
MIWOCI 2011, Mittweida Workshop on
Computational Intelligence
F.-M. Schleif, T.Villmann (Eds.)

Machine Learning Reports MLR-2011-06

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

Impressum
Publisher: University of Applied Sciences Mittweida

Technikumplatz 17,
09648 Mittweida, Germany

Editor: Prof. Dr. Thomas Villmann
Dr. Frank-Michael Schleif

Techical-Editor: Dr. Frank-Michael Schleif
Contact: fschleif@techfak.uni-bielefeld.de
URL: http://techfak.uni-bielefeld.de/∼ fschleif/mlr/mlr.html
ISSN: 1865-3960

1 Technical Report MLR-2011-06

Figure 1: MiWoCi 2011

DEPARTMENT OF MATHEMATICS 2

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

Contents

F.-M. Schleif: Third Mittweida Workshop on Computational Intelligence 4

M. Strickert: Enhancing M|G|RLVQ by quasi step discriminatory functions using 2nd order
training . 5

G. Papari, K. Bunte, M. Biehl: Waypoint averaging and step size control in learning by
gradient descent . 16

T. Villmann, T. Geweniger, M. Kästner, M. Lange: Theory of Fuzzy Neural Gas for Un-
supervised Vector Quantization . 27

X. Zhu, F.-M. Schleif, B. Hammer: Relational Extensions of Learning Vector Quantization 47

3 Technical Report MLR-2011-06

Third Mittweida Workshop on Computational Intelligence (MiWoCi) 2011

Third Mittweida Workshop on Computational
Intelligence
F.-M. Schleif1

1 Third Mittweida Workshop on Computational Intelligence

From June 27th to June 29th, 2011, 15 scientists from the University of Bielefeld,
University of Siegen, University of Groningen (NL), University of Birmingham (UK)
and the University of Applied Sciences Mittweida met in Mittweida, Germany, to
continue the tradition of the Mittweida Workshops on Computational Intelligence -
MiWoCi’2011. The aim was to present their current research, discuss scientific ques-
tions, and exchange their ideas. The seminar centered around topics in machine learn-
ing, signal processing and data analysis, covering fundamental theoretical aspects as
well as recent applications, partially in the frame of innovative industrial cooperations.
This volume contains a collection of extended abstracts which accompany some of the
talks to give insight into the research presented in Mittweida.

Apart from the scientific merrits, this year’s seminar came up with a few highlights
which demonstrate the excellent possibilities offered by the surroundings of Mittweida.
This year adventures were explored under intensive sunlight and very good weather
conditions. The participants climbed to the high forests of Mittweida (Kletterwald) and
enjoyed the exciting and fearing adventures provided on the top of the trees. Multiple
jump offs from the Wahnsinn tour at a height of at least 20 meters were reported, but
no participants were harmed. During a wild water journey (Paddeltour) the outstanding
fitness of the researchers was demonstrated and some of them also demonstrated their
braveness by swimming in the rapids followed by a nice barbecue.

Our particular thanks for a perfect local organization of the workshop go to Thomas
Villmann as spiritus movens of the seminar and his PhD and Master students.

Bielefeld, October, 2011
Frank-M. Schleif

1E-mail: fschleif@techfak.uni-bielefeld.de
2University of Bielefeld, CITEC, Theoretical Computer Science, Leipzig, Germany

DEPARTMENT OF MATHEMATICS 4

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

Enhancing M|G|RLVQ by quasi step
discriminatory functions using 2nd order
training
Marc Strickert1,2

Acknowledgements: Parts of this work were possible thanks to fundings
in the DFG Graduiertenkolleg 1564 "Imaging New Modalities". Many
thanks to Prof. Thomas Villmann for organizing and hosting the inspir-
ing 3nd Mittweidaer Workshop on Computational Intelligence 2011. I
also thank Michael Biehl for discussions and for presenting his alter-
native view on enhanced optimization of LVQ networks based on cost
functions.

Abstract

By combining very steep squashing functions and normalization as parts of the
cost function of generalized learning vector quantization (GLVQ) and its descen-
dants, vector label misclassification gets directly minimized in the limit of class-
separating sigmoids towards step functions. To cope with the resulting difficult op-
timization problem a switch from standard stochastic gradient descent to a quasi-
2nd order Newton batch optimization scheme is proposed. Results for weighted
squared Euclidean distance (GRLVQ) and adaptive matrix metrics (MRLVQ) are
faster obtained and usually show a better class discrimination than traditional im-
plementations of GRLVQ and MRLVQ. Code is available online.
Keywords: [M|G]RLVQ, batch 2nd order learning cost function minimization.

1 Introduction

Learning vector quantization (LVQ) is a powerful machine learning scheme for the
classification of labeled data vectors [18]. Its main strength is the reduction of
complex data clouds to usually a few class-specific prototypes. This representation

1E-mail: strickert@informatik.uni-siegen.de
2University of Siegen, Institute for Vision and Graphics

5 Technical Report MLR-2011-06

Enhancing M|G|RLVQ

allows a fast execution of trained models for classifying unknown data. The for-
mulation of Generalized LVQ (GLVQ) replaced heuristic updates of prototype by
a cost function being optimized by stochastic gradient descent [17]. Further im-
provements, including attribute assessment, were obtained by introducing adaptive
dimension scaling terms to the squared Euclidean distance subject to the GLVQ
cost function, leading to generalized relevance LVQ (GRLVQ) [16]. Further ex-
tensions to other similarity measures followed, for example, for adaptive Pearson
correlation [13] and for adaptive matrix metrics described by quadratic forms [9].
Adaptive matrix metrics enable very flexible comparison of data vectors, involving
weighted pairs of vector attributes contributing to the distance. Thus, covariance
structure can be dynamically weighted. Diagonal matrices are directly related to
the weighted squared Euclidean distance. For general full-rank semi-definite ma-
trices, affine transformations of the data space may allow to enhance class-related
densities. For full rank matrices the large number of degrees of freedom may eas-
ily lead to overfitting distance dependent models. One regularization strategy puts
constraints on the eigen value spectrum of the full attribute mixing matrix [6], an-
other strategy directly expresses the weight matrix a matrix square of a low-rank
rectangular matrix [6, 7]. For such rectangular matrices initialization is a chal-
lenge, because the induced metric properties are very different from the intuitive
Euclidean distance, and interpretation of optimized matrices is an interesting prob-
lem, because many equally valid solutions are allowed by the cost function.
A MATLAB/GNU-Octave framework is presented for approximate 2nd order batch
optimization of GRLVQ and MRLVQ. Using this framework, one of the yet under-
represented aspects related to the logistic term in the underlying cost functions is
highlighted.

2 Generalized Relevance LVQ (GRLVQ) revisited

Let X = {(xi, li) ∈ RM × {1, . . . , c} | i = 1, . . . , N} be a training data set
with M -dimensional elements xk = (xk1 , . . . , x

k
M) to be classified and c classes.

Prototypes W = {w1, . . . ,wK}, wi = (wi1, . . . , w
i
M , l

i) ∈ RM × {1, . . . , c},
are used for data representation in data space.
The normalized generic classification cost function to be minimized is [16]:

EGRLVQ :=
1

N
·
N∑
i=1

gσ
(
qλ(x

i)
)

with qλ(x
i) =

d+
λ (x

i)− d−λ (x
i)

d+
λ (x

i) + d−λ (x
i)
, dλ(x) := dλ(x,w) .

(1)
The misclassification costs of all patterns are summed up, whereby qλ(x

i) serves as
quality measure of the classification depending on the degree of fit of the presented
pattern xi and the two closest prototypes,wi+ representing the same label as xi and
wi− representing a different label. Cost minimization depends on the prototype
locations in the weight space and a set of adaptive parameters λ of the measure
dλ(x) = dλ(x,w) comparing pattern and prototype. Since gradients shall be used
for cost minimization, like Eqn. 1, d must be differentiable almost everywhere.
Partial derivatives of EGRLVQ yield the generic update formulas for the closest correct

DEPARTMENT OF MATHEMATICS 6

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

and the closest wrong prototype and the metric weights:

∂EGRLVQ

∂wi+
= −g′σ

(
qλ(x

i)
)
·

2 · d−λ (x
i)(

d+
λ (x

i) + d−λ (x
i)
)2 · ∂d+

λ (x
i)

∂wi+
, (2)

∂EGRLVQ

∂wi− = g′σ
(
qλ(x

i)
)
·

2 · d+
λ (x

i)(
d+
λ (x

i) + d−λ (x
i)
)2 · ∂d−λ (xi)∂wi− , and (3)

∂EGRLVQ

∂λ
= −g′σ

(
qλ(x

i)
)
·
2 · ∂d+

λ (x
i)/∂λ · d−λ (x

i) − 2 · d+
λ (x

i) · ∂d−λ (x
i)/∂λ(

d+
λ (x

i) + d−λ (x
i)
)2 .(4)

2.1 Two adaptive distance measures
Although there is currently strong progress on particular similarity measures such
as adaptive Pearson correlation [13], divergence measures [5, 2] and functional
metrics [1], we focus on weighted squared Euclidean distance and on matrix met-
rics based on parametric quadratic forms, both sharing the property that decision
boundaries between prototypes are straight hyperplanes.

Weighted squared Euclidean distance

The weighted GRLVQ metric, except for weight squaring equal to the original
one [16], is given by

dE2
λ (x,w) = 〈(x−w)·2,λ·2〉 =

N∑
n=1

(xn − wn)2 · λ2
n with (5)

∂dE2
λ

∂w
= −2 · (x−w) ◦ λ·2 and (6)

∂dE2
λ

∂λ
= 2 · (x−w)·2 ◦ λ . (7)

Therein ◦ denotes the element-wise Hadamard multiplication and the exponent ·2

refers to the element-wise vector square.

Matrix metrics

Similar to the weighted squared Euclidean distance, matrix metrics can be defined
as

dM
λ (x,w) = (x−w) · λ · λ

T

· (x−w)
T

with (8)

∂dM
λ

∂w
= −2 · (x−w) · λ · λ

T

and (9)

∂dM
λ

∂λ
= 2 · (x−w)T ·

(
(x−w) · λ

)
. (10)

7 Technical Report MLR-2011-06

Enhancing M|G|RLVQ

In these terms, λ ∈ RM×d denotes a parameter matrix, inducing positive semi-
definite matrices λ · λ

T

with a maximum rank of d. The special case of λ being
the identity matrix relates back to the squared Euclidean distance. Usually low-
rank matrix metrics are sufficient to provide good classification models [8]. This
efficient formulation can be seen also as a direct answer to a work on GRLVQ
stating [14]:

"In the present work, the full matrix has not been used for three rea-
sons: 〈1〉 its computational time complexity isO(M2) instead of
O(M) for each pattern; 〈2〉 data preprocessing, such as princi-
pal component analysis PCA, could be used beforehand to scale
and rotate the input data in order to minimize the correlations
between the dimensions; and 〈3〉 it is unclear how the positive
definiteness of the distance matrix can be obtained as a result of
the parameter update dynamic."

2.2 The squashing function
Although the sigmoid distance ratio transfer function

gσ(x) = sgd(x) =
1

1 + exp(−σ · x) ∈ (0; 1) with (11)

g′σ(x) = σ · gσ(x) ·
(
1− gσ(x)

)
(12)

with increasing steepness σ(t) proportional to time was originally proposed [17]
for wrapping qλ(x) in Eqn. 1, not much attention has been paid to it in follow-up
publications. One work was ignorant enough to state [14]:

"However, the [GRLVQ] convergence considerations still hold, if the
identity function gσ(x) = id(x) is chosen as wrapper."

In the context of Fig. 2 this statement is related to the fact that σ = 1 yields al-
most linear response. Here it is argued that sigmoids with steep slopes related to
σ ∈ [10; 500] are vital to creating good classifiers, because in the limit σ → ∞
quasi-step functions yield almost 1 for misclassified samples and almost 0 for cor-
rectly assigned samples. This leads to an approximate error counting using the cost
function in Eqn. 1, that is, optimization really minimizes the number of misclassifi-
cations.
Obviously, training gets more difficult the higher σ, because most errors create
almost vanishing gradient g′σ(x), while near threshold errors around x = 0.5 gen-
erate very strong gradient values. Thus, first-order optimization might not be the
best choice for minimizing this error. Second-order off-the-shelf methods like those
realized by the MATLAB optimization toolbox for unconstrained problems (fmin-
unc) can be used. Here a free implementation for a method combining ideas from
Broyden, Fletcher, Goldfarb, and Shanno (BFGS), and particularly its memory-
limited counterpart (l-BFGS) with lightweight approximation of the Hessian matrix
is preferred [19].

DEPARTMENT OF MATHEMATICS 8

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

=100

=10

=1

Class-discriminatory function

q

g�

�

�

� id

Figure 2: Sigmoid squashing function, controlled by σ.

3 Experiments

Results for two benchmark data sets are reported, the Tecator spectral data set and
the UCI image segmentation data set.

3.1 Notes on Tecator data set
In an initial experiment the 100-dimensional Tecator meat spectral data set was
used according to [11] focusing on high-fat vs. low fat content. Since another
publication [13] indicated that Pearson correlation is good for classifying these
data, each of the 215 spectra was mean-centered and scaled by its inverse stan-
dard variance, which in, combination with squared Euclidean distance, simulates
Pearson correlation [10]. At a steepness of σ = 100, for the 100 random splits
into 120 spectra for learning and 95 spectra for testing [11] average test errors of
2.00% ± 1.37 were obtained by l-BFGS optimization for squared Euclidean dis-
tance with one prototype per class without relevance learning, while the functional
SVM in [11] created an average error of 2.6%.
Because of inherent dependence of data splits, turning on relevance learning does
not improve the error significantly and sometimes even creates worse test errors.
Metric weight profiles learned by stochastic gradient descent and by l-BFGS are
compared in Fig. 3. Therein, structurally similar though much more pronounced
’sparse’ results are obtained from l-BFGS, which holds true in general, because
stochastic gradient descent often cannot go far enough due to computing time lim-
itations.
Since the Tecator data set is not complex enough for reliably highlighting differ-
ences between order of learning or choice of metrics, a more interesting data set is
used in the next section for studying the GRLVQ behavior in more detail.

3.2 UCI segmentation data
The image segmentation data set [3] consists of 19-dimensional features collected
from outdoor images for classification of the 7 classes brickface, sky, foliage, ce-

9 Technical Report MLR-2011-06

Enhancing M|G|RLVQ

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

Tecator relevance profile (sg)

channel

�²

0

2

4

6

8

10

12

14

0 20 40 60 80 100

Tecator relevance profile (l-BFGS)

channel

�²

Figure 3: Euclidean relevance profiles for Tecator data set computed by stochastic gra-
dient descent (left) and l-BFGS (right).

ment, window, path, and grass. The data set comes with a predefined split into 30
training samples and 300 test samples per class.
An initial study showed that even smallest GRLVQ networks with one prototype
per class without relevance learning overfit the data if trained to final convergence.
For example, training errors around 2.5% could be reached, while the test errors
exceeded 7%. Due to the small amount of training data, no early stopping with
validation data taken from the training could be reasonably used for avoiding over-
fitting. Instead, 100 stratified random data splits of all available data into 70%
training and 30% test were used for cross-validation and for better reflecting con-
ditions of a sufficient data set. Thus, in the following the focus is put on how on
average the GRLVQ and optimization methods compare among each other rather
than on comparison with results reported in literature.
Figure 4 summarizes the test classification results. The nine leftmost bars corre-
sponding to LVQ results are of major interest, among which, the first three re-
sults with stochastic gradient were obtained by using the supervised relevance
neural gas for general metrics (SRNGGM) package written in C publicly avail-
able from the web site http://www.informatik.uni-osnabrueck.de/
lnm/upload/was run for 25000 epochs (=25000·0.7·(30+300)·7 = 40.4·106
iterations) in GRLVQ mode, that is, with a neural gas neighborhood of one and us-
ing learning rates of 0.1 for the prototypes and of 10−9 for the metric. For these
three results, a dramatic drop can be observed for using the steep class discriminant
function at σ = 100 instead of using standard GRLVQ settings with σ = 1 or
gσ = id(x).
Moving on to the fourth column denoted ’ML best’ this refers to the best result
of steepest gradient with a linear change from σ = 1 to σ = 100, calculated in
GNU-Octave, again using 25000 epochs. Although MATLAB takes about half of
the time –that is, roughly 2 hours– the calculation is about 2 orders of magnitudes
slower than the C-implementation, which inhibits in-depth cross validation here.
As shown for the GRLVQ (l-)BFGS columns run time can be dramatically de-
creased for MATLAB/GNU-Octave if second-order batch-optimization with full-
fledged code vectorization is used. Here, two CPU threads where allowed to run in

DEPARTMENT OF MATHEMATICS 10

http://www.informatik.uni-osnabrueck.de/lnm/upload/
http://www.informatik.uni-osnabrueck.de/lnm/upload/

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

G
R

LV
Q

−
sg

 (
id

)

G
R

LV
Q

−
sg

 (
si

gm
a=

1)

G
R

LV
Q

−
sg

 (
si

gm
a=

10
0)

G
R

LV
Q

−
sg

 (
M

L
be

st
)

G
R

LV
Q

 lb
fg

s

G
R

LV
Q

 b
fg

s

M
R

LV
Q

 lb
fg

s

M
R

LV
Q

 b
fg

s

M
R

LV
Q

 lb
fg

s
(b

es
t)

M
IP

S
V

M
 [T

]

N
B

 [T
]

C
4.

5
[T

]

L−
S

V
M

 [L
Z

]

D
G

M
M

 [L
L]

Test errors on segmentation data

er
ro

r
[%

]

0

5

10

15

20

53
 s17

38
4

s

36
 s

28
 s 20

 s

38
 s

41
 s

Figure 4: Segmentation classification results of GRLVQ and MRLVQ using different
optimization routines and 100-fold stratified random cross validation at split of 7:3 for
training vs. test samples. The ’-sg’ postfix denotes stochastic gradient descent. The
five rightmost reference results for other methods from literature use different splits
into training and test. [T]=[15], [LZ]=[12], and [LL]=[4]. If available light gray areas
denote added standard deviations over the 100 runs. No run times for training were
reported for the reference methods. The leftmost three GRLVQ results were obtained
by a program written in C, all taking equal training times.

11 Technical Report MLR-2011-06

Enhancing M|G|RLVQ

parallel. Even results are a bit better than for stochastic gradient, despite of fixing
σ = 100 during whole optimization which induces difficult almost zero responses
for many data points distant from the receptive field boundaries. The sequential
optimization schedule for using (l-)BFGS is: 〈1〉 optimize only prototypes un-
til rough convergence, 〈2〉 optimize only metric parameters until rough
convergence, 〈3〉 optimize everything simultaneously.
For matrix learning MRLVQ similar results are obtained like for the Eu-
clidean distance, if the rank of the rectangular matrix λ is set to d = 5.
Lower ranks yield more than 2% worse results. Training times are a bit
longer than GRLVQ, because of the parameter matrix being 5 times larger
than Euclidean GRLVQ weights. Also the convergence benefit of full Hes-
sian BFGS over memory-limited BFGS in GRLVQ is eaten up here by the
larger number of metric parameters contributing in quadratic order to the
full Hessian.
Finally, the best MRLVQ results are reported. In contrast to all the other
LVQ variants, two prototypes per class are being optimized, and the rank
of λ is set to d = 7. Since the corresponding training error were at about
2% in contrast to the roughly 5% test error a high level of overfitting is ob-
served. Yet, the Euclidean GRLVQ did not significantly profit from using
two prototypes per class, while this is the case for MRLVQ.
The five rightmost bars are related to results for the segmentation data set
reported in literature. Notably, none of the papers explicitly states that the
predefined split of 1:10 into training and test set was used in their exper-
iments. 10-fold cross-validation is stated in [15], 20 randomizations are
mentioned in [12], and either the predefined split or a 50:50 split was used
in [4]. None of the methods reported time requirements.

4 Conclusions and Outlook

GRLVQ and MRLVQ have been revisited in the light of steep discriminant
transfer functions gσ and 2nd order cost function optimization. Nothing
relly new is added, except for the calculated gradients not being plugged
into a stochastic gradient descent method but into an off-the-shelf batch
optimization routine, (l-)BFGS, taking into account second order deriva-
tives. Good classification improvements are gained by using l-BFGS in
combination with steep sigmoid transfer functions (σ ≥ 10).
The optimizer’s standard settings can be used but the user is free to provide
termination criteria, such as the minimum gradient change or cost-function
changes, or the user can implement early stopping criteria at will. By expe-
rience, cost function formulations for unconstrained optimization methods
work more satisfactorily than constrained optimization, which is possible
for GRLVQ and MRLVQ because of their built-in metric weight squaring

DEPARTMENT OF MATHEMATICS 12

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

that prevent negative or indefinite parameters. Thanks to batch processing,
parallel optimization can be considered and is realized for MATLAB/GNU-
Octave to some degree by the underlying matrix algebra libraries. Yet, effi-
cient batch processing requires the data set to be completely stored in main
memory.
By selecting very steep transfer functions and a normalized version of the
underlying GLVQ cost function, cost function directly approximates mis-
classification rates. This is a very desirable criterion in many cases. Addi-
tionally, it allows to take direct influence on the class confusion matrix, and
thus to control the rate of false positives or false negatives by adaptations
towards weighted cost function formulations. Taking this way, classifiers
can be formally derived for directly optimizing receiver operating charac-
teristics and precision-recall properties.
The results reported for the segmentation data set are not well compa-
rable to other result found in the literature. For better upcoming inter-
method comparisons a classification task with consistently reported re-
sults on data preprocessing, classification capabilities and timings would
be needed. For further experiments and general use of GRLVQ and MR-
LVQ the MATLAB/GNU-Octave source code ’GRLVQ’ is available at
http://mloss.org.

References

[1] Marika Kästner, Barbara Hammer, Michael Biehl, and Thomas Vill-
mann. Generalized functional relevance learning vector quantization.
In M. Verleysen, editor, European Symposium on Artificial Neural
Networks (ESANN), pages 93–98. D-side Publications, 2011.

[2] Thomas Villmann and Sven Haase. Divergence-based vector quanti-
zation. Neural Computation, 23:1343–1392, 2011.

[3] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[4] Xiao-Hua Liu and Cheng-Lin Liu. Discriminative training of sub-
space Gaussian mixture model for pattern classification. In D.S.
Huang, Z. Zhao, V. Bevilacqua, and J.C. Figueroa, editors, 6th Inter-
national Conference on Intelligent Computing, volume 6215 of Lec-
ture Notes in Computer Science, pages 213–221. Springer, 2010.

[5] Ernest Mwebaze, Petra Schneider, Frank Michael Schleif, Sven
Haase, Thomas Villmann, and Michael Biehl. Divergence based
learning vector quantization. In M. Verleysen, editor, European Sym-
posium on Artificial Neural Networks (ESANN), pages 247–252. D-
side Publications, 2010.

13 Technical Report MLR-2011-06

http://mloss.org

Enhancing M|G|RLVQ

[6] P. Schneider, K. Bunte, H. Stiekema, B. Hammer, T. Villmann, and
M. Biehl. Regularization in matrix relevance learning. IEEE Trans-
actions on Neural Networks, 21(5):831–840, 2010.

[7] Marc Strickert, Axel J. Soto, and Gustavo E. Vazquez. Adaptive ma-
trix distances aiming at optimum regression subspaces. In Michel
Verleysen, editor, European Symposium on Artificial Neural Net-
works (ESANN), pages 93–98. D-facto Publications, 2010.

[8] Kerstin Bunte, Barbara Hammer, and Michael Biehl. Nonlinear di-
mension reduction and visualization of labeled data. In Xiaoyi Jiang
and Nicolai Petkov, editors, Computer Analysis of Images and Pat-
terns, volume 5702 of Lecture Notes in Computer Science, pages
1162–1170. Springer Berlin / Heidelberg, 2009. 10.1007/978-3-642-
03767-2_141.

[9] Petra Schneider, Michael Biehl, and Barbara Hammer. Distance
learning in discriminative vector quantization. Neural Computation,
21(10):2942–2969, 2009.

[10] Marc Strickert, Frank-M. Schleif, Thomas Villmann, and Udo Seif-
fert. Similarity-based clustering - recent developments and biomedi-
cal applications. In M. Biehl, B. Hammer, M. Verleysen, and T. Vill-
mann, editors, Similarity-Based Clustering – Recent Developments
and Biomedical Applications, volume 5400 of Lecture Notes in Com-
puter Science, pages 70–91. Springer, 2009.

[11] Fabrice Rossi and Nathalie Villa. Support vector machine for func-
tional data classification. Neurocomputing, 69(7–9):730–742, March
2006.

[12] Zhizheng Liang and Tuo Zhao. Feature selection for linear support
vector machines. In 18th International Conference on Pattern Recog-
nition, volume 2, pages 606–609, 2006.

[13] M. Strickert, U. Seiffert, N. Sreenivasulu, W. Weschke, T. Villmann,
and B. Hammer. Generalized relevance LVQ (GRLVQ) with corre-
lation measures for gene expression data. Neurocomputing, 69:651–
659, 2006.

[14] Marc Strickert. Self-Organizing Neural Networks for Sequence Pro-
cessing. PhD thesis, Institute of Computer Science, Universität Os-
nabrück, 2004.

[15] Amund Tveit. Empirical comparison of accuracy and performance
for the MIPSVM classifier with existing classifiers. Technical report,
IDI, NTNU, Trondheim, 2003.

[16] B. Hammer and T. Villmann. Generalized relevance learning vector
quantization. Neural Networks, 15:1059–1068, 2002.

DEPARTMENT OF MATHEMATICS 14

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

[17] A.S. Sato and K. Yamada. Generalized Learning Vector Quantiza-
tion. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in
Neural Information Processing Systems 7 (NIPS), volume 7, pages
423–429. MIT Press, 1995.

[18] T. Kohonen. Learning Vector Quantization for Pattern Recogni-
tion. Report TKK-F-A601, Helsinki University of Technology, Es-
poo, Finland, 1986.

[19] Jorge Nocedal. Updating quasi-newton matrices with limited storage.
Mathematics of Computation, 35(151):773–782, 1980.

15 Technical Report MLR-2011-06

Waypoint averaging and step size control in learning by gradient descent

Waypoint averaging and step size control in
learning by gradient descent
G. Papari1, K. Bunte2, M. Biehl2,3

Acknowledgements: This work was supported by the Nederlandse Organ-
isatie voor Weetenschappelijke Onderzoek (NWO) under project code
612.066.620.

Abstract

We introduce a modification of batch gradient descent, which aims at better conver-
gence properties and more robust minimization. In the course of the descent, the
procedure compares the performance of the actual configuration with that of a glid-
ing average over the most recent positions. If the latter corresponds to a lower value
of the optimization objective, minimization proceeds from there and the step size of
the descent is decreased.
Here we present the prescription from a practitioner’s point of view and refrain from
a detailed mathematical analysis. First, the method is illustrated in terms of a low di-
mensional example. Moreover, we discuss its application in the context of machine
learning, examples corresponding to multilayered neural networks and a recent ex-
tension of Learning Vector Quantization (LVQ) termed Matrix Relevance LVQ.

1 Introduction

Gradient based minimization is one of the most popular, basic techniques in non-linear
optimization [18]. While many, more sophisticated methods are also gradient based,
plain gradient descent faces a number of significant problems. First of all, the success
of steepest descent depends crucially on the choice of an appropriate magnitude of the

1National Institute of Research in Informatics and Automatics (INRIA)
Department CLIME, BP 105, 78153 Le Chesnay Cedex, France

2Johann Bernoulli Institute for Mathematics and Computer Science
University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

3E-mail: m.biehl@rug.nl

DEPARTMENT OF MATHEMATICS 16

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

update step. Too careful updates will cause slow convergence, while large steps may
result in oscillatory or even divergent behavior.

Methods for automated step size control and so-called line-search procedures have
been designed which can overcome this difficulty to a large extent. Similarly, in the
well-known conjugate gradient descent a coefficient is determined which controls the
superposition of two orthogonal descent steps [18]. Higher order methods which em-
ploy second or further derivatives include, among others, Newton and Quasi-Newton
methods. Arguably, the latter play the most important role in practical optimization of
non-convex non-linear cost functions, nowadays. Frequently, these methods are com-
putationally expensive and difficult to implement in high-dimensional search spaces. In
addition, they often require the tuning of algorithm parameters which further compli-
cate their use in practice.

In particular in the specific context of machine learning, plain gradient descent has
played a key role and continues to do so for several reasons. Gradient descent gained
significant importance when multi-layered neural networks were introduced and stud-
ied, initially. The availability of simple and efficient implementations of gradient de-
scent, e.g. the well-known backpropagation of error [19, 12, 17, 13, 5], contributed
immensely to the popularity of neural networks and machine learning in general.

To date, gradient descent is a popular tool in many machine learning tasks that can be
formulated in terms of, frequently non-convex, non-linear optimization problems. Due
to its simplicity and flexibility, gradient descent is often the first choice in initial inves-
tigations of novel learning paradigms. It has been employed in, both, supervised and
unsupervised learning. Examples for the former comprise the already mentioned train-
ing of multi-layered neural networks by means of backpropagation and, more recently,
prototype-based Learning Vector Quantization and variants [11]. Competitive learn-
ing in Vector Quantization [17] and cost function based variants of Neural Gas [15, 3],
constitute important examples for the application of gradient descent in unsupervised
learning.

In the machine learning domain, most frequently, the cost function and, thus, its
gradient can be written as a sum over the available example data. This facilitates the use
of a particularly simple and efficient scheme termed stochastic gradient descent, which
is also known as the Robbins Monro procedure [20, 13] in a more general context. Here,
the actual gradient is approximated by the contribution of a single training example. The
noise introduced by its random selection is believed to be beneficial, for instance with
respect to escaping local minima. For a discussion of various training prescriptions
which are based on the stochastic approximation of gradients, see [7].

On the other hand, batch gradient procedures make use of all examples in every
iteration, which increases the computational effort per step, but may be advantageous
in terms of efficiency.

Generic problems of gradient descent are also present, and sometimes particularly
pronounced, in both variants of gradient descent training. While the effect of local min-
ima on the actual performance of the resulting system is not always clear, their presence
certainly complicates the training process. Local minima result in, for instance, high

17 Technical Report MLR-2011-06

Waypoint averaging and step size control in learning by gradient descent

sensitivity to initial conditions of the training process.
Flat regions in the search space, where the gradient of the cost function displays

low magnitude can also constitute a problem in practice. They can result in so-called
quasi-stationary plateau states which can drastically slow down the learning process
and, frequently, dominate the shape of learning curves in gradient based training. For a
mathematical analysis of this phenomenon, borrowing concepts from statistical physics,
see for instance [10, 14, 6, 9, 4].

As a consequence, many modifications of plain gradient descent have been intro-
duced and investigated within the machine learning community. The choice of ap-
propriate learning rates and learning rate schedules plays a key role, obviously. For
stochastic gradient descent, for instance, exact criteria are known for schedules which
realize convergence to a (local) minimum. In practice, one has to compromise between
the desired approach to a potentially global minimum on the one hand and constraints
on the tolerated computational effort on the other.

The problem of flat regions of the cost function, in which steepest descent without
normalization of the gradient is slow, has attracted considerable interest in the machine
learning community. One the most popular extensions of gradient based training intro-
duces a memory term which is supposed to facilitate persistent moves along previously
found directions of descent. The term momentum has been coined for this popular
concept [19, 12, 17]. Other modifications of gradient descent concern the design of
so-called well-behaved cost functions which modify the original objective, aiming at
fast initial training and better convergence properties, see for instance [17].

The use of higher order methods has been explored also in the context of machine
learning. For reviews, concrete examples, and further references we suggest to consult,
for instance, [7, 17, 12]. Obviously, the evaluation or estimation of higher order deriva-
tives poses a practical problem in high-dimensional spaces and limits the usefulness of
the approach in many learning problems.

In the context of stochastic gradient descent, an averaging procedure has been sug-
gested which does not modify the descent itself, but interprets the mean over all per-
formed descent steps as the actual outcome of training [16, 1]. Obviously, this will
reduce the influence of random fluctuations while keeping the presumed advantages of
stochastic descent. Indeed, the approach has been shown to yield favorable convergence
properties in [1].

In the following we suggest an approach which combines the basic idea of waypoint
averages, here over a limited history, with an appropriate step size adaption. It provides
a conceptually simple and computationally efficient extension of steepest descent. It is
easy to implement and bears the promise to yield robust performance in, for instance,
practical learning problems or more general optimization tasks.

In this report we focus on a heuristic motivation and present the algorithm from a
practitioner’s point of view, with particular emphasis on machine learning applications.
More mathematical aspects of the method will be presented elsewhere. We illustrate
the approach in terms of low-dimensional optimization problems as well as an example
machine learning problem.

DEPARTMENT OF MATHEMATICS 18

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

2 The Algorithm

First we consider the case of an objective function E which depends on a d-dim. vector
x ∈ IRd. A gradient descent procedure, initialized in xo, generates a sequence of
positions xt by an iteration of the form

xt+1 = xt − αt
∇Et
|∇Et|

. (1)

Here and in the following we use the shorthands ∇Et = ∇E|x=xt
. Note that the

gradient is normalized in Eq. (1). Hence, αt controls explicitly the step length in terms
of Euclidean distance in IRd: |xt+1 − xt| = αt. Accordingly, we will refer to αt as the
step size at iteration step t. The related quantity ηt = αt/ |∇Et| corresponds to the
learning rate in standard machine learning jargon, i.e. a pre-factor of the unnormalized
gradient.

In order to ensure convergence one has to set the learning rate or step size, respec-
tively, small enough. For constant ηt = η it is straightforward to work conditions for
the convergence of gradient descent close to a (local) minimum x∗. Let us assume that
we can expand E as

E(x) ≈ E(x∗) +
1

2
(x− x∗)

>
H∗ (x− x∗) (2)

where the elements of the Hesse-Matrix H∗ are given by H∗ij =
∂2E

∂xi ∂xj

∣∣∣∣
x=x∗

.

The largest eigenvalue λmax of H∗ corresponds to the largest curvature observed in
x∗. One can show that for η < 2/λmax the deviation |xt − x∗| vanishes as t → ∞.
However, in practical situations, the properties of the unknown minimum are not known
and H∗ itself is not available. A variety of schemes exist, which resort to the evaluation
of the local Hesse matrix H for automatic step size adaptation in machine learning, see
[7] for further references. More frequently, simple heuristic annealing schemes are used
which reduce ηt explicitly with time, see [20, 13, 17, 7] for a discussion and examples.
Note that these schemes inevitably introduce a number of algorithm parameters which
have to be fine-tuned to the concrete practical learning problem at hand.

Here we present a simple and robust extension of gradient descent which improves
convergence by considering waypoint averages over the latest iteration steps and im-
plements an efficient step size adaptation at the same time. It does not require the costly
evaluation of higher order derivatives and the number of additional control parameters
is very small compared to some of the other approaches mentioned above.

Waypoint averaging and step size adaptation
The iteration is initialized in xo and the initial step size is αo. First, a number k of

19 Technical Report MLR-2011-06

Waypoint averaging and step size control in learning by gradient descent

unmodified gradient steps is performed, i.e.

xj+1 = xj − αj
∇Ej
|∇Ej |

for j = 0, 1, 2, . . . , k − 1 with αj = αo. (3)

Thereafter, the iteration proceeds as described in the following:

1. evaluate the tentative gradient step

x̃t+1 = xt − αt
∇Ej
|∇Ej |

and E(x̃t+1) (4)

2. calculate the waypoint average over the previous k steps:

x̂t+1 =
1

k

k−1∑
i=0

xt−i and E(x̂t) (5)

3. determine new position and new step size as{
xt+1 = x̃t+1 and αt+1 = αt if E(x̃t+1) ≤ E(x̂t+1)
xt+1 = x̂t+1 and αt+1 = r · αt else. (6)

with the parameter r < 1.
As long as the plain gradient descent step yields a position which corresponds to

lower costs than the waypoint average x̂t+1 over the last k steps, the iteration proceeds
unmodified.

On the contrary, E(x̂t+1) < E(x̃t+1) signals that the procedure has overshot and
displayed oscillatory behavior because the step size has been too large for smooth con-
vergence. As a consequence, one may expect that the positions xt,xt−1, . . . ,xt−k+1

fluctuate about a local minimum and the waypoint average should provide a better esti-
mate than the tentative x̃t+1. In this case, the iteration proceeds from x̂t+1 and the step
size is reduced by a factor r < 1.

In a forthcoming publication we will discuss favorable settings of the parameter r. In
addition, several extensions and modifications of the basic prescription are possible. For
instance, an additional parameter q > 1 could be introduced to increase the step size as
αt+1 = q · αt whenever the tentative step is accepted, thus avoiding slow convergence
due to inappropriately small step sizes. Here we restrict the discussion to the case q = 1
and refer to forthcoming studies for the discussion of the extension.

Figure 5 shows a simple example in d = 2 dimensions and illustrates the method by
comparing updates with constant step size and the procedure with waypoint averaging
and step size control.

3 A machine learning example

Frequently, subsets of variables can be identified which play qualitatively different roles
in the optimization problem with significantly different gradient magnitudes and cur-
vatures of E. In the suggested descent procedure, meaningful groups of variables can

DEPARTMENT OF MATHEMATICS 20

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

5̃

335644
2211

Figure 5: A simple optimization in d = 2 dimensions. Symbols and connecting lines
mark the trajectories of two gradient based iterations, we display 500 steps for each
procedure. Both trajectories start from the same initial position, marked as "1", and
employ the same initial step size αo. Unmodified gradient descent according to Eq. (1)
with constant α displays strongly oscillating behavior. The modification with waypoint
averaging (here: k = 2) and step size adaptation is identical up to step 4, but then
replaces the tentative position 5̃ by the mean (x3 +x4)/2. The step size is then reduced
by a factor r = 1/4. Also position 6 results from an average over x4 and x5, which is
very close to the tentative x̃6 (not shown). Subsequently the iteration approaches the
minimum with step size αo/16 for a number of steps. Close to the minimum many
waypoint averages are performed and the step size decreases very rapidly.

be taken into account by normalizing the partial gradients separately and assigning dif-
ferent step sizes to them. In the context of machine learning such subsets could be, for
instance, first and second layer weights in a layered neural network. Another example
are prototype vectors and relevance matrices in Matrix Relevance LVQ [2]. We employ
the latter framework to illustrate an appropriate modification of our method.

As an example data set we consider the Segmentation data set as provided by the
UCI repository of Machine Learning [8]. The data set contains (d = 18)-dim. feature
vectors xi which are assigned to one of 7 classes denoted by c(xi) ∈ {1, 2, . . . , 7}.
Note that one of the nominally 19 features does not vary at all and has been omitted
here. The training set contains 210 samples (30 per class), 2100 data points (300 per
class) serve as a test set. For a more detailed description of the data consult [8] or, for
instance, [2].

We consider the simplest setting of GMLVQ with one prototype representing each
class. We denote by W = [w1,w2, . . . ,w7] a (7 · 18)-dim. vector which contains the
concatenated prototypes. Classification is parameterized in terms of a nearest prototype

21 Technical Report MLR-2011-06

Waypoint averaging and step size control in learning by gradient descent

scheme which employs the generalized distance measure

d(wk,x) = (wk − x)
>

Ω>Ω (wk − x) . (7)

Here, x ∈ IRd represents a feature vector, wk is one of the prototypes, and Ω ∈ IRd×d
is a matrix of adaptive parameters which define the measure.

The training process is guided by the cost function

E =

210∑
i=1

d(wJ ,xi)− d(wK ,xi)

d(wJ ,xi) + d(wK ,xi)
(8)

where the sum is over the training examples and the vector wJ is the prototype repre-
senting the class c(xi). The vector wK is the closest prototype representing one of the
other classes, as determined according to the distance measure (7).

In GMLVQ the cost function is to be optimized with respect to, both, the prototype
positions and the matrix Ω. When applying stochastic gradient descent, it has proven
useful to update the elements of Ω with a learning rate different from that for the proto-
type components [2]. This reflects the fact that the dependence of E on the wj and the
matrix Ω is expected to be qualitatively different.

In batch descent based on normalized gradients, Eq. (1), we can take this idea into
account by performing the normalization for the matrix Ω and the concatenated proto-
type vector W separately and using different step sizes in the tentative gradient update
corresponding to Eq. (4):

W̃t+1 = Wt − α(W)
t

∂E/∂W

|∂E/∂W|
(9)

Ω̃t+1 = Ωt − α(Ω)
t

∂E/∂Ω

|∂E/∂Ω|
. (10)

Here we refrain from providing the gradient terms explicitly and refer the reader to [2]
for details.

In complete analogy to the above described basic formulation, cf. Eq. 6), the cost
function E(W̃t+1, Ω̃t+1) is compared with the corresponding costs achieved by

Ŵt+1 =

k−1∑
i=0

Wt−i and Ω̂t+1 =

k−1∑
i=0

Ωt−i.

In case the latter is lower, the waypoint average is accepted as the new position and both
step sizes are reduced:

α
(W)
t+1 = r · α(W)

t and α
(Ω)
t+1 = r · α(Ω)

t . (11)

As the free parameters of the prescription, one has to set the initial values α(W)
o and

α
(Ω)
o . Note that their ratio remains fixed in the course of the iteration.

DEPARTMENT OF MATHEMATICS 22

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

0 100 200 300 400 500
-150

-140

-130

-120

-110

-100

-90

-80

-70

-60
Costfunction value

steps/epochs
0 100 200 300 400 500

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24
Testerrors

steps/epochs

Figure 6: UCI segmentation data set: GMLVQ learning curves for batch gradient de-
scent with constant step sizes (dash–dotted), stochastic gradient descent (dashed), and
waypoint averaging with step size adaptation (solid lines). The left panel displays the
evolution of the GMLVQ cost function vs. the number of steps (batch methods) or
epochs (stochastic descent), respectively. The right panel shows the total classification
error with respect to the test set. Parameter settings of the algorithms are specified in
the text.

Figure 6 displays learning curves for different variants of gradient based GMLVQ
training applied to the UCI segmentation data. We observe only a very weak depen-
dence of the performance on the initial step sizes and on their ratio α(Ω)

o /α
(W)
o . The

example shown corresponds to α(W)
o = 1/18 and α(Ω)

o = α
(W)
o /2; the other parameters

were k = 3 and r = 2/3.
For comparison we display example curves for batch gradient descent with constant

step sizes α(W)
o = 1/180 and α(Ω)

o = α
(W)
o /5. These values were chosen such that the

outcome after 500 steps is comparable to that of the waypoint averaging procedure with
adaptive step size.

Furthermore, display the results of stochastic gradient descent with learning rate
schedules of the form

η(t) = a1 exp

[
− ln

(
a1

a2

)
t

tmax

]
where tmax=500 specifies the maximum number of epochs in the training process.
Note that one epoch presents all training examples once and, hence, is to be com-

23 Technical Report MLR-2011-06

Waypoint averaging and step size control in learning by gradient descent

pared with one step of batch descent. The curves displayed were obtained for a(W)
1 =

0.05, a
(W)
2 = 0.001 for the prototype vectors and a(Ω)

1 = 0.01, a
(Ω)
2 = 0.001 for matrix

updates. Note that the stochastic descent displays strong fluctuations which need to be
controlled by proper annealing of the learning rate.

Clearly, the performance could be further optimized by choice of the constant step
sizes in batch training or the learning rate schedules in the stochastic gradient descent.
Potentially, a performance very similar to that of the waypoint averaging procedure
could be achieved. However, the important point is that the latter yields very good
optimization and classification performance without careful tuning of a number of pa-
rameters.

4 Summary and Conclusion

In this Technical Report we present a modification of gradient based optimization which
constitutes a conceptually simple extension of steepest descent. The main ingredient is
the consideration of waypoint averages over the most recent iteration steps in combina-
tion with an adaptive step size control. Here we merely present and illustrate the basic
concept of the method. We discuss its application in the context of an example machine
learning problem: gradient based Matrix Relevance LVQ.

The simple examples considered here already illustrate some of the most attractive
features of the method. First of all, it is easy to implement, computationally cheap, and
– in contrast to many other schemes – does not require the careful tuning of a large
number of algorithm parameters. In particular, the combination of waypoint averages
and step size control makes it unnecessary to define explicit learning rate schedules or
to use higher derivatives for learning rate adaptation. The use of normalized gradients
may appear merely technical at first sight. However, compared to standard steepest
descent based on unnormalized gradients, it helps to overcome plateau states and flat
regions of the cost function very efficiently.

In a forthcoming publication we will address these aspects in greater depth and
demonstrate the flexibility and robustness of the approach in terms of various example
problems. A more systematic comparison with alternative, popular methods will also
be presented. In addition we will study further mathematical aspects of the approach,
including, for instance, the optimal choice of parameters r and k. We will, furthermore,
demonstrate that the method is suitable also in situations in which the cost function is
not differentiable in the minimum.

A number of question deserves particular attention in the context of machine learn-
ing, e.g. the convergence behavior in the presence of extended plateaus or many local
minima.

DEPARTMENT OF MATHEMATICS 24

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

References
[1] Wei Xu. Towards optimal one pass large scale learning with averaged stochastic

gradient descent. CoRR, abs/1107.2490, 2011.
[2] P. Schneider, M. Biehl, and B. Hammer. Adaptive relevance matrices in learning

vector quantization. Neural Computation, 21(12):3532–3561, 2009.
[3] T. Villmann, B. Hammer, and M. Biehl. Some theoretical aspects of the neural gas

vector quantizer. In M. Biehl, B. Hammer, M. Verleysen, and T. Villmann, editors,
Similarity-Based Clustering, volume 5400, pages 23–34. Springer Lecture Notes
in Computer Science, 2009.

[4] A. Witoelar, M. Biehl, A. Ghosh, and B. Hammer. Learning dynamics and robust-
ness of vector quantization and neural gas. Neurocomputing, 71(7-9):1210–1219,
2008.

[5] M.A. Arbib, editor. The handbook of brain theory and neural networks. MIT
Press, Cambridge,MA, 2003.

[6] M. Biehl and N. Caticha. The statistical mechanics of on-line learning and gener-
alization. The handbook of brain theory and neural networks, pages 1095–1098,
2003.

[7] D. Saad, editor. Online learning in neural networks. Cambridge University Press,
Cambridge, UK, 1999.

[8] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository of machine
learning databases. http://archive.ics.uci.edu/ml/, 1998.

[9] M. Biehl, A. Freking, and G. Reents. Dynamics of on-line competitive learning.
Europhysics Letters, 38:73–78, 1997.

[10] M. Biehl, P. Riegler, and C. Wöhler. Transient dynamics of on-line learning in
two-layered neural networks. Journal of Physics A: Mathematical and General,
29:4769–4780, 1996.

[11] A. Sato and K. Yamada. Generalized learning vector quantization. In M. C. Mozer
D. S. Touretzky and M. E. Hasselmo, editors, Advances in Neural Information
Processing Systems 8. Proceedings of the 1995 Conference, pages 423–9, Cam-
bridge, MA, USA, 1996. MIT Press.

[12] Y. Chauvin and D.E. Rumelhart, editors. Backpropagation: Theory, Architectures,
and Applications. Hillsdale, Erlbaum, 1995.

[13] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
1 edition, 1995.

[14] D. Saad and S.A. Solla. Exact Solution for Online Learning in Multilayer Neural
Networks. Phys. Rev. Lett., 74:4337–4340, 1995.

[15] T. Martinetz, S. Berkovich, and K. Schulten. Neural gas network for vector quanti-
zation and its application to time series prediction. IEEE Trans. Neural Networks,
4:558–569, 1993.

25 Technical Report MLR-2011-06

Waypoint averaging and step size control in learning by gradient descent

[16] B.T. Polyak and A.B. Juditsky. Acceleration of stochastic approximation by aver-
aging. SIAM J. Control and Optimization, 30:838–855, 1992.

[17] J.A. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory of Neural
Computation. Addison Wesley, Redwood City, 1991.

[18] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York,
2nd edition, 1987.

[19] D.E. Rumelhart and J.L. McClelland. Parallel Distributed Processing, volume 1.
Bradford Books, Cambridge and London, 1987.

[20] H. Robbins and S. Monro. A stochastic approximation method. Ann. Math.
Statist., 22:400–407, 1951.

DEPARTMENT OF MATHEMATICS 26

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

Theory of Fuzzy Neural Gas for Unsupervised
Vector Quantization

T. Villmann1,2,T. Geweniger2,M. Kästner2,M. Lange2

Abstract

In this paper we propose a new approach for fuzzy clustering based on fuzzy-c-means
incorporating neighborhood cooperativeness according to the neural gas vector quan-
tizer. This approach offers greater flexibility than the already known combination of
fuzzy-c-means with self-organizing maps. We give in this article the theoretical jus-
tification of the new fuzzy neural gas algorithm. Further, we focus on the explicit
control of the sparseness of the fuzzy assignments extending the cost function of
fuzzy neural gas by an entropic penalty term.

1 Introduction

Clustering of data is a challenging task. An important class of clustering algorithms is
prototype based vector quantization where prototype vectors represent the data. One
can distinguish crisp (hard) clustering approaches where data are uniquely assigned
to the representing prototypes and so-called fuzzy approaches where probabilistic or
possibilistic assignments describe the representation of data by the prototypes. The
most famous algorithm is the fuzzy-c-means algorithm (FCM,[35, 39]).

Beside this differentiation of vector quantization algorithms, another differentiation
of prototype based vector quantization algorithms can be accomplished according to
their learning strategies. Among others, neighborhood cooperativeness between proto-
types during learning is a learning paradigm known from neural maps, which generally
improves vector quantization performance and convergence speed as well as stability
of the vector quantization solution.

1E-mail: thomas.villmann@hs-mittweida.de
2Computational Intelligence Group, University of Applied Sciences

Mittweida, Technikumplatz 17, 09648 Mittweida, Germany

27 Technical Report MLR-2011-06

Theory of Fuzzy Neural Gas for Unsupervised Vector Quantization

Soft-topographic vector quantization (STVQ,[17]) as well as fuzzy self-organizing
map (FSOM,[21, 29, 26]) are approaches, which combine both strategies - fuzziness
and neighborhood cooperation. Thereby, the neighborhood cooperativeness is cooped
from the self-organizing map model (SOM,[24]) assuming an external grid structure
between the prototypes, usually a regular hypercubical structure. Otherwise, for crisp
vector quantization, the neural gas algorithm (NG) using a dynamic prototype based
neighborhood generally shows better performance [28].

In this paper we propose a new fuzzy vector quantization scheme based on the dy-
namic neighborhood cooperativeness known from neural gas instead of the SOM-based
neighborhood cooperativeness in STVQ resulting in the fuzzy neural gas (FNG) algo-
rithm. Further, we investigate entropy based sparsity control for the fuzzy assignments
which keeps the regularization restriction from FCM.

2 Fuzzy-Probabilistic, Fuzzy-Possibilistic and Soft Vector Quanti-
zation

In this section we briefly introduce two of the basic principles of fuzzy or soft vector
quantization. The first is the classic fuzzy-c-means (FCM) as the basic fuzzy vector
quantization scheme based on an expectation-maximization (EM) principle or the al-
ternating optimization scheme. The other one is the soft-topographic vector quantiza-
tion scheme (STVQ), which incorporates neighborhood cooperativeness for soft vector
quantization.

In the following we assume a data set V = {vi}Ni=1 ⊆ Rn and a setW = {wk}Ck=1 ⊂
Rn of prototypes. Further, we suppose an inner product norm di,k = d (vi,wk) be-
tween data and prototypes, frequently the Euclidean distance.

2.1 The Fuzzy-c-Means Algorithm for Fuzzy-Probabilistic Cluster-
ing

The Fuzzy-c-Means algorithm is one of the most prominent fuzzy clustering algorithms
[35, 39]. Many variants are proposed such as for relational data [32] or median cluster-
ing [3] or using several kinds of dissimilarities like divergences [9, 1] or kernels [14].

The original FCM model determines for each data point vi ∈ V and prototype
wk ∈ W an assignment ui,k ∈ [0, 1], which is interpreted as the possibility that this
data vector is associated with this particular prototype. If the assignments are restricted
to fulfill the constraints ∑

k

ui,k = 1 (1)

the model is called probabilistic. The crisp c-means model is obtained for the proba-
bilistic model with the additional condition that ui,k ∈ {0, 1} [38, 37].

DEPARTMENT OF MATHEMATICS 28

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

The FCM minimizes the cost function

EFCM (U, V,W) =

C∑
k=1

N∑
i=1

(ui,k)
m

(di,k)
2 (2)

where m ≥ 1 is the fuzziness parameter usually chosen asm = 2 [35, 39]. The iterated
optimization scheme (expectation-maximization-approach) consists of a M-step

wk =

∑N
i=1 (ui,k)

m
vi∑N

i=1 (ui,k)
m

(3)

together with the accompanying E-step

ui,k =
1∑C

l=1

(
di,k
di,l

) 2
m−1

(4)

derived as the solution of the Lagrange-minimization problem

J (U, V,W, λ) = EFCM (U, V,W)−
N∑
i=1

(
λi

(
C∑
k=1

ui,k − 1

))
(5)

with Lagrange multipliers λ = (λ1, . . . , λN).

2.2 Fuzzy-Possibilistic Clustering based on Fuzzy c-means
Possibilistic c-means (PCM, [27]) differs from FCM in such a way that the assignment
constraints (1) of the FCM are not longer valid. Thus the only remaining conditions are
ui,k ∈ [0, 1]. These assignments are called typicality assignments ti,k ∈ [0, 1] in PCM.
The different definition causes a slightly modified cost function, which now reads as

EPCM (U, V,W, δ) =

C∑
k=1

N∑
i=1

(ti,k)
η

(di,k)
2

+

C∑
k=1

(
δk

N∑
i=1

(ti,k − 1)
η

)
(6)

with user defined constants δi > 0. Here, the M-step

wk =

∑N
i=1 (ti,k)

η
vi∑N

i=1 (ti,k)
η

(7)

is equivalent to that of the FCM model, but the E-step for the typicality values ti,k is
modified to

ti,k =
1

1 +
(

(di,k)2

δk

) 1
η−1

(8)

29 Technical Report MLR-2011-06

Theory of Fuzzy Neural Gas for Unsupervised Vector Quantization

taking the δi-values into account. It is recommended to initialize the PCM by FCM
[20]. A suggested choice for the δi-values is

δk = K

∑N
i=1 (ui,k)

η
(di,k)

2∑N
i=1 (ui,k)

η
(9)

with the ui,k obtained from FCM and η = m [20].
Another probabilistic fuzzy clustering is Fuzzy PCM (FPCM), which tries to avoid

the problem of coinciding clusters (prototypes) in FCM and PCM [13]. It is a merge
of FCM and PCM such that the new cost function is a linear combination of both ap-
proaches:

EFPCM (U, V,W, δ) =

C∑
k=1

N∑
i=1

(
umi,k + tηi,k

)
(di,k)

2 (10)

with the constraints
∑
k ui,k = 1 from FCM and

∑
i ti,k = 1 reflecting the cluster

typicality to be probabilistic. The term
∑C
k=1

∑N
i=1 (ti,k)

η
(di,k)

2 is reported to be
responsible for broader distribution of the ti,k to all data points but not with respect to
all clusters. The resulting M-step

wk =

∑N
i=1

(
umi,k + tηi,k

)
vi∑N

i=1

(
umi,k + tηi,k

) (11)

is accompanied by the E-steps: the usual E-step for ui,k of FCM (1) and, analogously,

ti,k =
1∑N

j=1

(
di,k
dj,k

) 2
η−1

(12)

with summation over all data. However, in that case, we have the constraint
∑
i ti,k =

1, which is unsatisfying compared to the idea of PCM.
Adopting the idea from PCM also for FPCM the most general fuzzy clustering

scheme is

EPFCM (U, V,W, δ) =

C∑
k=1

N∑
i=1

(
a · umi,k + b · tηi,k

)
(di,k)

2
+

C∑
k=1

(
δk

N∑
i=1

(ti,k − 1)
η

)
(13)

with constants a > 0 and b > 0 balancing both models [13]. This model consists of the
M-step

wk =

∑N
i=1

(
a · umi,k + b · tηi,k

)
vi∑N

i=1

(
a · umi,k + b · tηi,k

) (14)

and the E-steps for ui,k of FCM (1) and ti,k from the FPCM-model (12).

DEPARTMENT OF MATHEMATICS 30

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

2.3 Soft Topographic Vector Quantization
The STVQ model uses probabilistic soft assignments p (k|vi) of data vectors vi to pro-
totypes wk, i.e.

∑C
k=1 p (k|vi) = 1. Furthermore, an external topological structure A

between the prototypes is assumed defining a dissimilarity dA (k, l) between the proto-
types wk and wl with respect to the structure A. Usually, the structure A is assumed to
be a regular hypercubical lattice as known from SOMs, and dA is taken as the Euclidean
distance in A for that case. Further, a neighborhood cooperativeness between the pro-
totypes is installed using a neighborhood function defined on A in complete analogy to
SOMs:

hSOMσ (k, l) = cσ · exp

(
− (dA (k, l))

2

2σ2

)
(15)

with neighborhood range σ and the constraint
∑
l h
SOM
σ (k, l) = 1 ensured by the

constant cσ . Thus the neighborhood range induces a range of interaction implicitly also
in the data space dteremined by the location of the prototypes.

For this setting, topographic vector quantization (TVQ) is defined by minimization
of the cost function

ETV Q (W,σ) =

N∑
i=1

C∑
k=1

p (k|vi) · lcσ (i, k) (16)

with local costs

lcSOMσ (i, k) =

C∑
l=1

hSOMσ (k, l) ·
(
dEi,l
)2

(17)

where dEi,k is the Euclidean distance [25]. However, other dissimilarity measures di,k
are possible.

Minimization of the cost function ETV Q is realized by a deterministic annealing
approach based on the free energy FTV Q (W,β) = ESTV Q (W,β, σ) as a smoothed
(soft) variant of the cost function ETV Q (W,σ) formally defined as [31]:

ESTV Q (W,β, σ) = − ln

 ∑
{lcσ(i,k)}

exp (−βETV Q (W,σ))

 (18)

for a given temperature T = 1
β . A detailed description can be found in [18]. Minimiza-

tion of this free energy leads to the soft probability assignments

p (k|vi) =
exp (−βlcσ (i, k))∑C
l=1 exp (−βlcσ (i, l))

(19)

depending on the inverse temperature β and the neighborhood range σ (E-step). High
temperatures result in soft assignments, while low temperatures yield crisp assignments.

31 Technical Report MLR-2011-06

Theory of Fuzzy Neural Gas for Unsupervised Vector Quantization

The corresponding prototypes are obtained as weighted sums

wk =

∑N
i=1 vi ·

(∑C
l=1 h

SOM
σ (k, l) · p (l|vi)

)
∑N
i=1

∑C
l=1 h

SOM
σ (k, l) · p (l|vi)

(20)

of the data vectors vi (M-step) [17]. We remark that the prototypes explicitly depend
on the neighborhood range σ and implicitly also on the inverse temperature β via the
assignments p (l|vi).

Optimum vector quantization results are obtained for adiabatic decreasing of the
neighborhood range σ while in the inner loop the temperature T is reduced and the
prototypes wk as well as the assignments p (k|vi) are determined according to the
usual EM-fixed-point-iteration.

3 Fuzzy Neural Gas, Fuzzy-SOM and Annealed Neural Gas

A combination of FCM together with SOM neighborhood according to the neighbor-
hood function hSOMσ from (15) was suggested in [23, 22, 30, 29, 21, 26]. In this
Fuzzy-SOM (FSOM) approach the M-step adaptation (3) in the original FCM model
is replaced by

wk =

∑N
i=1

∑C
l=1 (ui,l)

m · hSOMσ (k, l) · vi∑N
i=1

∑C
l=1 (ui,l)

m · hSOMσ (k, l)
(21)

incorporating the neighborhood cooperativeness known from SOMs for better stability.
This corresponds to the cost function

EFSOM (U, V,W) =

C∑
k=1

N∑
i=1

(ui,k)
m ·

(
C∑
l=1

hSOMσ (k, l) · (di,k)
2

)
(22)

replacing in (2) the quadratic distances (di,k)
2 by the local costs lcSOMσ (i, k) from

(17). Hence, the assignments reads now as

ui,k =
1∑C

l=1

(
lcSOMσ (i,k)
lcSOMσ (i,l)

) 1
m−1

(23)

We emphasize that this neighborhood cooperativeness is triggered by the external topo-
logical structure in A like in the SOM. Obviously, it can also be applied to the other
models PCM, FPCM and PFCM, adapting the M-steps (7), (11), and (14) accordingly
and using the same arguments in the proof as for FCM in [21, 29, 26].

An alternative to the external grid enforced neighborhood cooperativeness between
prototypes is provided for the neural gas (NG) vector quantizer [28]. This approach
uses a dynamic neighborhood between the prototypes determined in the data space V .
This flexible neighborhood leads to the fact that NG usually outperforms SOM in crisp

DEPARTMENT OF MATHEMATICS 32

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

vector quantization. Therefore, the idea is to incorporate this kind of neighborhood
instead of the SOM-neighborhood cooperativeness into fuzzy clustering schemes to
improve their performances.

In NG the neighborhood between prototypes for a given data vector vi ∈ V is based
on the winning rank of each prototype wk

rkk (vi,W) =

N∑
l=1

Θ (d (vi,wk)− d (vi,wl)) (24)

where

Θ (x) =

{
0 if x ≤ 0

1 else
(25)

is the Heaviside function [28]. The NG neighborhood function includes the ranks ac-
cording to

ĥNGσ (k|v) = cNGσ · exp

(
− (rkk (v,W))

2

2σ2

)
(26)

with neighborhood range σ. This definition allows the declaration of a gradual neigh-
borhood relation between prototypes wk and wl by

hNGσ (k, l) = cNGσ · exp

(
− (rkk (wl,W))

2

2σ2

)
(27)

for a given neighborhood range σ. The constraint
∑
l h
NG
σ (k, l) = 1 again is ensured

by a constant cNGσ as before. If the training of the prototypes is completed, the data
are not longer needed for the calculation of the new neighborhood degree hNGσ (k, l).
Altough this determination is independent from the data at that time, it reflects the data
relations implicitly by the pairwise dissimilarities between the prototypes wk and wl.
Hence, this neighborhood is dynamic during the learning process but becomes static in
the vicinity of the equilibrium of the learning process. This allows a redefinition of the
local costs (17) based on the function hNGσ (k, l) as

lcNGσ (i, k) =

C∑
l=1

hNGσ (k, l) · (di,l)2
. (28)

Plugging these NG-based local costs lcNGσ (i, k) into the most general fuzzy cluster-
ing scheme FPCM (13) we get the Fuzzy Neural Gas algorithm (FNG) with the cost
function

EFNG (U, V,W, δ) =

C∑
k=1

N∑
i=1

(
a · umi,k + b · tηi,k

)
lcNGσ (i, k)+

C∑
k=1

(
δk

N∑
i=1

(ti,k − 1)
η

)
(29)

33 Technical Report MLR-2011-06

Theory of Fuzzy Neural Gas for Unsupervised Vector Quantization

and the prototype adaptation

wk =

∑N
i=1

∑C
l=1

(
a · umi,l + b · tηi,l

)
· hNGσ (k, l) · vi∑N

i=1

∑C
l=1

(
a · umi,l + b · tηi,l

)
· hNGσ (k, l)

(30)

if using the Euclidean distance. The adaptation of the fuzzy assignments umi,l and typ-
icality assignments tmi,l in FNG are as before defined for FCM in (1) and for FPCM
in (12), respectively, but replacing there the dissimilarity measure (di,k)

2 by the local
costs lcNGσ (i, k) as in FSOM:

ui,k =
1∑C

l=1

(
lcNGσ (i,k)
lcNGσ (i,l)

) 1
m−1

(31)

and
ti,k =

1∑N
j=1

(
lcNGσ (i,k)
lcNGσ (j,k)

) 1
η−1

, (32)

Thereby, the convergence is ensured due to the above mentioned fact that the neighbor-
hood hNGσ (k, l) becomes fixed in the convergence phase, which can be interpreted as
an external grid structure as given in SOMs. However, it can be assumed that this dy-
namic neighborhood offers more flexibility and therefore will yield in better accuracy
than a SOM-based scheme.

Yet, for the validation of this FNG it remains to show that the NG using the modi-
fied neighborhood function hNGσ (k, l) from (27) instead of the original neighborhood
ĥNGσ (k|v) from (26) has a prototype update of the form

4wi ∼ −hNGσ (s (v) , i)
∂d (v,wi)

∂wi
(33)

obtained from stochastic gradient of the underlying NG cost function. This is shown in
the Appendix.

Analogously, the NG-based local costs lcNGσ (i, k) could also be used in the STVQ
model resulting in an Annealed Neural Gas (ANG). In fact, this ANG is similar to
the annealed NG proposed in [19]. In the limit of low temperatures T = 1

β a crisp
clustering is obtained as in STVQ depending on the neighborhood range σ. This range
should be decreased adiabatically in an outer loop for optimum performance. However,
it has to be mentioned here that this adiabatic decreasing of the neighborhood range σ
is not equivalent to an annealing approach based on a free energy depending on this
parameter σ [7].

Finally, it should be noticed at this point that these algorithms are not restricted to the
Euclidean distance for the inner product norms di,k. More general dissimilarity mea-
sures are obviously applicable like, for example, the scaled Euclidean distance [15] or
generalizations thereof, (kernelized) divergences [1] or other generalized dissimilarity
measures [11].

DEPARTMENT OF MATHEMATICS 34

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

4 Sparsity and Separation in FSOM and FNG

In FCM the fuzziness parameter m of the cost function EFCM (2) implicitly controls
the sparseness of the fuzzy assignments ui,k. For m ↘ 1 the assignments converge
to crisp decisions (maximum sparseness), whereas m � 1 forces equally distributed
assignment values (in the limit m −→ ∞) [36]. Analogously, FNG and FSOM reduce
to NG and SOM for m ↘ 1. Hence, controlling the factor m = m (t) would be a
possibility to govern the sparsity.

Otherwise, sparsity in prototype based vector quantization is closely related to infor-
mation transfer optimization [6, 4]. Respective approaches for improved fuzzy assign-
ments FCM using information theoretic concepts were presented in [10, 8, 12]. These
approaches either enforce maximum Shannon entropy [42]

HS
i (U) = −

C∑
k=1

ui,k · ln (ui,k) (34)

as the main optimization goal with the minimum description error taken as a constraint
[12], or add a Shannon entropy term to the cost function of FCM (used with m = 1)
to avoid crisp assignments [10]. Instead of the Shannon entropy also the fuzzy entropy
[34]

HFS
i (U) = −

C∑
k=1

(ui,k · ln (ui,k)− (1− ui,k) · ln (1− ui,k)) (35)

was investigated [8]. But in this approach, the fuzzy entropy HFi (U) was taken as an
additional regularization term for the Lagrange optimization. Another possibility is to
take the Kullback-Leibler divergence [41] of the distribution of the fuzzy assignments
ui,k compared with a prior distribution πk reflecting the ratio of the data contributing
to the kth fuzzy cluster (prototype) as regularization [14].

Here, we investigate entropies regarding their usefulness in FNG/FSOM sparsity
control. For this purpose, we consider different entropies as an additional term in the
cost functions of FSOM and FNG, whereby the sparsity parameter m is set to m = 1.
As mentioned above,m = 1 yields crisp decisions. The add of scaled negative entropies
to the cost function enforces fuzziness and, therefore, implicitly controls sparseness.
Thus, the new cost function based on the original cost function EFNG (22) of FNG
with m = 1 becomes

EFNG (U, V,W) =

C∑
k=1

N∑
i=1

(
lcNGσ (i, k)

)
− γ (t) ·Hi ({ui,l}) (36)

with an entropy Hi ({ui,k}) judging the fuzziness or separation degree and the local
costs lcNGσ (i, k) from (28). The factor γ (t) > 0 explicitly controls the fuzziness at
time t. The regularization conditions

∑
k ui,k = 1 for the assignments ui,k from FCM

35 Technical Report MLR-2011-06

Theory of Fuzzy Neural Gas for Unsupervised Vector Quantization

should preserved in this model, such that the resulting Lagrange function is

LFNG (U, V,W) = EFNG (U, V,W) +

N∑
i=1

ςi

(
1−

C∑
k=1

(ui,k)

)
(37)

depending on the used entropy. The FSOM scheme can be handled analogously to
deal with sparsity. In this manner, information theoretic concepts are used for spar-
sity/fuzzyness control instead of optimization of the fuzziness parameter m.

Obviously, the adaptation scheme for the prototypes is not influenced by the en-
tropy term, because the entropies Hi do not depend on the prototypes and, therefore,
∂Hi({ui,k})

∂wj
= 0 is valid. Hence, only the adaptation of the fuzzy assignments is af-

fected by this sparsity term. In the following we consider different types of entropies:
the Shannon, the Rényi, the Tsallis and the Burg entropy as well as their fuzzy counter-
parts. It turns out that only Shannon entropy, Tsallis entropy and Fuzzy Tsallis entropy
are applicable.

4.1 Shannon entropy and Fuzzy Shannon entropy
For the Shannon entropy (34) the derivative of the Lagrangian (37) is

∂LSFNG (U, V,W)

∂uj,r
= lcNGσ (j, r) + γ (t) · (ln (uj,r) + 1)− ςj (38)

with the necessary condition ∂LSFNG(U,V,W)
∂uj,r

= 0 for an extremum. For the case m = 1

it can be explicitly solved such that

uj,r = exp

(
− lc

NG
σ (j, r)

γ (t)
+

(
ςj
γ (t)

− 1

))
. (39)

Summing up over all prototypes, we get

1 =

C∑
k=1

(
exp

(
−
(
lcNGσ (j, k)

)
+

(
ςj
γ (t)

− 1

)))
(40)

and, consequently,

ςj
γ (t)

− 1 = − ln

(
C∑
k=1

exp

(
− lc

NG
σ (j, k)

γ (t)

))
. (41)

Replacing this in (39) we finally obtain

uj,r =
exp

(
− lc

NG
σ (j,r)
γ(t)

)
∑C
k=1 exp

(
− lc

NG
σ (j,k)
γ(t)

) (42)

DEPARTMENT OF MATHEMATICS 36

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

for fuzzy assignment adaptation in FNG. As we can see the adaptaion is very sensitive
according to the γ (t) value.

For the Fuzzy Shannon entropy (35) the derivative of the respective Lagrangian is

∂LFSFNG (U, V,W)

∂uj,r
= lcNGσ (j, r) + γ (t) · ln

(
uj,r

1− uj,r

)
− ςj (43)

with the necessary condition ∂LFSFNG(U,V,W)
∂uj,r

= 0 for an extremum. Thus we get

uj,r
1− uj,r

= exp

(
− lc

NG
σ (j, r)

γ (t)
+

ςj
γ (t)

)
(44)

or equivalently

uj,r =
1(

1 + exp
(
− lc

NG
σ (j,r)
γ(t) +

ςj
γ(t)

)) (45)

Summing up over all prototypes, we get

1 =

C∑
k=1

1(
1 + exp

(
− lc

NG
σ (j,k)
γ(t) +

ςj
γ(t)

)) (46)

which cannot be explicitly solved for the Lagrange variables ςj . Hence, the Fuzzy Shan-
non entropy (35) cannot be applied automatically. Therefore, an explicit normalization
of the fuzzy assigments (45) was introduced in [8], which still contains the Lagrange
parameters and, hence, is being unsatisfactory. For solution of this problem a determin-
istic as well as simulated annealing procedure were proposed in [8].

4.2 Rényi entropy and Fuzzy Rényi entropy
Instead of Shannon entropies, Rényi entropies can be applied alternatively [40]. They
seem to be to less sensitive [4] and are defined as

HR
i (α, {ui,k}) =

1

1− α
ln

(
C∑
k=1

(ui,k)
α

)
(47)

with the derivatives

∂HR
i (α, {ui,k})
∂uj,r

=
α

1− α
(uj,r)

α−1∑C
k=1 (uj,k)

α
. (48)

Analogously, the Fuzzy Rényi entropies can be defined as

HFR
i (α, {ui,k}) =

1

1− α
ln

(
C∑
k=1

((ui,k)
α

+ (1− ui,k)
α

)

)
(49)

37 Technical Report MLR-2011-06

Theory of Fuzzy Neural Gas for Unsupervised Vector Quantization

with the derivative

∂HFR
i (α, {ui,k})
∂uj,r

=
α

1− α
(uj,r)

α−1 − (1− uj,r)α−1∑C
k=1 ((ui,k)

α
+ (1− ui,k)

α
)

(50)

According to the stability, the case α = 2 is of special interest [16]. The derivative
of the respective Lagrangian for the Rényi entropy (47) has the form

∂LRFNG (U, V,W)

∂uj,r
= lcNGσ (j, r) + γ (t)

α

1− α
(uj,r)

α−1∑C
k=1 (uj,k)

α
− ςj (51)

which reduces for α = 2

∂LRFNG (U, V,W)

∂uj,r
= lcNGσ (j, r)− 2γ (t)uj,r∑C

k=1 (uj,k)
2
− ςj . (52)

For ∂L
R
FNG(U,V,W)
∂uj,r

= 0 we obtain

uj,r =
lcNGσ (j, r)− ςj

2γ (t)

(
C∑
k=1

(uj,k)
2

)
(53)

which cannot be explicitly solved. Hence, although the quadratic Rényi entropy is
frequently recommended because of its stability property, it is not applicable here.

For the Fuzzy Rényi entropy (49) considering again α = 2 we analogously obtain

∂LFRFNG (U, V,W)

∂uj,r
= lcNGσ (j, r)− 2γ (t) (2uj,r − 1)∑C

k=1

(
(uj,k)

2
+ (1− ui,k)

2
) − ςj , (54)

which causes similar difficulties and, therefore, is also not feasible.

4.3 Tsallis entropy and Fuzzy Tsallis entropy
The Tsallis entropy [33] is closely related to the Rényi-entropy [5, 2]. It does not
include a logarithm and is given as

HT
i ({ui,k}) =

1

1− α

(
1−

C∑
k=1

(ui,k)
α

)
(55)

whereas its fuzzy counterpart may be defined as

HFT
i ({ui,k}) =

1

1− α

(
1−

C∑
k=1

((ui,k)
α

+ (1− ui,k)
α

)

)
(56)

DEPARTMENT OF MATHEMATICS 38

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

As the Rényi entropy, the Tsallis entropy is numerically stable also for small values ui,k
and becomes easy in calculation for α = 2. We get for the respective Lagrangian

∂LTFNG (U, V,W)

∂uj,r
= lcNGσ (j, r)− 2γ (t)uj,r − ςj (57)

and, therefore, we get for ∂L
T
FNG(U,V,W)
∂uj,r

= 0:

uj,r =
lcNGσ (j, r)− ςj

2γ (t)
. (58)

Summing up we obtain

1 =

C∑
k=1

lcNGσ (j, k)− ςj
2γ (t)

(59)

such that

ςj =

(∑C
k=1 lc

NG
σ (j, k)

)
− 2γ (t)

C
. (60)

This finally leads to

uj,r =
C · lcNGσ (j, r)−

(∑C
k=1 lc

NG
σ (j, k)

)
− 2γ (t)

2C · γ (t)
(61)

for the fuzzy assignment adaptation in case of the quadratic Tsallis entropy.
Looking now at the fuzzy variant (56) we have

∂LFTFNG (U, V,W)

∂uj,r
= lcNGσ (j, r)− 2γ (t) (2uj,r − 1)− ςj (62)

yielding

uj,r =
lcNGσ (j, r)− ςj

4γ (t)
+

1

2
(63)

for ∂L
FT
FNG(U,V,W)
∂uj,r

= 0. Summing up again we obtain

ςj =

(∑C
k=1 lc

NG
σ (j, k)

)
− γ (t) · (2− C)

C
(64)

which finally leads to

uj,r =
C · lcNGσ (j, r)−

(∑C
k=1 lc

NG
σ (j, k)

)
− γ (t) · (2− C)

4C · γ (t)
+

1

2
(65)

applicable in FNG/FSOM.

39 Technical Report MLR-2011-06

Theory of Fuzzy Neural Gas for Unsupervised Vector Quantization

4.4 The Burg entropy
The last entropy considered here is Burg entropy frequently applied in time series anal-
ysis [5, 2]. This entropy is similar to the Shannon entropy:

HB
i (U) = −

C∑
k=1

ln (ui,k) (66)

and the Fuzzy Burg entropy we define as

HFB
i (U) = −

C∑
k=1

ln (ui,k) · ln (1− ui,k) (67)

in complete analogy. The derivative of the Lagrangian becomes

∂LBFNG (U, V,W)

∂uj,r
= lcNGσ (j, r) +

γ (t)

uj,r
− ςj (68)

resulting for ∂L
B
FNG(U,V,W)
∂uj,r

= 0 in

uj,r =
γ (t)

ςj − lcNGσ (j, r)
. (69)

After summation we have

1 =

C∑
k=1

γ (t)

ςj − lcNGσ (j, k)
(70)

which is similar to the result obtained in (46) for the Fuzzy Shannon entropy. Hence, the
same arguments are valid: The Burg entropy is applicable in principle using the fuzzy
assignments according to (69) but with necessary renormalization thereafter and the
remaining problem of non-vanishing Lagrange variables ςj . A simulated/deterministic
annealing strategy according to [8] could offer a solution for that but not investigated
so far.

For the Fuzzy Burg entropy we get the Lagrangian

∂LBFNG (U, V,W)

∂uj,r
= lcNGσ (j, r) +

γ (t)

uj,r

2uj,r − 1

uj,r − 1
− ςj (71)

to be set to zero. This leads to a quadratic equation in uj,r with the solution

uj,r =
1

2 (ςj − lcNGσ (j, r))

(
ςj − 2γ (t)− lcNGσ (j, r)±

√
(ςj − lcNGσ (j, r))

2
+ (2γ (t))

2

)
(72)

which has to be considered further again resulting in the above discussed difficulties.

DEPARTMENT OF MATHEMATICS 40

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

5 Conclusion

In this article we provide the theoretical framework for the combination of the fuzzy-
c-means algorithm and its variants with the neighborhood cooperativeness learning as
known from the neural gas quantizer. Using a redefinition of the NG neighborhood it
can easily applied to FCM. This modification is carried out in complete analogy to the
incorporation of the SOM-neighborhood concept into FCM known as FSOM. Yet, the
resulting FNG offers a greater flexibility compared to FSOM, because the latter one
depends on a lattice structure, which has to be chosen apriori. This behavior is also
observable comparing SOM and NG for crisp vector quantization.

Further, we focus on sparsity enforcement for fuzzy assignments using informa-
tion theoretic concepts while keeping the regularization condition from FCM. This lat-
ter property distinguishs these methodology from other approaches. It turns out that
amoung the several entropies only Shannon, Tsallis as well as Fuzzy Tsallis entropy
are applicable for control.

41 Technical Report MLR-2011-06

Theory of Fuzzy Neural Gas for Unsupervised Vector Quantization

A

ppendix - Convergence proof of the modified neural gas
In this section we consider the original NG but with the neighborhood function

hNGσ (k, l) defined in (27). Supposing data points v ∈ V ⊂ Rn with the data den-
sity P (v) and prototypes wj ∈ Rn, j = 1 . . . N , the cost function to be minimized by
the NG now is

ENG =
1

2

∑
j

ˆ
P (v)hNGσ (s (v) , j) (d (v,wj))

2
dv (73)

whereby the new NG-neighborhood function (27) is used instead of the original one
(26). Further, we explicitly require the obvious separability assumption that wj 6= wi

for j 6= i. We have to show that the averaged change 〈wi〉 is the gradient of ENG.
Following the work of MARTINETZ ET AL. [28] we have to investigate

∂ENG

∂wi
= Ri +

ˆ
P (v)hNGσ (s (v) , i)

∂d (v,wi)

∂wi
dv (74)

with the winner-take-all mapping rule

s (vi) = argminj (d (vi,wj)) (75)

determining the best matching prototype ws. The second term in (73) is the desired
averaged change 〈wi〉, which is equivalent to the stochastic gradient descent learning
rule (33). Hence, it remains to show that Ri is vanishing.

The term Ri is obtained as

Ri =
1

2

∑
j

ˆ
P (v)

∂hNGσ (s (v) , j)

∂wi
(d (v,wj))

2
dv (76)

with
∂hNGσ (s (v) , j)

∂wi
=
[
hNGσ

]′
(s (v) , j) · ∂rkj (ws,W)

∂wi

and
[
hNGσ

]′
(•) denoting the derivative of hNGσ (•). Using the definition of the rank

function (24) we get

∂rkj (ws,W)

∂wi
=

∂

∂wi

[
N∑
l=1

Θ (d (ws,wj)− d (ws,wl))

]
(77)

which allows a decomposition of Ri into Ri = Ri,1 +Ri,2 such that

Ri,1 =

ˆ
P (v)

[
hNGσ

]′
(rki (ws,W)) · (d (v,wi))

2 ∂d (ws,wi)

∂wi

∑
l

θ (4il) dv

DEPARTMENT OF MATHEMATICS 42

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

and

−Ri,2 =
∑
j

ˆ
P (v)

[
hNGσ

]′
(rkj (ws,W)) · (d (v,wj))

2 · ∂d (ws,wi)

∂wi
· θ (4ji) dv

with4mk = d (ws,wm)− d (ws,wk). Thereby we have used the fact that the deriva-
tive of the Heaviside function Θ (x) from (25) is the Dirac distribution θ (x), which is
zero iff x 6= 0 and

´
θ (x) dx = 1. Further, the relation θ (x) = θ (−x) holds. Hence,

taking into account the above assumption about the separability of the prototypes, we
can conclude that θ (4ji) 6= 0 holds iff d (ws,wi) = d (ws,wj) and, therefore, we can
replace (d (v,wj))

2 by (d (v,wi))
2 for those non-vanishing cases of θ (4ji). Thus we

have in this situation

−Ri,2 =

ˆ
P (v)

[
hNGσ

]′
(rki (ws,W)) · (d (v,wi))

2 · ∂d (ws,wi)

∂wi
·
∑
j

θ (4ji) dv

(78)
using the same arguments as in [28]. This immediately implies Ri,1 = −Ri,2, which
completes the proof.

References

[1] T. Villmann and S. Haase. Divergence based vector quantization. Neural Compu-
tation, 23(5):1343–1392, 2011.

[2] A. Cichocki and S.-I. Amari. Families of alpha- beta- and gamma- divergences:
Flexible and robust measures of similarities. Entropy, 12:1532–1568, 2010.

[3] T. Geweniger, D. Zühlke, B. Hammer, and T. Villmann. Median fuzzy c-means
for clustering dissimilarity data. Neurocomputing, 73(7–9):1109–1116, 2010.

[4] J.C. Principe. Information Theoretic Learning. Springer, Heidelberg, 2010.

[5] A. Cichocki, R. Zdunek, A.H. Phan, and S.-I. Amari. Nonnegative Matrix and
Tensor Factorizations. Wiley, Chichester, 2009.

[6] K. Labusch, E. Barth, and T. Martinetz. Sparse coding neural gas: Learning of
overcomplete data representations. Neuro, 72(7-9):1547–1555, 2009.

[7] T. Villmann, B. Hammer, and M. Biehl. Some theoretical aspects of the neural gas
vector quantizer. In M. Biehl, B. Hammer, M. Verleysen, and T. Villmann, editors,
Similarity-based Clustering, volume 5400 of LNAI, pages 23–34. Springer, Berlin,
2009.

[8] M. Yasuda and T. Furuhashi. Fuzzy entropy based fuzzy-c-means clustering with
deterministic and simulated annealing methods. IEICE Transactions on Informa-
tion and Systems, E92-D:1232–1239, 2009.

43 Technical Report MLR-2011-06

Theory of Fuzzy Neural Gas for Unsupervised Vector Quantization

[9] R. Inokuchi and S. Miyamoto. Fuzzy c-means algorithms using Kullback-Leibler
divergence and Hellinger distance based on multinomial manifold. Journal of
Advanced Computational Intelligence and Intelligent Informatics, 12(5):443–447,
2008.

[10] S. Miyamoto, H. Ichihashi, and K. Honda. Algorithms for Fuzzy Clustering, vol-
ume 229 of Studies in Fuzziness and Soft Computing. Springer, 2008.

[11] E. Pekalska and R.P.W. Duin. The Dissimilarity Representation for Pattern Recog-
nition: Foundations and Applications. World Scientific, 2006.

[12] M. Ghorbani. Maximum entropy-based fuzzy clustering by using L1 norm space.
Turkish Journal of Mathematics, 29(4):431–438, 2005.

[13] N.R. Pal, K. Pal, J.M. Keller, and J.C. Bezdek. A possibilistic fuzzy c-means
clustering algorithm. IEEE Transactions on Fuzzy Systems, 13(4):517–530, 2005.

[14] H. Ichihashi and K. Honda. Application of kernel trick to fuzzy c-means with reg-
ularization by K-L information. Journal of Advanced Computational Intelligence
and Intelligent Informatics, 8(6):566–572, 2004.

[15] B. Hammer and Th. Villmann. Generalized relevance learning vector quantization.
Neural Networks, 15(8-9):1059–1068, 2002.

[16] J. C. Principe, J.W. Fischer III, and D. Xu. Information theoretic learning. In
S. Haykin, editor, Unsupervised Adaptive Filtering. Wiley, New York, NY, 2000.

[17] T. Graepel, M. Burger, and K. Obermayer. Self-organizing maps: generalizations
and new optimization techniques. Neurocomputing, 21(1–3):173–90, 1998.

[18] T. Graepel, M. Burger, and K. Obermayer. Phase transitions in stochastic
self-organizing maps. Physical Review E [Statistical Physics, Plasmas, Fluids,
and Related Interdisciplinary Topics], 56(4):3876–90, 1997.

[19] T. Hofmann and J.M. Buhmann. An annealed “Neural Gas” network for ro-
bust vector quantization. In C. v. d. Malsburg, W. v. Seelen, J.C. Vorbrüggen,
and B. Sendhoff, editors, Proc. Int. Conference on Artificial Neural Networks
(ICANN), volume 1112 of LNCS, pages 151–156, Berlin, 1996. Springer.

[20] R. Krishnapuram and J. Keller. The possibilistic c-means algorithm: insights and
recommendations. IEEE Transactions on Fuzzy Systems, 4(3):385–393, 1996.

[21] N. R. Pal, J. C. Bezdek, and E. C. K. Tsao. Errata to Generalized clustering
networks and Kohonen’s self-organizing scheme. IEEE Transactions on Neural
Networks, 6(2):521–521, March 1995.

[22] James C. Bezdek and Nikhil R. Pal. A note on self-organizing semantic maps.
IEEE Transactions on Neural Networks, 6(5):1029–1036, 1995.

[23] James C. Bezdek and Nikhil R. Pal. Two soft relatives of learning vector quanti-
zation. Neural Networks, 8(5):729–743, 1995.

DEPARTMENT OF MATHEMATICS 44

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

[24] Teuvo Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Infor-
mation Sciences. Springer, Berlin, Heidelberg, 1995. (Second Extended Edition
1997).

[25] S. P. Luttrell. A Bayesian analysis of self-organising maps. Neural Computation,
6(5):767–794, 1994.

[26] E.C. Tsao, J.C. Bezdek, and N.R. Pal. Fuzzy Kohonen clustering networks. Pat-
tern Recognition, 27(5):757–764, 1994.

[27] R. Krishnapuram and J. Keller. A possibilistic approach to clustering. IEEE
Transactions on Fuzzy Systems, 1(4):98–110, 1993.

[28] Thomas M. Martinetz, Stanislav G. Berkovich, and Klaus J. Schulten. ’Neural-
gas’ network for vector quantization and its application to time-series prediction.
IEEE Trans. on Neural Networks, 4(4):558–569, 1993.

[29] Nikhil R Pal, James C Bezdek, and Eric C K Tsao. Generalized clustering net-
works and Kohonen’s self-organizing scheme. IEEE Transactions on Neural Net-
works, 4(4):549–557, 1993.

[30] J. C. Bezdek, E. C. K. Tsao, and N. R. Pal. Fuzzy Kohonen clustering networks.
In Proc. IEEE International Conference on Fuzzy Systems, pages 1035–1043, Pis-
cataway, NJ, 1992. IEEE Service Center.

[31] K. Rose, E. Gurewitz, and G.C. Fox. Vector quantization by deterministic anneal-
ing. IEEE Transactions on Information Theory, 38(4):1249–1257, 1992.

[32] J.C. Bezdek, R.J. Hathaway, and M.P. Windham. Numerical comparison of RFCM
and AP algorithms for clustering relational data. Pattern recognition, 24:783–791,
1991.

[33] C. Tsallis. Possible generalization of Bolzmann-Gibbs statistics. Journal oft
Mathematical Physics, 52:479–487, 1988.

[34] B. Kosko. Fuzzy entropy and conditioning. Information Sciences, 40:165–174,
1986.

[35] J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum, New York, 1981.

[36] J.C. Bezdek. A convergence theorem for the fuzyy ISODATA clustering algo-
rithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(1):1–8,
1980.

[37] Y. Linde, A. Buzo, and R.M. Gray. An algorithm for vector quantizer design.
IEEE Transactions on Communications, 28:84–95, 1980.

[38] R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. Wiley, New
York, 1973.

[39] J.C. Dunn. A fuzzy relative of the ISODATA process and its use in detecting
compact well-separated clusters. Journal of Cybernetics, 3:32–57, 1973.

45 Technical Report MLR-2011-06

Theory of Fuzzy Neural Gas for Unsupervised Vector Quantization

[40] A. Renyi. On measures of entropy and information. In Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability. University of
California Press, 1961.

[41] S. Kullback and R.A. Leibler. On information and sufficiency. Annals of Mathe-
matical Statistics, 22:79–86, 1951.

[42] C.E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–432, 1948.

DEPARTMENT OF MATHEMATICS 46

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

Relational Extensions of Learning Vector
Quantization

X. Zhu, F.-M. Schleif, B. Hammer1,2

Abstract

Prototype-based learning algorithms offer an intuitive interface to given data sets by
means of an inspection of the prototypes. Supervised classification can be achieved
by popular techniques such as learning vector quantization (LVQ) and extensions
derived from cost functions such as generalized LVQ (GLVQ) and robust soft LVQ
(RSLVQ). These methods, however, are restricted to Euclidean vectors. Thus they
are unsuitable for complex or heterogeneous data sets where input dimensions have
different relevance or a high dimensionality yields to accumulated noise which dis-
rupts the classifications. Although this problem can partially be avoided by appro-
priate metric learning, or by kernel variants, however, if data are inherently non-
Euclidean, the techniques cannot be applied. In modern applications, data are of-
ten addressed using dedicated non-Euclidean dissimilarities such as dynamic time
warping for time series, alignment for symbolic strings, the compression distance to
compare sequences based on an information theoretic ground, and similar. These
settings do not allow an Euclidean representation of data at all, rather, data are given
implicitly in terms of pairwise dissimilarities or relations. In this contribution, we
propose relational extensions of GLVQ and RSLVQ, which can directly be applied
to relational data sets which are characterized in terms of a symmetric dissimilar-
ity matrix only. The optimization can take place using gradient techniques. We test
these techniques on several benchmarks, leading to results comparable to SVM while
providing prototype based presentations.

1E-mail: xzhu|fschleif|bhammer@techfak.uni-bielefeld.de
2CITEC Centre of excellence,

Technical Department
Bielefeld University
33615 Bielefeld, Germany

47 Technical Report MLR-2011-06

Relational Extensions of Learning Vector Quantization

1 Supervised prototype-based learning: GLVQ, RSLVQ

In the classical vectorial space, data xi ∈ Rn, i = 1, . . . ,m, are given. Prototypes
are vectors wj ∈ Rn, j = 1, . . . , k in the same space, and they divide data into into
receptive fields

R(wj) := {xi : ∀k d(xi,wj) ≤ d(xi,wk)}

based on the squared Euclidean distance

d(xi,wj) = ‖xi −wj‖2 .

The goal of prototype-base learning techniques is to find prototypes which represent a
given data set as accurately as possible. Unsupervised optimized the quantization error

Eqe =
1

2

∑
i,j

χi(x
i)d(xi,wj) (1)

where

χj(x) =

{
1 if d(x,wj) ≤ d(x,wk) for all k
0 otherwise (2)

indicate whether wj is prototype of data x. Although the quantization error is one of
the most popular measures to evaluate unsupervised clustering, it is often not sufficient
in practical applications due to several aspects: it suffers from numerical problems due
to the multi modality of the cost function and its sensitivity to noise and outliers. In
addition, further functionalities are often required in application scenarios such as the
possibility to visualize the prototypes and to inspect relations in between prototypes.
Both problems are addressed by topographic mapping, such as SOM. NG, and GTM.

For supervised learning, data xi are equipped with class labels c(xi) ∈ {1, . . . , L}.
Similarly, every prototype is equipped with a priorly fixed label c(wj). A data point is
mapped to the closest prototype and classified according to the class of the prototype.
The classification error of this mapping is given by the term∑

j

∑
xi∈R(wj)

δ(c(xi) 6= c(wj))

with the delta function δ. This cost function cannot easily be optimized explicitly due to
vanishing gradients and discontinuities. Therefore, LVQ relies on a reasonable heuristic
by performing Hebbian updates of the prototypes, given a data point [12]. Recent
alternatives derive similar update rules from explicit cost functions which are related
to the classification error, but display better numerical properties such that efficient
optimization algorithms can be derived thereof [3, 15, 11].

Generalized LVQ (GLVQ) has been proposed in the approach [15]. It is derived from
a cost function which can be related to the generalization ability of LVQ classifiers [3].

DEPARTMENT OF MATHEMATICS 48

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

The cost function of GLVQ is given as

EGLVQ =
∑
i

Φ

(
d(xi,w+(xi))− d(xi,w−(xi))

d(xi,w+(xi)) + d(xi,w−(xi))

)
where Φ is a differentiable monotonic function such as the hyperbolic tangent, and
w+(xi) refers to the prototype closest to xi with the same label as xi, w−(xi) refers to
the closest prototype with a different label. This way, for every data point, its contribu-
tion to the cost function is small if and only if the distance to the closest prototype with
a correct label is smaller than the distance to a wrongly labeled prototype, resulting in
a correct classification of the point and, at the same time, by optimizing this so-called
hypothesis margin of the classifier, aiming at a good generalization ability.

A learning algorithm can be derived thereof by means of a stochastic gradient de-
scent. After a random initialization of prototypes, data xi are presented in random
order. Adaptation of the closest correct and wrong prototype takes place by means of
the update rules

∆w+(xi) ∼ − Φ′(µ(xi)) · µ+(xi) · ∇w+(xi)d(xi,w+(xi))

∆w−(xi) ∼ Φ′(µ(xi)) · µ−(xi) · ∇w−(xi)d(xi,w−(xi))

where

µ(xi) =
d(xi,w+(xi))− d(xi,w−(xi))

d(xi,w+(xi)) + d(xi,w−(xi))
,

µ+(xi) =
2 · d(xi,w−(xi))

(d(xi,w+(xi)) + d(xi,w−(xi))2
,

and

µ−(xi) =
2 · d(xi,w+(xi))

(d(xi,w+(xi)) + d(xi,w−(xi))2
.

For the squared Euclidean norm, the derivative yields

∇wjd(xi,wj) = −2(xi −wj),

leading to Hebbian update rules of the prototypes which take into account the priorly
known class information, i.e. they adapt the closest prototypes towards / away from a
given data point depending on their labels. GLVQ constitutes one particularly efficient
method to adapt the prototypes according to a given labeled data sets.

Robust soft LVQ (RSLVQ) as proposed in [11] is an alternative approach which is
based on a statistical model of the data. In the limit of small bandwidth, update rules
which are very similar to LVQ result. For non-vanishing bandwidth, soft assignments
of data points to prototypes take place. Every prototype induces a probability induced
by Gaussians, for example, i.e. p(xi|wj) = K · exp(−d(xi,wj)/2σ2) with parameter

49 Technical Report MLR-2011-06

Relational Extensions of Learning Vector Quantization

σ ∈ R and normalization constant K = (2πσ2)−n/2. Assuming that every prototype
has the same prior, we obtain the overall probability of a data point

p(xi) =
∑
wj

p(xi|wj)/k

and the probability of a point and its corresponding class

p(xi, c(xi)) =
∑

wj :c(wj)=c(xi)

p(xi|wj)/k .

The cost function of RSLVQ is given by the quotient

ERSLVQ = log
∏
i

p(xi, c(xi))

p(xi)
=
∑
i

log
p(xi, c(xi))

p(xi)

Considering gradients, we obtain the adaptation rule for every prototype wj given a
training point xi

∆wj ∼ − 1

2σ2
·

(
p(xi|wj)∑

j:c(wj)=c(xi) p(x
i|wj)

− p(xi|wj)∑
j p(x

i|wj)

)
· ∇wjd(xi,wj)

if c(xi) = c(wj) and

∆wj ∼ 1

2σ2
· p(xi|wj)∑

j p(x
i|wj)

· ∇wjd(xi,wj)

if c(xi) 6= c(wj). Obviously, the scaling factors can be interpreted as soft assignments
of the data to corrsponding prototypes. The choice of an appropriate parameter σ can
critically influence the overall behavior and the quality of the technique, see e.g. [4, 8]
for comparisons of GLVQ and RSLVQ and ways to automatically determine σ based
on given data.

2 Dissimilarity data

In many application domains, data are becoming more and more complex, and data
are often addressed by a dedicated dissimilarity measure which respects the structural
form of the data and describes intrinsic relations between them. Prototype-based algo-
rithms such as GLVQ and RSLVQ are restricted to Euclidean space, so that they are not
suitable for this kind of more general data formats. Thus, here we extend GLVQ and
RSLVQ to relational variants by means of an implicit reference to a pseudo-Euclidean
space of data.

Assume that data xi are given as pairwise dissimilarities dij = d(xi,xj). D refers
to the corresponding dissimilarity matrix. We assume D is symmetric and diagonal is

DEPARTMENT OF MATHEMATICS 50

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

zero, i.e. dij = dji, dii = 0. However, we do not require that d refers to a Euclidean
data space, i.e. D does not need to be embeddable in Euclidean space, nor does it need
to fulfill the conditions of a metric.

As argued in [9, 1], every such set of data points can be embedded in a so-called
pseudo-Euclidean vector space the dimensionality of which is limited by the number
of given points. A pseudo-Euclidean vector space is a real-vector space equipped with
the bilinear form 〈x,y〉p,q = xtp,qy where Ip,q is a diagonal matrix with p entries 1
and q entries −1. The tuple (p, q) is also referred to as the signature of the space,
and the value q determines in how far the standard Euclidean norm has to be corrected
by negative eigenvalues to arrive at the given dissimilarity measure. The data set is
Euclidean if and only if q = 0. For a given matrix D, the corresponding pseudo-
Euclidean embedding can be computed by means of an eigenvalue decomposition of
the related Gram matrix, which is an O(N3) operation. It yields explicit vectors xi

such that dij = 〈xi − xj ,xi − xj〉p,q holds for every pair of data points.
Note that vector operations can be naturally transferred to pseudo-Euclidean space,

i.e. we can define prototypes as linear combinations of data in this space. Hence we
can perform techniques such as GLVQ explicitly in pseudo-Euclidean space since it
relies on vector operations only. One problem of this explicit transfer is given by the
computational complexity of the initial embedding, on the one hand, and the fact that
out-of-sample extensions to new data points characterized by pairwise dissimilarities
are not immediate.

Because of this fact, we are interested in efficient techniques which implicitly refer
to such embeddings only. As a side product, such algorithms are invariant to coordinate
transforms in pseudo-Euclidean space, rather they depend on the pairwise dissimilari-
ties only instead of the chosen embedding. The key assumption is to restrict prototype
positions to linear combination of data points of the form

wj =
∑
i

αjix
i with

∑
i

αji = 1 .

Since prototypes are located at representative points in the data space, it is a reason-
able assumption to restrict prototypes to the affine subspace spanned by the given data
points. In this case, dissimilarities can be computed implicitly by means of the formula

d(xi,wj) = [D · αj]i −
1

2
· αtjDαj

where αj = (αj1, . . . , αjn) refers to the vector of coefficients describing the prototype
wj implicitly, as shown in [1].

This observation constitutes the key to transfer GLVQ and RSLVQ to relational data
without an explicit embedding in pseudo-Euclidean space. Prototype wj is represented
implicitly by means of the coefficient vectors αj . Then, we can use the equivalent
characterization of distances in the GLVQ and RSVLQ cost function leading to the

51 Technical Report MLR-2011-06

Relational Extensions of Learning Vector Quantization

costs of relational GLVQ (RGLVQ) and relational RSLVG (RSLVQ), respectively:

ERGLVQ =
∑
i

Φ

(
[Dα+]i − 1

2 · (α
+)tDα+ − [Dα−]i + 1

2 · (α
−)tDα−

[Dα+]i − 1
2 · (α+)tDα+ + [Dα−]i − 1

2 · (α−)tDα−

)
,

where as before the closest correct and wrong prototype are referred to, corresponding
to the coefficients α+ and α−, respectively. A stochastic gradient descent leads to
adaptation rules for the coefficients α+ and α− in relational GLVQ: component k of
these vectors is adapted as

∆α+
k ∼ − Φ′(µ(xi)) · µ+(xi) ·

∂
(
[Dα+]i − 1

2 · (α
+)tDα+

)
∂α+

k

∆α−k ∼ Φ′(µ(xi)) · µ−(xi) ·
∂
(
[Dα−]i − 1

2 · (α
−)tDα−

)
∂α−k

where µ(xi), µ+(xi), and µ−(xi) are as above. The partial derivative yields

∂
(
[Dαj]i − 1

2 · α
t
jDαj

)
∂αjk

= dik −
∑
l

dlkαjl

Similarly,

ERRSLVQ =
∑
i

log

∑
αj :c(αj)=c(xi)

p(xi|αj)/k∑
αj
p(xi|αj)/k

where

p(xi|αj) = K · exp

(
−
(

[Dαj]i −
1

2
· αtjDαj

)
/2σ2

)
A stochastic gradient descent leads to the adaptation rule

∆αjk ∼ −
1

2σ2
·

(
p(xi|αj)∑

j:c(αj)=c(xi)
p(xi|αj)

− p(xi|αj)∑
j p(x

i|αj)

)
·
∂
(
[Dαj]i − 1

2α
t
jDαj

)
∂αjk

if c(xi) = c(αj) and

∆αjk ∼
1

2σ2
· p(xi|αj)∑

j p(x
i|αj)

·
∂
(
[Dαj]i − 1

2α
t
jDαj

)
∂αjk

if c(xi) 6= c(αj).
After every adaptation step, normalization takes place to guarantee

∑
i αji = 1.

This way, a learning algorithm which adapts prototypes in a supervised manner simi-
lar to GLVQ or RSLVQ, respectively, is given for general dissimilarity data, whereby
prototypes are implicitly embedded in pseudo-Euclidean space.

DEPARTMENT OF MATHEMATICS 52

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

The prototypes are initialized as random vectors, i.e we initialize αij with small ran-
dom values such that the sum is one. It is possible to take class information into account
by setting all αij to zero which do not correspond to the class of the prototype. Further,
it is possible to arrive at a good initialization which avoids local optima and also a good
initial guess of the number of prototypes per class by initializing the prototype positions
with relational prototype vectors trained by means of an unsupervised relational vec-
tor quantization technique such as relational neural gas [1]. The prototype labels can
then be determined based on their receptive fields before adapting the initial decision
boundaries by means of supervised learning vector quantization.

An extension of the classification to new data is immediate based on an observation
made in [1]: given a novel data point x characterized by its pairwise dissimilarities
D(x) to the data used for training, the dissimilarity of x to a prototype represented by
αj is d(x,wj) = D(x)t · αj − 1

2 · α
t
jDαj .

3 Acceleration by Nyström

In addition, the technique depends on the full dissimilarity matrix and thus displays
quadratic time and space complexity. Depending on the chosen dissimilarity, the main
computational bottleneck is given by the computation of the dissimilarity matrix itself.
The Nyström approximation as introduced in [13] allows an efficient approximation of
a kernel matrix by a low rank matrix. This approximation can directly be transferred
to dissimilarity data. The basic principle is to pick M representative landmarks from
N data points which induce the rectangular sub-matrix DM,N of dissimilarities of data
points and landmarks. This matrix is of linear size, assuming M is fixed. The full
matrix can be approximated in an optimum way in the form

D ≈ DT
M,ND

−1
M,MDM,N

where DM,M is the rectangular sub-matrix of D. Its computation is O(M3) instead of
O(N2) for the full matrix D. The approximation is exact if M corresponds to the rank
of D. For 10% landmarks, this leads to a speed-up factor 50, i.e. the computation of an
approximated dissimilarity matrix for 11, 000 sequences can be computed in less than
two hours instead of eight days. Note that the Nyström approximation can be integrated
into relational GLVQ in such a way that the training complexity is linear. We refer to
results obtained by a Nyström approximation by the superscript RGLVQν whereby we
pick 10% of the data set as landmarks per default.

4 Experiments

We evaluate the algorithms for several benchmark data sets where data are characterized
by pairwise dissimilarities. On the one hand, we consider the data sets used also in
[2]. The article [2] investigates the possibility to deal with similarity/dissimilarity data

53 Technical Report MLR-2011-06

Relational Extensions of Learning Vector Quantization

which is non-Euclidean with the SVM. Since the corresponding Gram matrix is not
positive semidefinite, according preprocessing steps have to be done which make the
SVM well defined. These steps can change the spectrum of the Gram matrix or they
can treat the dissimilarity values as feature vectors which can be processed by means of
a standard kernel. Data are:

1. Amazon47 consisting of 204 data points from 47 classes, representing books and
their similarity based on customer preferences.

2. Aural Sonar consists of 100 signals with two classes (target of interest/clutter),
consisting of sonar signals with dissimilarity measures according to an ad hoc
classification of humans.

3. Face Recognition consists of 945 samples with 139 classes, representing faces of
people, compared by the cosine similarity.

4. Patrol consists of 241 data points from 8 classes, corresponding to seven patrol
units (and non-existing persons, respectively). Similarities are based on clusters
named by people.

5. Protein consists of 213 data from 4 classes, representing globin proteins compared
by an evolutionary measure.

6. Voting contains 435 samples in 2 classes, representing categorical data compared
based on the value difference metric.

As pointed out in [2], these matrices cover a diverse range of different characteris-
tics such that they constitute a well suited test bench to evaluate the performance of
algorithms for similarities/dissimilarities. In addition, we consider three data sets rep-
resenting typical application scenarios:

1. The Cat Cortex data set consists of 65 data points from 5 classes. The data orig-
inate from anatomic studies of cats’ brains. The dissimilarity matrix displays the
connection strength between 65 cortical areas. For our purposes, a preprocessed
version as presented in [10] was used.

2. The Copenhagen Chromosomes data set constitutes a benchmark from cytoge-
netics [16]. A set of 4,200 human chromosomes from 21 classes (the autosomal
chromosomes) are represented by grey-valued images. These are transferred to
strings measuring the thickness of their silhouettes. These strings are compared
using edit distance [7].

3. The Vibrio data set consists of 1,100 samples of vibrio bacteria populations char-
acterized by mass spectra. The spectra contain approx. 42,000 mass positions.
The full data set consists of 49 classes of vibrio-sub-species. The mass spectra
are preprocessed with a standard workflow using the BioTyper software [6]. As
usual, mass spectra display strong functional characteristics due to the dependency
of subsequent masses, such that problem adapted similarities such as described in
[5, 6] are beneficial. In our case, similarities are calculated using a specific simi-
larity measure as provided by the BioTyper software[6].

DEPARTMENT OF MATHEMATICS 54

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

RGLVQ RGLVQν RRSLVQ best SVM [2] #Prototypes
Amazon47 0.810(0.014) 0.814(0.011) 0.830(0.016) 0.82 94
Aural Sonar 0.884(0.016) 0.864(0.008) 0.848(0.017) 0.87 10
Face Rec. 0.964(0.002) 0.864(0.002) 0.964(0.002) 0.96 139
Patrol 0.841(0.014) 0.856(0.015) 0.850(0.011) 0.88 24
Protein 0.924(0.019) 0.558(0.028) 0.530(0.011) 0.97 20
Voting 0.946(0.005) 0.905(0.003) 0.623(0.014) 0.95 20
Cat Cortex 0.930(0.010) 0.922(0.023) 0.941(0.011) n.d. 12
Vibrio 1.000(0.000) 0.992(0.001) 0.941(0.077) n.d. 49
Chromosome 0.927(0.002) 0.782(0.004) 0.795(0.009) n.d. 63

Table 1: Results of prototype based classification in comparison to SVM for diverse dis-
similarity data sets. The classification accuracy obtained in a repeated cross-validation
is reported, the standard deviation is given in parenthesis.

Since some of these matrices correspond to similarities rather than dissimilarities, we
use standard preprocessing as presented in [14]. For every data set, a number of proto-
types which mirrors the number of classes was used, representing every class by only
few prototypes relating to the choices as taken in [1], see Tab. 1. The evaluation of the
results is done by means of the classification accuracy as evaluated on the test set in a
ten fold repeated cross-validation with ten repeats. The results are reported in Tab. 1.
In addition, we report the best results obtained by SVM after diverse preprocessing
techniques [2].

Interestingly, in most cases, results which are comparable to the best SVM as re-
ported in [2] can be found, whereby making preprocessing as done in [2] superfluous.
Further, unlike for SVM which is based on support vectors in the data set, solutions are
represented as typical prototypes. Nyström leads to improved speed, specially sensible
on Chromosomes data, and the results are reduced but in most case are comparable to
RGLVQ.

5 Conclusions

We have presented an extension of prototype-based techniques to general possibly non-
Euclidean data sets by means of an implicit embedding in pseudo-Euclidean data space
and a corresponding extension of the cost function of GLVQ and RSLVQ to this setting.
As a result, a very powerful learning algorithm can be derived which, in most cases,
achieves results which are comparable to SVM but without the necessity of according
preprocessing since relational LVQ can directly deal with possibly non-Euclidean data

55 Technical Report MLR-2011-06

Relational Extensions of Learning Vector Quantization

whereas SVM requires a positive semidefinite Gram matrix. A linear acceleration tech-
nique by means of the Nyström approximation for dissimilarity data is also integrated
into RGLVQ which, in most cases, achieves comparable results to original RGLVQ.

References
[1] B. Hammer and A. Hasenfuss. Topographic mapping of large dissimilarity

datasets. Neural Computation, 22(9):2229–2284, 2010.

[2] Y. Chen, E. K. Garcia, M. R. Gupta, A. Rahimi, and L. Cazzanti. Similarity-based
classification: Concepts and algorithms. Journal of Machine Learning Research,
10(Mar):747–776, 2009.

[3] P. Schneider, M. Biehl, and B. Hammer. Adaptive relevance matrices in adaptive
relevance matrices in adaptive relevance matrices in learning vector quantization.
Neural Computation, 21(12):3532–3561, 2009.

[4] P. Schneider, M. Biehl, and B. Hammer. Distance learning in discriminative vector
quantization. Neural Computation, 21:2942–2969, 2009.

[5] S. B. Barbuddhe, T. Maier, G. Schwarz, M. Kostrzewa, H. Hof, E. Domann,
T. Chakraborty, and T. Hain. Rapid identification and typing of listeria species
by matrix-assisted laser desorption ionization-time of flight mass spectrometry.
Applied and Environmental Microbiology, 74(17):5402–5407, 2008.

[6] T. Maier, S. Klebel, U. Renner, and M. Kostrzewa. Fast and reliable maldi-tof
ms–based microorganism identification. Nature Methods, (3), 2006.

[7] M. Neuhaus and H. Bunke. Edit distance based kernel functions for structural
pattern classification. Pattern Recognition, 39(10):1852–1863, 2006.

[8] Sambu Seo and Klaus Obermayer. Dynamic hyperparameter scaling method for
lvq algorithms. In IJCNN, pages 3196–3203, 2006.

[9] Elzbieta Pekalska and Robert P.W. Duin. The Dissimilarity Representation for
Pattern Recognition. Foundations and Applications. World Scientific, 2005.

[10] B. Haasdonk and C. Bahlmann. Learning with distance substitution kernels. Pat-
tern Recognition - Proc. of the 26th DAGM Symposium, 2004.

[11] S. Seo and K. Obermayer. Soft learning vector quantization. Neural Computation,
15(7):1589–1604, 2003.

[12] T. Kohonen, editor. Self-Organizing Maps. Springer-Verlag New York, Inc., 3rd
edition, 2001.

[13] Christopher Williams and Matthias Seeger. Using the nyström method to speed
up kernel machines. In Advances in Neural Information Processing Systems 13,
pages 682–688. MIT Press, 2001.

[14] B. Hammer. Learning with Recurrent Neural Networks, volume 254 of Lecture
Notes in Control and Information Sciences. Springer, 2000.

DEPARTMENT OF MATHEMATICS 56

MIWOCI 2011, MITTWEIDA WORKSHOP ON COMPUTATIONAL INTELLIGENCE

[15] A. Sato and K. Yamada. Generalized learning vector quantization. In M. C. Mozer,
D. S. Touretzky, and M. E. Hasselmo, editors, Advances in Neural Information
Processing Systems 8. Proceedings of the 1995 Advances in Neural Information
Processing Systems 8. Proceedings of the 1995 Conference, pages 423–429, Cam-
bridge, MA, USA, 1996. MIT Press.

[16] C. Lundsteen, J-Phillip, and E. Granum. Quantitative analysis of 6985 digitized
trypsin g-banded human metaphase chromosomes. Clinical Genetics, 18:355–
370, 1980.

57 Technical Report MLR-2011-06

	F.-M. Schleif: Third Mittweida Workshop on Computational Intelligenceto.44em.
	M. Strickert: Enhancing M|G|RLVQ by quasi step discriminatory functions using 2nd order trainingto.44em.
	G. Papari, K. Bunte, M. Biehl: Waypoint averaging and step size control in learning by gradient descentto.44em.
	T. Villmann, T. Geweniger, M. Kästner, M. Lange: Theory of Fuzzy Neural Gas for Unsupervised Vector Quantizationto.44em.
	X. Zhu, F.-M. Schleif, B. Hammer: Relational Extensions of Learning Vector Quantizationto.44em.

