
nections across the clusters.

3.1. Interactive clustering from CONNvis

Graph-based visualization of prototype similarities (deter-
mined according to the data manifold) on the SOM grid en-
ables their interactive evaluation to find separation boundaries
between different patterns in the dataset. Interactive clustering
from CONNvis is performed by removing weak connections
(represented by the line widths) which are of low importance
in terms of cluster similarities. First, topology violations (iden-
tified by line lengths) are investigated and weak global ones
are removed. Any strong global connections (not present in
the SOMs of the datasets in Figures 2–3) are examined fur-
ther to determine whether they are due to defective learning
or correctly express a structural relationship. For example, the
CONNvis of Lsun or of Wingnut, shown in Fig. 2 have no
topology violations for mapping of 2D datasets to 2D surfaces.
The CONNvis of the 20-class dataset (Fig. 3) has many —but
weak— violations, mostly contained within the obvious clus-
ters. The global violations for this dataset are those connections
with length > 2 since a prototype has at most 16 neighbors in
the data space (from Fig. 3.b), and these 16 can fit in the second
immediate SOM neighborhood as shown in Fig. 1. We remove
the weak global connections, which (in this case) are those with
CONN(i, j) < µ4, and visually determine strongly connected
groups of prototypes (coarse clusters).

Remaining weak connections across coarse clusters need to
be analyzed and removed for crisp delineation. The connections

of a prototypew j at the boundaries ofk clusters are removed as
follows and as illustrated for k=2 in Fig. 4.a:

1. If the numbers of connections of a boundary prototypew j

to each ofk clusters differ, keep the connections to the
cluster with the highest numbers of connections, and re-
move all connections to other clusters.

2. If the number of connections to each cluster is the same but
the connections have different strengths, keep the strongest
set of connections, and remove all connections to other
clusters.

3. If both the number and the strengths of connections to each
cluster is the same then keep the highest ranking set of
connections and remove the rest.

Fig. 4.b-c shows this interactive clustering on the 20-class
dataset. The prototypes at the boundaries of coarse clusters are
highlighted in black. Removal of the connections accordingto
the above procedure results in the extraction of all 20 known
clusters in the data, including the one-pixel cluster R.

4. Comparison of CONNvis with different dimensionality
reduction methods for visualization in 2D space

We compare the dimensionality reduction methods tSNE,
SNE, Isomap, Sammon’s mapping, PCA, Kernel PCA, LLE
and Hessian LLE with the quantization based topology visual-
ization by CONNvis, for interactive visual assessment of clus-
ter separation. To obtain the mappings produced by the di-
mensionality reduction methods we use the Matlab toolbox de-
veloped by van der Maaten and Hinton (2008) (available at
http://homepage.tudelft.nl/19j49), with default parameters. We
also use CONNvis with default parameters automatically com-
puted from the data statistics to produce coarse clusters.

First, we use the three simple datasets in Fig. 2, for which
CONNvis clearly displays the cluster separations. Figs. 5,6, 7
show the mappings for the Lsun, the Wingnut, and the Chain-
link datasets, respectively. For the 2D datasets Lsun and
Wingnut, Sammon’s mapping and PCA provide a linear map-
ping with no effect on the visualization of separation bound-
aries, whereas for the entangled clusters of the 3D Chainlink
they fail to express the cluster separation in the 2D projec-
tion. Similarly, while kernel PCA and SNE separate the clus-
ters of the Lsun and Wingnut data, they are unsuccessful for the
Chainlink data. Due to the fact that Isomap and LLE are fo-
cused on single-underlying manifold based on local neighbor-
hood, they can map the well-separated clusters of the Lsun and
the Chainlink as disconnected components, and thus they can
successfully embed each component separately into 2D space.
Even though separate mapping of disconnected components —
clusters— may not show their similarity relations, it helpsin
cluster visualization. However, it is also possible to embed all
clusters at once, by setting the neighborhood parameter (k =
number of nearest data neighbors) accordingly (i.e., larger than
the number of data samples in a cluster) to obtain one con-
nected component of all data samples and have it projected as
in Figs. 5, 7. For the inhomogeneously distributed Wingnut
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(a) Lsun (b) CONNvis in the data space (c) CONNvis on the SOM

(d) Wingnut (e) CONNvis in the data space (f) CONNvis on the SOM

(g) 3D Chainlink (h) CONNvis in the 3D data space (i) CONNvis on the SOM

Figure 2:Example CONN visualization (CONNvis) in the data space and on the SOM, for three simple datasets from (Ultsch, 2005). A 10× 10
SOM is used to obtain prototypes. Data points are shown as small grey dots in the left and middle columns, prototypes are labeled with unique
symbols according to their known clusters. Top: (a) Lsun (2Ddata with three clusters) and its prototypes with true labels in data space. (b)
CONN of Lsun prototypes, visualized in the data space. (c) CONNvis of Lsun prototypes on the SOM. Middle: (d) Wingnut dataset (two 2D
clusters with inhomogeneous density distribution) and SOMprototypes (e) CONN of Wingnut prototypes in the data space.(f) CONNvis of
Wingnut prototypes on the SOM. Bottom: (g) 3D Chainlink data(two linked 2D rings). (h) CONNvis of Chainlink prototypes in the 3D space
(i) CONNvis on the SOM grid. The clusters of Lsun, Wingnut andChainlink can be seen using CONNvis, through lack of connections (empty
corridors) between clusters. (Figure is in color on-line.)

(a) 20-class, 6D data (b) Connectivity statistics (c) CONNvis on the SOM
Figure 3: (a) Left: the spatial distribution of the data vectors in the128× 128 pixel 6D synthetic image. Four clusters are relatively small, one
(R) has only one pixel. Right: the mean signatures of the 20 classes, vertically offset for clarity. (b) Mean connectivity strengths (indicated by
µ1 − µ4 ) for each rank of the first four ranks of the connections. (c) CONNvis, obtained by the 4-level binning scheme based on the statistics of
the connections. Coarse clusters (strongly connected groups of prototypes) can be detected despite many (weak) topology violations, shown as
connections between prototypes that are not neighbors in the SOM lattice. Because of the connectivity strengths, one gets an immediate sense of
the relative importance of topology violations caused by a large or small number of data points. For cluster capture, topology violations that occur
within clusters are inconsequential. More details on the data, CONN and CONNvis in the example are in (Merényi et al., 2007b) and in (Taşdemir
and Merényi, 2009). (Figure is in color on-line.)
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(a) (b) (c)

Figure 4: Illustration of interactive clustering from CONNvis. Somegroups of prototypes — coarse clusters — are already outlined through the
lack of connections when the visualization starts. The prototypes at the cluster boundaries, determined by visual inspection of the coarse clusters
and the connections across them, are shown by black dots. (a)Circled numbers indicate three situations in interactive clustering described in
Section 3.1. 1: different numbers of connections to each neighboring coarse cluster. (The prototype at the boundary of the cluster on the left
has 4 within-cluster and 1 between-cluster connections, whereas the other —the one on the right— has 3 within-cluster and 1 between-cluster
connections.) 2: the same number of connections to each cluster with different connectivity strengths 3: the same number of connections to each
cluster with the same strengths but different rankings. The connections to be removed are drawn by dashed lines. (b) CONNvis of the 20-class
data set (with weak global violations (length > 2, strength < µ4) removed). Letters indicate the truth labels of clusters. (c) Clusters resulting from
the interactive clustering (by removing connections of theprototypes at the cluster boundaries). All clusters, including the one-pixel cluster R, are
captured. (Figure is in color on-line.)

Figure 5: Visualization of the 2D Lsun dataset, shown with truth labels at the upper left, by eight different dimension reduction methods. Each
project the data into 2D space. All but the Hessian LLE and Kernel PCA do a very good job separating the three clusters. tSNEstands out by
exaggerating the separations. For 2D datasets, Sammon’s mapping and PCA are linear transformations, with no effect on the visual separation of
clusters. (Figure is in color on-line.)
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Figure 6:Visualization of the 2D Wingnut dataset (shown at upper left, with truth labels superimposed), in 2D space, by the same eight methods
as in Fig. 5. While all methods provide perfect visual separation, the gaps tSNE and Isomap produce are larger than any within-cluster distances
thus could also be used for automated extraction of the clusters. (Figure is in color on-line.)

Figure 7: Visualization of the 3D Chainlink dataset (at upper left, with truth labels), through projection to 2D space by the same methods as
in Figs. 5, 6. (Note that the data is visualized in 3D space). tSNE, LLE and the Hessian LLE map two clusters separately, whereas Sammon’s
mapping, PCA, Kernel PCA and SNE fail to produce visual delineation of these clusters with nonlinear separation boundary. See more explanation
in the text. (Figure is in color on-line.)
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Figure 8:Visualization of the 2D Clown dataset by projection to 2D space. This dataset has more clusters (with more varying statistics) than the
previous ones. tSNE visually separates the clusters with some points projected incorrectly apart from their true classes (red dots next to the green
cluster) and with extra delineation of a cluster. (In some runs it partitions the cyan cluster into sub-parts, which do not exist in the data.). Neither
the linear transformations of Sammon’s mapping and PCA, northe nonlinear projections of kernel PCA, SNE, LLE and Isomapproduce a better
visual delineation of the cluster structure. For Isomap andLLE, only the mapping of the largest connected component is displayed.

(a)

(b) (c)
Figure 9: (a) The Clown dataset by Vesanto and Alhoniemi (2000) consisting of 2220 data points (gray dots) and its 19× 17 SOM prototypes
(graciously provided by Dr. Alhoniemi). (b) CONNvis in the data space. Prototypes are labeled with different symbols according to their clusters.
(c) CONNvis on the SOM. (Figure is in color on-line.)
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clusters whose distance is smaller than some of the within-
cluster distances, (i.e., close enough to construct the neighbor-
hood graph as one connected graph), the use of geodesic dis-
tances in Isomap helps better delineation of the boundary. For
all these three datasets, tSNE not only displays the clusters sep-
arately but also increases the visual separation between them,
due to its locally optimal cost function.

Second, we use another 2D dataset, the Clown (Fig. 8, up-
per left) constructed by Vesanto and Alhoniemi (2000). The
Clown dataset has several clusters of varying statistics (differ-
ent shapes, sizes and densities): an elliptical nose (turquoise),
a u-shaped mouth (green), a spherical eye (blue), three small
clusters (brown, orange, and yellow) representing the other eye,
and a sparse body (red); and some outliers. Fig. 8 also shows
the different mappings of the Clown dataset. Due to the map-
ping from 2D to 2D, Sammon’s mapping and PCA are neither
better nor worse than the original representation in terms of vi-
sual cluster separation, although Sammon’s mapping changes
the spatial relationship of the mouth and body. Isomap and LLE
produce disconnected components, where the largest one con-
sists of the two largest clusters (turquoise and green, the nose
and the mouth) of the Clown dataset. Kernel PCA slightly im-
proves the separation between disconnected parts of the dataset,
producing a relatively more intelligible delineation thanthe
original representation. Despite reordering of the clusters in
a more compact layout (due to crowding problem discussed
in van der Maaten and Hinton (2008)), SNE keeps the visual
separation between the clusters and improves delineation of
three small ones (orange, yellow and brown). By addressing
the crowding problem in SNE, tSNE maps all clusters apart, at
the expense of extra separations for relatively large clusters in
some runs. Although our focus in this paper is on the evaluation
of cluster separation in visualizations, we note that, despite the
fact that the mapping is from 2D to 2D, the topological order-
ing of the clusters is preserved only by the PCA and the Ker-
nel PCA. The CONNvis representation of similarities between
quantization prototypes, shown in Fig. 9 clearly indicatesthe
different clusters in the Clown dataset, as well as preserves the
topology. (Eyes are on either sides of the nose, the mouth be-
tween the nose and body, like in the data set.)

Third, we map the synthetic 6D 20-class data into 2D space
(Fig. 10). Due to the computational complexities of the dimen-
sionality reduction methods, it is infeasible to use all 16384 data
points. Therefore, using a priori class information, a quarter of
the data points is randomly selected from each class (except
for the 1-pixel class) to reduce the number of data points while
preserving the respective ratio of the class sizes. Most methods
(PCA, LLE, Isomap, and SNE) are successful in mapping these
classes onto separate points. This is due to the Gaussian dis-
tribution of the data points in the classes of this syntheticdata
set. Sammon’s mapping, however, obtains additional subcluster
structures to reduce the mapping error in large clusters; whereas
kernel PCA lumps data points into twelve mapping points (loses
eight clusters). Surprisingly, tSNE is unsuccessful in projecting
the 20 classes separately, despite the fact that the classescan be
visually delineated by traditional approaches.

Finally, we study the projections of a real dataset, an 8D
remote sensing image of Ocean City (Csathó et al., 1998).
This dataset has 262,144 data points (512× 512 pixel image)
where each point is an 8D vector (a measured surface radiance
in eight spectral band passes). In earlier work 28 clusters of
widely varying statistics (including several relatively rare clus-
ters) were identified and verified in this dataset (Merényi et al.,
2007a, 2009). We gauge the performances of the dimensional-
ity reduction methods and CONNvis against these verified ear-
lier results. Due to the computational challenges, we select 200
data points per class with stratified random sampling using a
priori class information. This makes the comparisons a little
less than fair for CONNvis since the other methods are given
equal-sized clusters, and also considerably fewer data points to
map.

Fig. 11 shows the projections with superimposed class la-
bels known from previous studies. While the majority of the
dimensionality reduction methods group the data points rea-
sonably well in the respective projections, from most of them
it is not possible to discriminate separation boundaries among
classes without the a priori class labels. Thanks to its costfunc-
tion, emphasizing local similarities in a way that helps address
the crowding problem, tSNE is considerably more successful
than the other methods, for visual cluster identification inthis
dataset. As seen in Fig.11, it produces disconnected groups
that indicate major dissimilarities among the data points.How-
ever, even this representation can distinguish only some groups.
(We note that, due to its cost function aiming to reach a local
minimum, tSNE may produce different mappings at each run.
Therefore, orientation of clusters and splitting of subclusters
may differ at each mapping; however, the same result appears
at all runs: tSNE indicates major dissimilarities at the expense
of unnecessary splitting of some clusters.)

Fig. 12 shows in more detail that each of these tSNE groups
comprises several of the known clusters which are more similar
to one another than to clusters contained in other groups. As
an example, the boomerang-shaped contiguous set of points in
the center represents a smooth change-over across five clusters,
starting with the dark green cluster L and continuing on the di-
agonal toward the upper right with clusters O (split-pea green),
N (orange), P (brown), and Q (ocher). While no boundaries
can be discerned, the spectral signatures in Fig. 15 confirm that
these clusters are not only similar but their similarity relations
are correctly reflected by the tSNE layout. A similar case can
be made for other (smaller) groups such as (A, j, G) or (I, R, J).
It is also easy to see that the spectral signatures of the clusters
within the (L,O,N,P,Q) group are more similar to one another
than to those in clusters in the (A, j, G) and (I, R, J) groups.
We leave it to the reader to inspect that the same holds for other
groups.

An opposing tendency is also revealed in the tSNE map.
Some known clusters are split and assigned into two or more
groups at different locations. For example, cluster D (hot pink)
appears near the top center and also as part of the (C, V, X, D)
group at the bottom; cluster E (light blue) is an appendix of
the (A, j, G) group and also appears near other clusters toward
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Figure 10:Visualization of the 6D 20-class dataset in 2D by projection. 25 % of the data points are selected from each class except for the 1-pixel
class) to keep MATLAB processing time manageable. Due to theGaussian construction of this synthetic dataset, PCA, Kernel PCA, and SNE
map each class to a single point in the 2D projection. In addition, SNE provides a clear separation of the 1-pixel class (with significantly different
mean feature vector from others as shown in Fig. 3), by mapping it far from the others. Surprisingly, tSNE does not producea clear separation.
(We note, however, that when 1-pixel class is removed, tSNE maps remaining classes to 19 points representing the corresponding classes.)

Figure 11:Visualization of the 8D Ocean City data in 2D projection. 200randomly selected points are used from each of the 28 classes, because
of computational constraints on the MATLAB toolbox. The truth labels are shown as different colors. tSNE provides some separation among
clusters, however, none of these dimensionality reductionmethods provides detailed visualization for interactive capture of all known groups in
the data. (Figure is in color on-line.)
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Figure 12:A magnified version of the tSNE projection of the 8D Ocean Citydata in 2D, from Fig. 11. (Figure is in color on-line.)

Figure 13:28 clusters of the 8D Ocean City dataset identified from SOM clustering and shown over the spatial image. The complete image with
the known clusters can be seen in (Merényi et al., 2007b) andin (Merényi et al., 2007a). (Figure is in color on-line.)
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(a) (b)

Figure 14:(a) Clusters of the Ocean City image identified from CONNvis visualization of the SOM (colored groups of cells), and cluster labels
(letters) shown. (b) The CONNvis of the lower left quadrant (for reasons of space limitations) of the SOM at left. Severalobvious clusters,
indicated by detached islands of protoypes, are circled or delineated by lines, for examples of cluster extraction. (Figure is in color on-line.)

Figure 15:Mean spectral signatures of the 28 clusters extracted from the
8D Ocean City dataset. Clusters are excellent match to thoseverified
in earlier work (Merényi et al., 2007a,b) and therefore we show the
mean spectra of CONNvis clusters here. Spectra are vertically offset
for clarity. The numbers on the y axis indicate the radiance value of
each spectrum in the first spectral band. The small vertical tick marks
on the spectra show the standard deviation of the respectiveclasses in
the corresponding band passes. (Figure is in color on-line.)

the top center (between M (yellow) and T (salmon)). Clusters
G (magenta), C (white), g (purple) are further instances of split
clusters. As the standard deviations of the clusters is quite small
(as indicated in Fig. 15, especially for clusters (E, D, G, g),
substantially different subclusters, warranting the splits are un-
likely. Perhaps more interestingly, we can see two groups, (H,
W) and (J, R, I), which contain clusters with similar signatures
but are mapped at very different locations.

In summary, tSNE produces a sensible grouping of the

data. However, even this representation can separate only eight
groups, and it seems to overemphasize some possibly very
slight differences, which may result in undue splitting of clus-
ters.

From a CONNvis representation we were able to identify the
28 known clusters. We show, in Fig. 13, part of the spatial im-
age with the pixels color-coded according to the identified sur-
face material clusters. The corresponding SOM and a magni-
fied portion of the CONNvis visualization of the corresponding
SOM is in Fig.14. On the SOM the colors show the different
identified clusters, while the letters give the corresponding la-
bels to tie with the mean cluster spectra in Fig. 15. Because of
space constraints we only show the lower left quadrant of the
CONNvis. Discontinuities in the data space are expressed by
the lack of connectivity in the CONNvis between adjacent SOM
grid locations. In Fig.14(b), completely isolated groups of pro-
totypes are obvious (several are circled or delineated by lines).
These helped immediate identification of clusters such as V (at
the lower right of the CONNvis detail), C, a, or g. The full im-
ages and more details about the CONNvis mapping including
comparison with earlier results can be found in (Taşdemir and
Merényi, 2009; Merényi et al., 2007a).

4.1. Computational complexity

We note that all dimensionality reduction methods (used in
this study) are seriously limited in their ability to handlelarge
datasets, due to their computational complexities and memory
requirements. As an evidence of this, we had to subsample
even relatively small datasets such as the 6D synthetic image
cube, which contains 16,386 data vectors. Our real 8D re-
mote sensing spectral image had to be subsampled even more
severely: 28 (classes)× 200(= 5600) points were used out of
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512× 512 = 256, 000 points. In general, Isomap, Sammon’s
mapping, and kernel PCA have a computational complexity of
O(n3) (n is the number of data samples), with a memory require-
ment ofO(n2); whereas LLE and Hessian LLE have a computa-
tional complexity ofO(rpn2) (rp ≤ 1 is the ratio of positive ele-
ments in a sparse matrix to the total number of elements), with a
memory requirement ofO(rpn2) (van der Maaten et al., 2009).
SNE and tSNE have similar limitation, due to their computa-
tional complexity and memory requirement ofO(n2) (van der
Maaten and Hinton, 2008). CONNvis, in contrast, can handle
large data volumes easily, due to its relatively low computa-
tional load —O(i ∗ n ∗ nw) (i is number of iterations,nw is
the number of SOM neural units, which is considerably smaller
thann for large datasets)— and significantly less memory re-
quirement ofO(nw

2).

5. Discussion and conclusions

CONNvis is a 2D graph-based visualization of datasets,
based oni) the spatially ordered set of quantization prototypes
obtained by an SOM, andii) prototype similarities expressed
by a topology representing CONN graph (a weighted version of
induced Delaunay graph). CONNvis thus enables informative
visualization of prototype similarities defined by detailed local
data distribution. Experiments on various datasets (with differ-
ent dimensionalities and with varying cluster statistics)indicate
that CONNvis is a successful 2D visualization for interactive
interpretation of complex data structures.

Among dimensionality reduction methods used in this study,
only tSNE comes close to CONNvis for expressive visualiza-
tion of high-dimensional data with complex structure. The rel-
ative success of tSNE is mainly due to its cost function empha-
sizing local similarities in the projected space using a heavy-
tailed distribution to compensate the dimensionality mismatch
(i.e., high-dimensional data space versus its low-dimensional
projection). Due to the same reason, tSNE may exaggerate
slight differences within clusters, which in turn may produce
unnecessary splitting of some natural clusters.

Except for CONNvis, all methods discussed in this paper vi-
sualize data directly in the data space or in a 2D projection of
the data space. More precisely, they visualize the distances of
data points or projections of data points according to a metric
distance defined in data space. This limits optimal viewing to
data that are no more than 3D, or data of higher dimensions
containing linearly separable spherically symmetrical clusters
for which projections do not hide structural details. CONNvis
is fundamentally different because the visualization for higher
than 2-3D data is done in a representation space — the SOM
lattice — translating the data space distances to separation or
connection strengths, draped over the topologically ordered lat-
tice of the SOM protoypes. While SOM visualization loses
the sense of the customary (Euclidean) distances between pro-
totypes it is more expressive of the structure (submanifolds,
clusters) of complicated high-D spaces than visualizations in
data space. One might argue that due to the prototypical rep-
resentation SOM visualization also loses some detail existing

in the data. While this is true, SOM learning — specifically
the Conscience SOM that we use — transfers the maximum
information content from data to (the given number of) proto-
types. With precise evaluation and monitoring the quality of
SOM learning details important for the characterization ofthe
manifold structure can be separated from the unimportant (s.a.
noise), thus critical information preserved and properly sum-
marized (Merényi et al., 2009) to a manageable size. CON-
Nvis further enriches previous SOM visualizations by summa-
rizing data characteristics on a sub-prototype level (instead of
prototype level) and bringing the local, unisotropic distribution
information to the “surface, for more nuanced delineation of
clusters than SOM visualizations showing only the dissimilar-
ities of the SOM-neighbor prototypes and/ or the size of their
receptive fields (as in U-matrix type visualizations). It also
shows the topological relations of all prototypes, not onlyfor
neighbors in the SOM lattice, unlike U-matrix type representa-
tions. These properties considerably enhance the representation
of data structure, which is the primary goal of exploratory vi-
sualization. We recognize that CONNvis is more difficult to
look at and to interpret than (for example) the U-matrix, and
many other visualizations. However, the U-matrix and vari-
ants, which are routinely used today, also took some time for
the community to get used to. Data mining needs increas-
ingly expressive tools for the navigation of high-D, complex
data sets. In this era of “big data” visualizations that can also
scale with the data volume fulfill an additional critical demand.
For these reasons we believe that effort invested in understand-
ing the CONNvis representation and visualization controlshas
a rewarding pay-off.
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