
MACHINE LEARNING REPORTS

MIWOCI Workshop - 2012

Report 06/2012
Submitted: 18.10.2012
Published: 31.12.2012

Frank-Michael Schleif1, Thomas Villmann2 (Eds.)
(1) University of Bielefeld, Dept. of Technology CITEC - AG Computational Intelligence,
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MIWOCI Workshop - 2012

1 Fourth Mittweida Workshop on Computational Intel-
ligence

From 02. Juli to 04 Juli 2012, 26 scientists from the University of Bielefeld, HTW Dres-
den, the Technical Univ. of Clausthal, Uni. of Groningen (NL), Univ. of Nijmegen
(NL), Uni. of Paris 1 (F), the Fraunhofer Inst. for Factory Operation and Automation
(IFF), the Fraunhofer Inst. for Applied Information Technology (FIT) and the Uni. of
Applied Sciences Mittweida met in Mittweida, Germany, to continue the tradition of the
Mittweida Workshops on Computational Intelligence - MiWoCi’2012. The aim was to
present their current research, discuss scientific questions, and exchange their ideas.
The seminar centered around topics in machine learning, signal processing and data
analysis, covering fundamental theoretical aspects as well as recent applications, This
volume contains a collection of extended abstracts.

Apart from the scientific merrits, this year’s seminar came up with a few highlights
which demonstrate the excellent possibilities offered by the surroundings of Mittweida.
This year adventures were explored under intensive sunlight and very good weather
conditions. The participants climbed to the high forests of Mittweida (Kletterwald) and
enjoyed the exciting and fearing adventures provided on the top of the trees. Multiple
jump offs from the Wahnsinn tour at a height of at least 20 meters were reported, but
no participants were harmed. During a wild water journey (Paddeltour) the outstanding
fitness of the researchers was demonstrated and some of them also demonstrated their
braveness by swimming in the rapids followed by a nice barbecue.

Our particular thanks for a perfect local organization of the workshop go to Thomas
Villmann as spiritus movens of the seminar and his PhD and Master students.

Bielefeld, December, 2012
Frank-M. Schleif

1E-mail: fschleif@techfak.uni-bielefeld.de
2University of Bielefeld, CITEC, Theoretical Computer Science, Leipzig, Germany
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Utilization of Correlation Measures

in Vector Quantization for Analysis of

Gene Expression Data

� A Review of Recent Developments �

M. Kästner1, M. Strickert2, D. Labudde3, M. Lange1, S. Haase1, and T. Villmann1∗

1Computational Intelligence Group, University of Applied Sciences Mittweida,

Technikumplatz 17, 09648 Mittweida, Germany

2Computational Intelligence Group, Philipps-University Marburg,

Hans-Meerwein-Straÿe 6, 35032 Marburg , Germany

3Bioinformatics Group, University of Applied Sciences Mittweida,

Technikumplatz 17, 09648 Mittweida, Germany

Gene expression data analysis is frequently performed using correlation mea-

sures whereas unsupervised and supervised vector quantization methods are usu-

ally designed for Euclidean distances. In this report we summarize recent ap-

proaches to apply correlation measures or divergences to those vector quantiza-

tion algorithms for analysis of microarray gene expression data by Hebbian-like

gradient descent learning.

∗corresponding author, email: thomas.villmann@hs-mittweida.de
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1 Introduction

Analysis and classi�cation of gene expression data based on microarray data is

still a challenging task in biology and medicine. It is one way of molecular biol-

ogy and medicine to understand and to investigate biological processes, diseases

and evolutions. As other diagnostic tools like mass spectrometry, microarrays

deliver high-dimensional data to be analyzed. Prototype based methods have

been established as powerful methods in high-dimensional data analysis in mass

spectrometry with hundreds of spectral bands (data dimensions) [33, 34, 51]. In

contrast to these data, microarray data consist up to thousands of gene expression

levels whereas only a few data vectors are under consideration (tens or hundreds).

Thus, the vector data space in gene expression analysis, one the one hand side, is

more or less empty. This problem is also known as 'curse of dimensionality'. On

the other hand, class di�erentiation in such high-dimensional data for only a few

data points is trivial because a (linear ) separation is practically always successful

but, of course, not meaningful. Therefore, data preprocessing and gene selection

is a crucial but challenging and complex task in gene expression data processing.

Usually, the data are preprocessed in advance. For example, the microarray

data are investigated whether genes are expressed in similar way or not to reduce

the dimensionality for subsequent data processing. For this purpose correlation

analysis is a standard method frequently applied with subsequent selection based

on correlation ranks [31]. Di�erent strategies are applied: wrapper and �lter

techniques [16], classical discriminant analysis ranking [36] or visual analysis based

on multi-dimensional scaling (MDS) [44]. Unsupervised approaches of dimension

reduction like principal component analysis (PCA) [8, 13] or clustering techniques

were also successfully applied to di�erentiate micro array gene expression data[3,

9]. Among them, neural network based PCA-methods and dimesion reduction

techniques as well as feature selection methosd are very e�ective [45, 18, 24, 25].

One of the most successful approaches of unsupervised neural vector quantiza-

tion and clustering is the self-organizing map [19]. Additionally to usual cluster

and vector quantization schemes, SOMs o�er great visualization abilities by in-

herently processing a non-linear data mapping onto a typically two-dimensional

visualization grid which can be used for visual data inspection in case of topology

preserving mappings [46]. However, the latter property is only obtained for certain

conditions and has to be proven [47]. If only vector quantization accuracy is of

interest without topology-preserving visualization the neural gas quantizer is bet-

ter suited [22]. Supervised vector quantization for classi�cation learning is mainly
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in�uenced by the family of learning vector quantization algorithms (LVQ) [19].

Sato and Yamada extended this model such that an energy function re�ecting

the classi�cation error is optimized by stochastic gradient learning (GLVQ) [32].

The GLVQ model can be further generalized including relevance or matrix learning

learning for weighting the input dimensions or correlation between them, respec-

tively [12, 35]. Yet, the resulting dissimilarity measure still remains a (weighted)

Euclidean distance.

Most of the vector quantization algorithms have in common that the Euclidean

distance is used for dissimilarity evaluation of the data and prototypes. For anal-

ysis of gene expression data, this can cause moderate problems: the Euclidean

distance is sensitive to normalization like centralization and variance normaliza-

tion, which would course problems when merging di�erent data sets from di�erent

investigations [7, 2]. Therefore, other dissimilarity measures might be more qual-

i�ed for gene expression analysis where frequently such problems occur. During

the last years several alternatives were proposed. Among them, correlation based

approaches seem to be very interesting for gene expression analysis [42, 39, 41, 40].

Other approaches use entropies and divergences [48, 52]. However, these ap-

proaches are fare away from application in standard vector quantization schemes

for clustering. In this paper we consider the utilization of Pearson correlation for

gene clustering by vector quantization as well as divergences.

In this paper we consider how correlation measures and divergences can be used

in unsupervised and supervised vector quantization based on Hebbian-like gradient

descent learning. In this way we provide a general framework for application

of these neural vector quantization methods for the analysis of microarray gene

expression data.

2 Unsupervised and Supervised Vector Quantiza-

tion based on Cost Functions

Unsupervised neural vector quantizers have been established as powerful and ro-

bust methods for vector quantization frequently outperforming classic schemes

like k-means. These approaches became standard tools for intuitive clustering of

biological data [11, 51]. If only a few prototypes are used, vector quantizers can be

seen as clustering algorithms where the prototypes are the cluster centers [21]. The

basic principle of vector quantizers is to distribute prototype vectors in the data

space as faithful as possible for adequate data representation. One of the most

MIWOCI Workshop - 2012
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prominent example is the self-organizing maps (SOMs) introduced by Kohonen

[19], which are also known for excellent visualization abilities for vectorial data.

The strong performance and robustness may be dedicated to neighborhood learn-

ing paradigm based on Hebbian reinforcement learning [14], which is adopted from

learning mechanisms in cortical areas of the brain. An alternative to SOM is the

neural gas (NG, [22]) algorithm introduced by Martinetz, which combines the

neighborhood learning idea for vector quantization with the theory of expanding

(real) gases for the outstanding adaptive behavior but dropping the visualization

ability.

Classi�cation by neural vector quantization based on LVQ is the supervised

counterpart of neural vector quantization by SOM and NG, heuristically motivated

by Kohonen [19]. A cost function based version keeping the basic ideas from LVQ

is known as generalized LVQ (GLVQ) [32].

In the following we brie�y review SOM, NG and GLVQ for being transferred

to correlation and divergence measures lateron.

2.1 Basic Learning in SOM and NG

In the following we assume data v ∈ V ⊆ Rn with data density P (v) and a set of

prototypes W = {wk}k∈A ⊂ Rn, where A is a �nite index set. The reconstruction

error is given in terms of the dissimilarity measure d (v,wk) between data and

prototypes, which is assumed to be di�erentiable. Prototype adaptation in SOMs

and NG can be realized as a stochastic gradient descent on a cost function E.1 In

that case, the gradient ∂E/∂wk contains the derivative ∂d (v,wk) /∂wk originat-

ing from the chain rule of di�erentiation. In SOMs the index set A usually is a

regular low-dimensional grid of rectangular or hexagonal shape. The indexes k are

identi�ed with the locations rk in this grid, which are shortly denoted simply by

r. Then the lattice A is equipped with a distance dA, which may be the shortest

path counting each edge with weight one or the Euclidean distance after Euclidean

embedding.

In particular, the cost function of the Heskes-variant of SOM is

ESOM =

ˆ

P (v)
∑

r∈A
δs(v)r

∑

r′∈A

hSOMσ (r, r′)

2K(σ)
d(v,wr′)dv (1)

1The SOM is equipped with a cost function only for the Heskes-variant [15].
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with the so-called neighborhood function

hSOMσ (r, r′) = exp

(
−‖r− r′‖A

2σ2

)

and dA (r, r′) = ‖r− r′‖A is the distance in the SOM-lattice A according to its

topological structure [15]. K(σ) is a normalization constant depending on the

neighborhood range σ. The symbol δ
s(v)
r is the Kronecker and the wining neuron

s(v) is determined by

s(v) = argminr∈A

(∑

r′∈A
hSOMσ (r, r′) · d(v,wr′)

)
(2)

accordingt to [15]. Then the stochastic gradient prototype update for all proto-

types is given as [15]:

4wr = −εhSOMσ (r, s(v))
∂d (v,wr)

∂wr

. (3)

depending on the derivatives of the used dissimilarity measure d in the data space.

In NG the dynamic neighborhood between prototypes for a given data vector

v ∈ V is based on the winning rank of each prototype wk

rkk (vi,W ) =
N∑

l=1

Θ (d (vi,wk)− d (vi,wl)) (4)

where

Θ (x) =

{
0 if x ≤ 0

1 else
(5)

is the Heaviside function [22]. The NG neighborhood function includes the ranks

according to

hNGσ (k|v) = cNGσ · exp

(
−(rkk (v,W ))2

2σ2

)
(6)

with neighborhood range σ. Then the cost function is de�ned as

ENG =
∑

j

ˆ

P (v)hNGσ (rkj (v,W )) d (v,wj) dv (7)

with accompanying update

4wj = −hNGσ (kj (v,wj)) ·
∂d (v,wj)

∂wj

. (8)
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It turns out that this rang-based vector quantization scheme is very robust and

frequently delivers better results in terms of the mean squared error than other

vector quantizers like SOM or k-means.

According to (3) and (8), both algorithms require di�erentiable dissimilarity

measures d (v,wj). In case of the frequently applied squared Euclidean distance

we immediately �nd
∂d (v,wj)

∂wj

= −2 (v −wj) . (9)

However, the concrete choice is left to the user under the assumption of min-

imum standards for general similarity measures like positive de�niteness and

re�exivity[26]. Hence, we have a great freedom do apply a task speci�c dissimilar-

ity measure. Two appropriate choices for gene expression data are dressed in the

next chapter.

2.2 Learning Vector Quantization by GLVQ

For supervised learning each training data vector v ∈ V ⊂ Rn is equipped with a

class label xv ∈ C = {1, 2, 3, ..., C}. Now, the task is to distribute the set W of

prototypes such that the classi�cation error is minimized. For this purpose each

prototype is also equipped with a class label yw such that C is covered by all yw.

After LVQ training a data point is assigned to the class of that prototype w ∈ W
which has minimum distance.

A gradient based GLVQ scheme proposed by Sato and Yamada uses the

following energy function:

E(W ) =
1

2

∑

v∈V
f(µW (v)) (10)

where the classi�er function

µW (v) =
d+(v)− d−(v)

d+(v) + d−(v)
(11)

approximates the non-di�erentiable classi�cation error depending on W . The

function f : R → R is monotonically increasing, usually chosen as sigmoid. Fur-

ther, d+(v) = d(v,w+) denotes the distance between the data point v and the

nearest prototype w+, which has the same label like xv = yw+ . In the following

we abbreviate d+(v) simply by d+. Analogously d− is de�ned as the distance to

the best prototype of all other classes.
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The stochastic gradient learning for E(W ) is performed by

∂sE

∂w+
=

∂sE

∂d+(v)
· ∂d

+(v)

∂w+
,

∂sE

∂w−
=

∂sE

∂d−(v)
· ∂d

−(v)

∂w−
(12)

with ∂s
∂
denotes the stochastic gradient and

∂sE

∂d+(v)
=

2d−(v) · f ′(µW (v))

(d+(v) + d−(v))2
,

∂sE

∂d−(v)
= −2d+(v) · f ′(µW (v))

(d+(v) + d−(v))2
. (13)

Obviously, in case of the (squared) Euclidean distance we have to calculate ∂d±(v)
∂w±

according to (9), which still refers to Hebbian-like learning. If more general dis-

similarity measures d (v,w) are in use, the respective gradients have to be applied.

3 Appropriate Dissimilarity Measures for Gene

Analysis in Microarrays Using Neural Vector

Quantization Methods

As mentioned above, originally, the given models for supervised and unsupervised

vector quantization were introduced using the Euclidean distance or generaliza-

tions thereof for dissimilarity calculations between data and prototype vectors.

Recent developments investigate also other measures instead like divergences or

kernel distances [23, 48, 49, 50]. Manual or semi-supervised gene selection in gene

expression analysis is frequently based on the ranking of the correlations in mi-

croarrays [36]. Higher order correlations are taken into account if entropy based

methods are applied in more sophisticated schemes like divergences [52]. In the

following we review correlation measures and divergences for their use in vector

quantization.

3.1 Pearson Correlation

Following the approach in [39], the linear Pearson correlation can be applied in

gradient based vector quantization. Pearson correlation implicitly undertakes the

data a centralization and therefore well suited for analysis of gene expression

analysis [42, 43], where individually calibrated biomedical measuring devices are

common [28, 42]. The Pearson correlation between a data vector v ∈ Rn and a

MIWOCI Workshop - 2012
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prototype w ∈ Rn is de�ned as

%P (v,w) =

∑n
k=1 (vk − µv) · (wk − µw)√∑n

k=1 (vk − µv)2 ·∑n
k=1 (wk − µw)2

(14)

with µv and µw are the means of v and w, respectively. Introducing the ab-

breviations B =
∑n

k=1 (vk − µv) · (wk − µw), C =
∑n

k=1 (vk − µv)2 and D =∑n
k=1 (wk − µw)2 it can be rewritten as

%P (v,w) =
B√
C · D

. (15)

The derivative ∂%P (v,w)
∂w

is obtained as

∂%P (v,w)

∂w
= %P (v,w) ·

(
1

Bv −
1

Dw

)
(16)

paying attention to the fact that generally ∂%P (v,w)
∂w

6= ∂%P (v,w)
∂v

[40].

3.2 Soft Spearman Rank Correlation

Spearmans rank correlation is a non-linear correlation measure. However, due

to its rank based computation scheme, it is not di�erentiable at hand. Now we

will develop a soft version, which approximates the ranks using again the trick to

describe the ranks in terms of sums of Heaviside functions (5) as in NG above:

For that purpose we de�ne an indicator matrix R (x) of a vector x as

R (x) =




R (x1, x1) · · · R (x1, xn)
...

...

R (xn, x1) · · · R (xn, xn)


 (17)

with

R (xi, xj) = Θ (xi − xj) . (18)

The row vectors of the indicator matrix R (x) are denotes as Ri (x) determining

the rank function

rnk (x) =
n∑

i=1

Ri (x) . (19)

Using this indicator matrix, the Spearman rank correlation between a data vector

v and a prototype vector w can be expressed in terms of the Pearson correlation

(14) by

%S (v,w) = %P (rnk (v) , rnk (w)) (20)

MIWOCI Workshop - 2012
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using the rank vectors (19).

Unfortunately, the Spearman correlation %S (v,w) is not di�erentiable because

of the indicator functions (18). A smoothed but di�erentiable version has to

approximate the Heaviside function in (18). One possible parametrized solution

applies the sigmoid Fermi function

fβ

(
xi − xj
σx

)
=

1

1 + exp
(
β(xi−xj)

σx

) (21)

such that the approximation for (18) becomes

Rβ (xi, xj) = fβ

(
xi − xj
σx

)
+

1

2
(22)

with σx being the standard deviation of the vector x [1]. In the limit we have

limβ→∞Rβ (xi, xj) = R (xi, xj).

In the following we use the estimators

σx =

√√√√ 1

n

n∑

i=1

(xi − µx)2 (23)

and µx = 1
n

∑n
i=1 xi. The derivatives are obtained as

∂Rβ (xi, xj)

∂xk
= f ′β

(
xi − xj
σx

)
· β
σx
·
[
(δk,i − δk,j)−

xi − xj
σx

· ∂σx
∂xk

]
(24)

with
∂σx
∂xk

=
1

σx
· 1

n
· (xk − µx) (25)

as shown in the Appendix.

It turns out that this soft variant of Spearmans rank correlation can be related

to other variants of soft and fuzzy rank correlations, the latter ones based on t-

norms and t-conorms [1, 38]. Moreover, rank-based approaches frequently bene�t

from the robustness of this paradigm to achieve high performance.

3.3 Divergences

Higher order correlation can be taken into account using divergences or generaliza-

tions thereof. An overview over di�erent types of divergences is given in [6, 4, 5].

Their use in gradient based vector quantization is extensively investigated in [48].

MIWOCI Workshop - 2012

Machine Learning Reports 13



Clearly, divergences are closely related to entropy measures, which are consid-

ered to be useful also for gene ranking [52]. Therefore, we propose to consider

also divergences in gene clustering based on microarray data to keep higher order

correlations.

For that reason, we assume positive gene expression vectors v with expression

levels vi ≥ 0. Equivalently the prototypes w are supposed to ful�ll the condition

wi > 0. The generalized Kullback-Leibler-divergence (KLD) is de�ned as

DKL (v‖w) =
n∑

i=1

vi ln

(
vi
wi

)
− (vi − wi) (26)

with the derivatives
∂DKL (v‖w)

∂wi
= −

(
vi
wi
− 1

)
, (27)

whereby we suppose the convention 0·ln 0 = 0 according to limit limx→0 x·lnx = 0

is valid.

An alternative to the KLD are Rényi-divergences

DR
α (v‖w) =

1

α− 1
log

(
n∑

i=1

(vi)
α (wi)

1−α − α · vi + (α− 1) · wi + 1

)
(28)

with α > 0 [29],[30]. The Rényi-divergences converge to KLD for α → 0. Easy

computation is achieved for α = 2 , which is well studied in information theoretic

learning (ITL) by J. Principe [20, 27, 37].

A very robust divergence is the Cauchy-Schwarz-divergence (CSD) obtained

from the more general γ-divergence
∑n

k=1 (vk − µv) · (wk − µw)√∑n
k=1 (vk − µv)2 ·∑n

k=1 (wk − µw)2

Dγ (v‖w) = log



(∑n

i=1 (vi)
γ+1) 1

γ(γ+1) ·
(∑n

i=1 (wi)
γ+1) 1

γ+1

(
∑n

i=1 vi (wi)
γ)

1
γ


 (29)

proposed by Fujisawa&Eguchi for the value γ = 1 [10, 17]. In that case, the

γ-divergence becomes symmetric and the resulting CSD is a metric. Moreover, we

remark that the relation

Dγ=1 (v‖w) = − log (%P (v,w)) (30)

with %P (v,w) being the Pearson correlation from (14) holds, if the data are cen-

tered. Yet, it turns out that frequently a value γ 6= 1 is optimal for a given vector

quantization task [48].
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4 Conclusion

Gene expression data analysis is frequently performed using correlation measures.

In this report we summarized recent approaches in unsupervised and supervised

neural vector quantization algorithms using several kinds of correlation measures

including Pearson and Spearman correlations. We point out, how these dissimilar-

ity measures, which have shown to be successful in microarray gene expression data

analysis, can easily be plugged in into well-known algorithms like self-organizing

maps and learning vector quantization.

Appendix

We consider the derivative ∂σv
∂vk

of the standard deviation σv =
√

1
n
S with S =

∑n
i=1 (vi − µv)2 as equivalent for (23). Then the derivative becomes

∂σv
∂vk

=
1

2σv · n
· ∂S
∂vk

. (31)

We investigate ∂S
∂vk

, which yields

∂S
∂vk

=
∑n

i=1
∂(vi−µv)2

∂vk

= 2
∑n

i=1 (vi − µv) ∂(vi−µv)
∂vk

= 2
∑n

i=1 (vi − µv)
[
δi,k − ∂µv

∂vk

]
.

(32)

Now we have to take into account the estimate µv = 1
n

∑n
l=1 vi which delivers

∂µv

∂vk
=

1

n

n∑

l=1

δk,l =
1

n
. (33)

Putting the pieces together we get

∂S

∂vk
= 2 ·

[
(vk − µv)− 1

n

n∑

i=1

(vi − µv)

]
. (34)
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Now we consider

1
n

∑n
i=1 (vi − µv) = 1

n

∑n
i=1 vi − 1

n

∑n
i=1 µv

= µv − 1
n
· n · µv

= 0

and, hence,
∂σv
∂vk

=
1

n · σv
· (vk − µv) (35)

is �nally obtained.
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Abstract

Unsupervised fuzzy vector quantizers like fuzzy-c-means are widely ap-

plied in the analysis of high-dimensional data and show a robust behavior.

However, those models also are applied for classi�cation tasks. In that case

each class is independently learned by a separate model. In this paper we

overcome this disadvantage. By incorporation of neighborhood relations the

models interact while the neighborhood is dynamic. In consequence, the

prototypes are not longer distributed in the inner areas of the class dis-

tribution but placed close to the borders. Thus, a border sensitive fuzzy

classi�cation scheme is obtained.

1 Introduction

The utilization of unsupervised prototype based vector quantization methods to

solve classi�cation tasks is a common strategy: For example, unsupervised vector

quantization algorithms are adapted to serve also as classi�ers [6, 11, 18, 44,

45]. Another strategy is to apply several di�erent unsupervised vector quantizers

particularly dedicated to be responsible for certain classes, which may interact

[11, 42]. Obviously, these strategies can also be applied for fuzzy clustering and

classi�cation [36, 41].

∗corresponding author, email: thomas.villmann@hs-mittweida.de
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Special interest is frequently given to the knowledge of decision borders be-

tween classes. This problem is explicitly addressed in support vector machine

learning, which determines so-called support vectors approximating and indicat-

ing the borders between the classes [34, 30]. Recently, the idea of emphasizing

the class borders while training several instances of unsupervised (fuzzy-) c-means

algorithms (FCMs) based on the Euclidean distance is provided [47]. Several in-

stances interact with each other while learning the classi�cation task. However,

beside FCM there exist other variants of unsupervised fuzzy vector quantizers re-

alizing fuzzy probabilistic or fuzzy possibilistic models, which could be used in

this communication model. These algorithms have in common that they do not

incorporate neighborhood cooperativeness between the prototypes, and, therefore,

may get stuck in local optima. Fortunately, neighborhood cooperativeness can be

incorporated in these models such that stucking in local optima can be avoided.

Another aspect of the family of fuzzy vector quantizers is that these algorithms

are frequently based on the Euclidean distance to judge the data dissimilarity.

In contrast, support vector machines (SVMs,[30]) implicitly map the data into a

high-dimensional (maybe in�nite dimensional) function Hilbert space determining

their dissimilarity just in this Hilbert space based on kernel distances instead in

the original data space [35]. It turns out that this space o�ers a rich topological

structure such that respective classi�cations become very e�cient with high ac-

curacy. Recently, it was pointed out that this framework can be transferred to

the case that the original data are preserved but equipped with a new metric.

This is equivalent to the functional Hilbert space used in SVMs when applying

di�erentiable kernels [41]. Obviously, this idea could be transferred to fuzzy vector

quantizers, as well.

In this paper we propose a combination of di�erentiable kernel vector quanti-

zation with the idea of neighborhood cooperativeness for fuzzy vector quantiza-

tion. Here, we generalize the idea of class border sensitive prototype adaptation

of combined unsupervised fuzzy vector quantizers based on nearest neighbors as

presented in [47] to neighborhood oriented learning. As well as we emphasize

neighborhood oriented learning for the prototypes in each of the class responsible

unsupervised fuzzy vector quantizers. In result we end-up with a robust super-

vised fuzzy classi�cation network combining several unsupervised neighborhood

cooperativeness incorporating fuzzy vector quantizers, which do not act indepen-

dently but sensitized to class borders again stressing the idea of neighborhood

cooperativeness for class border detection to avoid local optima.

The outline of the paper is as follows: First, we brie�y review di�erent unsuper-
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vised fuzzy vector quantizers and show how di�erentiable kernels can be applied

in these approaches. Second, we recognize the idea of combining several interact-

ing instances of such unsupervised fuzzy vector quantizers for classi�cation while

sensitizing them to be particularly responsible for the class borders according to

the idea presented in [36, 47]. In the next step we incorporate the idea of neigh-

borhood cooperativeness on both levels: within several unsupervised fuzzy vector

quantizers as well as in the class border sensitive interaction. Finally, we discuss

the model using kernel distances as dissimilarity measure.

2 Unsupervised Fuzzy-Probabilistic, Fuzzy-

Possibilistic and Soft Vector Quantization

We start by reviewing the basic principles and algorithms for unsupervised fuzzy

vector quantization. We assume a data set V = {vi}Ni=1 ⊆ Rn and a set W =

{wk}Mk=1 ⊂ Rn of prototypes. Further, we suppose a distance measure di,k =

d (vi,wk), which implies that the data space is equipped with a semi-inner product.

Frequently the distance is chosen as the Euclidean distance corresponding to the

Euclidean inner product.

The most prominent fuzzy vector quantization algorithm is the Fuzzy-c-Means

(FCM) [1, 8], which is the fuzzy generalization of the standard c-means algorithm

[7, 24]. Many variants are proposed, e.g. for relational data [2], median clustering

[10], possibilistic variants [20, 21, 26], or using several kinds of dissimilarities

like divergences [14, 40] or kernels [13]. Integration of neighborhood cooperative

nessaccording to the crisp neural gas vector quantizer (NG, [25]) is studied in [38]

resulting fuzzy neural gas (FNG).

2.1 Basic Fuzzy Vector Quantizers

We consider the most general variant (known as PFCM)

EPFCM (U, V,W, δ, γ) =
M∑

k=1

N∑

i=1

(
γ · umi,k + (1− γ) · tηi,k

)
(di,k)

2 +R (1)

with the probabilistic fuzzy assignments ui,k ∈ [0, 1], the possibilistic typicality

assignments ti,k ∈ [0, 1] and m and η as the respective fuzzi�ers. The additive
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term

R =
M∑

k=1

(
δk

N∑

i=1

(ti,k − 1)η
)

play the role of a regularization term. The value γ balances the in�uence of the

probabilistic (γ = 1, FCM) and the possibilistic (γ = 0, PCM) model. A suggested

choice for the δi-values is

δk = K

∑N
i=1 (ui,k)

η (di,k)
2

∑N
i=1 (ui,k)

η
(2)

with the ui,k obtained from a pure FCM (γ = 1) and η = m [21]. The constant

K > 0 is a free parameter commonly chosen as K = 1. The constraints

M∑

k=1

ui,k = 1 (3)

for FCM and
N∑

i=1

ti,k = 1 (4)

have to be ful�lled. The constraint (3) requires the fuzzy assignments to be prob-

abilistic for each data point vi ∈ V , whereas eq. (4) re�ects the condition that the

cluster typicality has to be probabilistic. The crisp c-means model is obtained for

the FCM in the limit m→ 1, which leads to the optimal solution with ui,k ∈ {0, 1}
[7, 24]. Yet, the latter condition is su�cient because for that case the optimum

solution automatically leads to ui,k ∈ {0, 1}.
If the Euclidean distance is used, optimization of the cost function (1) yields

the alternating updates

wk =

∑N
i=1

(
a · umi,k + b · tηi,k

)
vi∑N

i=1

(
a · umi,k + b · tηi,k

) (5)

and

ui,k =
1

∑M
l=1

(
di,k
di,l

) 2
m−1

(6)

for the assignments ui,k of FCM (3) using the alternating batch mode update

strategy known from FCM. The typicality values ti,k are modi�ed according to

ti,k =
1

1 +

(
(di,k)

2

δk

) 1
η−1

(7)

taking the δi-values into account.
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2.2 Incorporation of Neighborhood Cooperativeness to Pre-

vent Local Optima

Neighborhood cooperativeness between prototypes is a biologically inspired strat-

egy to avoid prototype based vector quantizers to get stuck in local optima. Two

main principles are widely applied: First, one can associate an external topolog-

ical structure to the prototypes as introduced for self-organizing maps (SOMs)

[19]. This external structure frequently is chosen to be a regular grid rather than

another structures like a tree, yet, other structures are admissible. Suppose, that

the external grid A is equipped with the dissimilarity measure dA. In case of a

regular grid this could be the Euclidean distance in A whereas for general graphs

the minimal path length could be applied. Then the neighborhood cooperative-

ness between the prototypes is installed using a neighborhood function de�ned on

A

hSOMσ (k, l) = cσ · exp

(
−(dA (k, l))2

2σ2

)
(8)

with neighborhood range σ and the constraint
∑

l h
SOM
σ (k, l) = 1 ensured by the

constant cσ. Thus the neighborhood range induces a range of interactions also

implicit in the data space determined by the location of the prototypes.

The alternative to the apriori �xed external neighborhood structure A would be

a dynamic neighborhood determined by the actual distribution of the prototypes as

suggested for the neural gas (NG) vector quantizer [25]. In NG the neighborhood

between prototypes for a given data vector vi ∈ V is based on the winning rank

of each prototype wk

rkk (vi,W ) =
N∑

l=1

Θ (d (vi,wk)− d (vi,wl)) (9)

where

Θ (x) =

{
0 if x ≤ 0

1 else
(10)

is the Heaviside function [25]. The NG neighborhood function includes the ranks

according to

ĥNGσ (k|v) = cNGσ · exp

(
−(rkk (v,W ))2

2σ2

)
(11)

with neighborhood range σ. This de�nition allows the declaration of a gradual
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neighborhood relation between prototypes wk and wl by

hNGσ (k, l) = cNGσ · exp

(
−(rkk (wl,W ))2

2σ2

)
(12)

for a given neighborhood range σ. As before, the constraint
∑

l h
NG
σ (k, l) = 1 is

ensured by a constant cNGσ .

Both, the external SOM as well as the dynamic NG neighborhood coopera-

tiveness, induce local errors for a given vi which are

lcSOMσ (i, k) =
M∑

l=1

hSOMσ (k, l) · (di,l)2 (13)

and

lcNGσ (i, k) =
M∑

l=1

hNGσ (k, l) · (di,l)2 , (14)

respectively. These local errors can be used also for fuzzy vector quantization

models instead of the quadratic distance [38, 39]. Replacing (di,k)
2 in (1), the

respective updates for optimization of the cost function (1) are obtained as

wk =

∑N
i=1

∑M
l=1

(
a · umi,l + b · tηi,l

)
· hNG/SOMσ (k, l) · vi

∑N
i=1

∑M
l=1

(
a · umi,l + b · tηi,l

)
· hNG/SOMσ (k, l)

(15)

if the Euclidean distance is used inside the local errors (13,14). We refer to these

algorithms as Fuzzy-SOM (FSOM, [4, 3, 5, 27, 28, 37]) and Fuzzy-NG (FNG, [38]).

The adaptation of the fuzzy assignments umi,l and the typicality assignments tmi,l in

the resulting FSOM/FNG are analogously to those in (6) and (7), respectively.

Yet, now the dissimilarity measure (di,k)
2 is replaced by the local costs lcNGσ (i, k)

and lcSOMσ (i, k) accordingly:

ui,k =
1

∑M
l=1

(
lc
NG/SOM
σ (i,k)

lc
NG/SOM
σ (i,l)

) 1
m−1

(16)

and

ti,k =
1

1 +

(∑M
l=1 h

NG/SOM
σ (k,l)·(di,l)

2

δk

) 1
η−1

. (17)

For convergence details we refer to [4, 3, 5, 27, 28, 37] for FSOM and to [38, 9] for

FNG.
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3 Vector Quantizers for Classi�cation Using Ker-

nel Distances and Class Border Sensitive Learn-

ing

3.1 Utilization of Unsupervised Vector Quantizers for Clas-

si�cation Tasks and Class Border Sensitive Learning

Classi�cation di�ers from unsupervised vector quantization in that each data point

vi ∈ V belongs to a certain class ci ∈ {1, . . . , C}. Di�erent vector quantization

schemes speci�cally are designed to deal with those problems. Prominent such

models are the family of learning vector quantizers (LVQs, [19]) or generaliza-

tions thereof [29, 33, 32] as well as support vector machines (SVMs, [30]). These

algorithms have in common that the prototypes wk ∈ W = {wj}Mj=1 ⊂ Rn are

now responsible for the classes according to their class label yk ∈ {1, . . . , C}.
Semi-supervised algorithms like the Fuzzy Labeled SOM/NG (FLSOM/NG,[44])

or the recently developed Fuzzy Supervised SOM/NG (FSSOM/NG, [16, 17]) as-

sign fuzzy class labels to the prototypes, which are also adapted during the learning

process. Yet, this adaptation is not independent from the prototype adaptation

and the prototype adjustment is also in�uenced by the actual state of the la-

bels. Moreover, at the end of the learning process the prototypes are class typical

representatives.

Another way utilizing unsupervised vector quantizers is to take several vec-

tor quantizer networks, each of them responsible for one class. However, these

networks should not simply act independently from each other. An information

transfer between them is mandatory. One model is the Supervised Neural Gas

(SNG,[11]) as a generalization of the LVQ2.1 algorithm. In SNG, on the one hand

side, neighborhood cooperativeness between prototypes for the same class is in-

stalled for attraction forces according to NG. On the other hand, the repulsing

forces are also modi�ed according to the neighborhood relation between the pro-

totypes of the incorrect classes for a given input. Again, in SNG the prototypes

are class typical.

The combination of several FCM networks for data preprocessing in support

vector machine learning in a two-class-problem is discussed in [36, 47]. The infor-

mation transfer between the di�erent FCM networks is realized by an additional

attraction force for the best matching prototypes of both the correct and the in-

correct class. Formally, this model can be expressed by the following cost function
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EBS−FCM (U, V ) =

N1∑

i=1

M1∑

k=1

umi,k (1) (di,k)
2+

N2∑

i=1

M2∑

k=1

umi,k (2) (di,k)
2+FBS−FCM (W,V )

(18)

with Nl, Ml, and u
m
i,k (l) denoting the number of data samples in each subset Vl of

V , the number of prototypes responsible for each data subset, and the fuzzy assign-

ments according to the both classes. The attraction force term FBS−FCM (W,V )

is

FBS−FCM (W,V ) =
N∑

i=1

d
(
ws1(i),ws2(i)

)
(19)

where sl (i) denotes the closest prototype responding to class l for given input vi.

This term enforces the prototypes to move to the class borders as known from

SVMs and, therefore, they are not longer class typical. Thus we obtain a border

sensitive supervised FCM model (BS-FCM) for the two-class-problem as proposed

in [36, 47].

Obviously, this BS-FCM method can be generalized in several ways: First, it

is immediately applicable to the PFCM cost function EPFCM (U, V,W, δ, γ) in (1).

Second, the generalization to more than two classes is possible by rede�ning the

attraction force (19) as

F (W,V ) =
N∑

i=1

d
(
ws+(i),ws−(i)

)
(20)

where s+ (i) and s− (i) are determining the closest prototype of the correct class

and the closest prototype of all incorrect classes for a given data vector vi. Thus,

we obtain the border sensitive PFCM (BS-PFCM) with the cost function

EBS−PFCM =
C∑

l=1

[
Ml∑

k=1

Nl∑

i=1

(
γ · umi,k (l) + (1− γ) · tηi,k (l)

)
(di,k)

2 +Rl

]
+ F (W,V )

(21)

to be minimized, where

Rl =

Ml∑

k=1

(
δk

Nl∑

i=1

(ti,k (l)− 1)η
)

is the regularization term for the lth class model.
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3.2 Neighborhood Cooperativeness in Border Sensitive

Learning

Now, we act on the suggestion of neighborhood cooperativeness as a method to

improve the convergence. As mentioned before, neighborhood cooperativeness

between the prototypes within a PFCM instance leads to a FNG-variant or FSOM-

variant depending on the applied crisp vector quantizer. This principle can be

transferred to neighborhood cooperativness between the prototypes of di�erent

instances with respect to class border sensitive learning. We refer to the resulting

models as border sensitive FSOM (BS-FSOM) and border sensitive FNG (BS-

FNG).

The incorporation of the local costs in the �rst term of (21) is straightforward

handling each sub-network as a single FSOM or FNG, respectively. More attention

has to be given to an appropriate rede�nition of the attraction force F (W,V ) from

(20): Let W−
i be the set of all prototypes which are of di�erent classes than the

class ci for a given data point vi and

hNGσ−
(
k, l,W−) = cNGσ− · exp

(
−(rkk (wl,W

−))
2

2σ2
−

)
(22)

is a NG-like neighborhood function according to (12) but restricted to W− with

neighborhood range σ−. Then the new neighborhood-attentive attraction force

(NAAF) is de�ned as

Fneigh (W,V ) =
N∑

i=1

M∑

k=1∧wk∈W−

hNGσ−
(
k, s+ (i) ,W−) d

(
ws+(i),wk

)
(23)

which reduces to Fneigh (W,V ) in (20) of the BS-FCM for σ− → 0. The force

Fneigh (W,V ) again compels the prototypes to move to the class borders. However,

the neighborhood cooperativeness speeds up this process scaled by neighborhood

range σ. Thereby, the responsibilities of the prototypes for the di�erent class

borders are not predetermined,rather they are a result of a self-organizing process,

which provides a great robustness and stability. As previously, border sensitive

learning in FSOM and FNG is obtained replacing the quadratic distances (di,k)
2

by the local costs lc
SOM/NG
σ (i, k) from (13,14) in BS-PFCM (21) together with the

NAAF Fneigh (W,V ).
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3.3 Kernel Distances and their Use in Border Sensitive Vec-

tor Quantization Classi�cation

All the above algorithms are based on the evaluation of the dissimilarity between

data and prototypes, frequently chosen as the (quadratic) Euclidean metric. Dur-

ing the last years, other dissimilarity measures are investigated to improve the

classi�cation and vector quantization abilities for di�erent tasks. Among them

adaptive quadratic forms [31], the scaled Euclidean metric [12], or functional norms

[15, 22, 23] like divergences [40] or Sobolev-norms [43] became popular. Another

strategy is considered in Support Vector Machines (SVMs) [30, 34].

3.3.1 Kernel distances

We consider the data space V . In SVMs, the data v ∈ V are implicitly mapped into

a high- maybe in�nite-dimensional function Hilbert space H with the metric dH,

which o�ers a rich topological structure, such that classes become easily separable

in that space [30, 35]. The implicit mapping Φ : V → Iκ⊕ ⊆ H is determined by

a kernel κΦ (v,w) de�ning an inner product in H but being evaluated in the data

space. If the mapping Φ is universal, the span Iκ⊕ of the image Φ (V ) forms a

subspace of H with the kernel induced metric

dκΦ
(v,w) =

√
κΦ (v,v) + 2κΦ (v,w) + κΦ (w,w), (24)

which coincide with the Hilbert space metric dH [35]. The disadvantage of SVMs is

that the function Hilbert space is not longer intuitive like the data space. However,

it turns out that for di�erentiable universal kernels an identical mapping Ψ :

(V, dV ) −→ V can be applied to the data, such that both prototypes and data

remain as they are but get equipped with the kernel metric dκΦ
= dH in the

mapping space V = (V, dH). This new mapping space V is isomorphic to the

mapping space IκΦ
of the mapping Φ [41], see Fig. 3.3.1.

3.3.2 Kernel Distances in BS-FCM

Obviously, kernel distances can be applied in FCM and PFCM as well as in BS-

FNG/FSOM replacing the distances di,k by dκΦ
(vi,vj) as given above in (24). In

the border sensitive models BS-FNG/FSOM, the prototypes are positioned near

the class borders in the mapping space V according to the previously explained

strategy of border sensitive learning. Because V is isomorphic to the Hilbert space

H of SVMs, we can immediately interpret the prototypes as approximations of
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Figure 1: Visualization of the relations between the data space V and the mapping

spaces IκΦ
and V for the mappings Φ and Ψ, respectively: For universal kernels

κΦ the metric spaces V = (V, dH) and
(
Iκ⊕ , dH

)
are topologically equivalent and

isometric by means of the continuous bijective mapping Φ ◦ Ψ−1. (Figure taken

from [41]).

support vectors for that case. We refer to this model as border sensitive kernel

FNG/FSOM (BS-KFNG/SOM). In contrast to SVMs, the complexity of the model

is �xed in advance according to the number of prototypes used. In this way, it

is not longer only a preprocessing scheme like BS-FCM proposed in [36, 47], but

rather a standalone fuzzy classi�cation model based on kernel distances. Yet, the

resulting updates may become intractable as explicite rules.

So far, we adressed the problem of fuzzy classi�cation following the idea of

utilizing unsupervised models for this task. However, other prototype based fuzzy

classi�cation algorithms could be treated analogously by an additive border sen-

sitivity force like (23), if the respective model posseses a cost function. As a

prominent example we mention the Fuzzy Soft Nearest Prototype Classi�er (FS-

NPC) proposed in [46].

4 Conclusion

In this paper we investigate ideas how to generate class border sensitive fuzzy

classi�cation schemes based on interacting unsupervised fuzzy vector quantization

models. We give the theoretical background forthese models based on the family
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of fuzzy-c-means quantizers. In particular, we focus on a dynamic neighborhood

between the unsupervised models responsible for each class based on a neighbor-

hood relation scheme known from neural gas. Although we considered only fuzzy

vector quantizers, the extensions to other schemes like the common NG or SOM

is straight forward.
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Abstract

Prototype based classi�cation models like learning vector quantization

or support vector machines (SVMs) take into account the class distribution

in the data space for representation and class discrimination. While support

vectors indicate the class borders, prototypes in learning vector quantzation

roughly represent the class centers. Depending on the task, both strategies

provide advantages or disadvantages. Generalized learning vector quantiza-

tion (GLVQ) proposed by Sato&Yamada o�ers, besides the aspect that is

here learning is based on a cost function, additional possibilities to control

the learning processs. In this paper we emphasize the ability to establish

a class border sensitive learning of the prototypes by means of appropriate

choices of the parameter in cost function of this model. Alternatively, we

discuss additive penalty functions to force the prototypes to ferret out the

class borders. In this way, the application range of GLVQ is extended also

covering those areas, which are only in the focus of SVMs so far because of

the required precise detection of class borders.

∗corresponding author, email: thomas.villmann@hs-mittweida.de
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1 Introduction

One of the most promising concepts in classi�cation by prototype based models is

the family of Kohonen's Learning Vector Quantizers (LVQ,[7]). Although only

heuristically motivated these algorithms frequently show great performance also

in comparison with sophisticated approaches like support vector machines (SVM,

[14, 22]) or multilayer perceptrons [6]. The main idea in LVQ is to distribute

prototypes as class representatives in the data space. During the learning the

prototypes are moved toward the randomly presented data points or pushed away

depending on their prede�ned class responsibilities to increase the classi�cation

accuracy. The classi�cation decision for a given data vector is made considering

the dissimilarity of the vector to the model prototypes. Frequently, the dissimilar-

ity is based on a distance measure like the Euclidean distance. Starting from the

basic heuristic LVQ scheme many algorithms were established keeping these prin-

ciples but bearing down the pure heuristic learning dynamic. In particular, those

algorithms approximate the classi�cation accuracy by cost functions to be mini-

mized throughout the learning phase. Prominent examples of such approaches are

the generalized LVQ (GLVQ,[13]), Soft Learning Vector Quantization (SLVQ) and

Soft Nearest Prototype Classi�cation (SNPC) [20, 19]. All these models have in

common that the prototype are located inside the borders of class distribution. In

contrast, SVMs determine data vectors de�ning the class borders such that these

serve as prototypes denoted as support vectors in this context [3, 14, 22]. Here, the

classi�cation learning is performed after implicit mapping of the data into a high-,

and potentially in�nite-, dimensional Hilbert space by kernel mapping using the

theory of reproducing kernel Hilbert spaces (RKHS, [23]). This high-dimensional

mapping o�ers great �exibility in learning, which provides together with the class

border sensitive support vector principle high classi�cation accuracy abilities.

Recent investigations have shown that kernel based learning is also possible for

LVQ methods using universal di�erentiable kernels [28]. In this paper we focus on

class border sensitive learning in GLVQ. For this purpose we consider two di�erent

strategies: First we consider the in�uence of the activation function of the classi�er

function in GLVQ as suggested by [29]. Second, we introduce an additive term for

the cost function in GLVQ forcing the prototypes to move to the class borders.

We show that both strategies lead to the desired class border sensitive prototype

adjustment.

The paper is organized as follows: After a brief review of GLVQ and variants

thereof we provide both strategies for class border sensitive learning in GLVQ. Il-
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lustrating examples show the abilities of the approaches. Some concluding remarks

complete the paper.

2 Generalized Learning Vector Quantization

(GLVQ)

In this section we brie�y revisit the GLVQ and some of it variants neither claim-

ing completeness nor investigating all details. We only focus on these properties

relevant for the topic considered here.

2.1 The basic GLVQ

Basic GLVQ was published by Sato & Yamada in [13]. The aim was to keep the

basic principle of attraction and repulsion in prototype based classi�cation learning

in LVQ but vanquishing the problem of the adaptation heuristic in standard LVQ

as suggested by Kohonen [7]. Precisely, given a set V ⊆ RD of data vectors v

with class labels xv ∈ C = {1, 2, . . . C} and N prototypes wj ∈ W ⊂ RD with

class labels yj ∈ C (j = 1, . . . , N), the GLVQ introduces a cost function

EGLV Q (W ) =
∑

v∈V
f (µ (v)) (1)

where the dependence on W is implicitly given by the classi�er funvtion

µ (v) =
d+ (v)− d− (v)

d+ (v) + d− (v)
(2)

is the classi�er function, via d+ (v) = d (v,w+) denoting the distance between the

data vector v and the closest prototype w+ with the same class label y+ = xv, and

d− (v) = d (v,w−) is the distance to the best matching prototype w− with a class

label y− di�erent from xv. Frequently, the squared Euclidean distance is used. We

remark that µ (v) ∈ [−1, 1] holds. The transfer function f is the monotonically

increasing and frequently taken as a sigmoid function or the identity function

f (t) = t. If we take the logistic function

fθ (µ) =
1

1 + exp
(−µ

2θ2

) (3)

with 0 < fθ (µ) < 1, see Fig. 1.
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Figure 1: Visualization of the sigmoid transfer function fθ (µ) from (3) for di�erent

parameter values θ.

For θ → 0 the logistic function fθ (µ) converges to the Heaviside function

H (x) =

{
0 if x ≤ 0

1 else
. (4)

In this limit the cost functions EGLV Q (W ) counts the misclassi�cations.

Learning takes place as stochastic gradient descent on EGLV Q (W ). In partic-

ular we have

4w+ ∼ ξ+ (v) · ∂d
+ (v)

∂w+
and 4w− ∼ ξ− (v) · ∂d

− (v)

∂w−
(5)

with the scaling factors

ξ+ (v) = f ′ (µ (v)) · 2 · d− (v)

(d+ (v) + d− (v))2 (6)

and

ξ− (v) = −f ′ (µ (v)) · 2 · d+ (v)

(d+ (v) + d− (v))2 . (7)

For the quadratic Euclidean metric we simply have the derivatives

∂d± (v)

∂w±
= −2

(
v −w±

)
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realizing a vector shift of the prototypes in the data space.

Remark 2.1 Although one could think about degenerated data distributions P (V )

in V we always assume that the set W of all prototypes is separable, i.e.

d (wj,wl) > εV for j 6= l with a certain data dependent εV > 0.

This remark ensures a non-zero denominator in the classi�er function (2) and

respective derivatives.

2.2 GLVQ and non-Euclidean distances

As mentioned above, frequently the (squared) Euclidean distance (metric) is used

in GLVQ. Yet, depending on the classi�cation problem other dissimilarity mea-

sures may be more appropriate [5]. For GLVQ the dissimilarity measure d (v,w)

has not necessarily to be a mathematical distance but assumed to be at least a

dissimilarity measure [11], which is di�erentiable in the second argument.1 Thus

the scaled (squared) Euclidean metric

dΛ (v,w) = (v,w)>Λ (v,w) (8)

with the diagonal matrix Λ = diag (λ1, . . . , λD) and λi ≥ 0 was considered in [5].

Here, the diagonal values λi are also adjusted via a gradient descent scheme. Gen-

eralizations of this approach take the positive semi-de�nite matrix Λ as a matrix

product Λ = Ω>Ω with arbitrary matrices Ω ∈ Rm×D to be optimized during the

training [2, 16, 17, 18]. In case of functional data, i.e. the data vectors are dis-

crete representations of positive functions, divergences are proposed as appropriate

dissimilarities [10, 27].

Recent considerations deal with kernel distances

dκΦ
(v,w) =

√
κΦ (v,v) + 2κΦ (v,w) + κΦ (w,w), (9)

as dissimilarity measure [28]. In this distance κΦ (v,w) is an universal di�eren-

tiable kernel [23]. The kernel κΦ (v,w) implicitly de�nes a generally non-linear

mapping Φ : V → Iκ⊕ ⊆ H of the data and prototypes into a high- maybe

in�nite-dimensional function Hilbert space H with the metric dH (Φ (v) ,Φ (w)) =

dκΦ
(v,w) [1, 9]. For universal kernels the image Iκ⊕ = span (Φ (V )) forms a sub-

space ofH [23]. For di�erentiable universal kernels we can de�ne an accompanying

1The last weak assumption assumes that the dissimilarity measure is always used in this

manner that the adaptive prototype is the second argument, as it is usual in the �eld.
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transformation Ψ : V −→ V , where in V the data are equipped with the kernel

metric dκΦ
. The generally non-linear map Ψ is bijective i� Φ does, i.e. i� the

kernel is universal [23]. It turns out that V is an isometric isomorphism to Iκ⊕ ,
and the di�erentiability of the kernel ensures the applicability of the stochastic

gradient learning of GLVQ in V for the kernel distance [28]. Hence, the resulting

kernel GLVQ (KGLVQ) is running in the new data space V which o�ers the same

topological structure and richness as the image Iκ⊕ , which is used in SVMs as

the underlying dual data structure. We denote this new data space as kernelized

data space. However, as explained in the introduction, the prototypes in KGLVQ

remain to be class typical and are not focusing to detect the class borders for class

discrimination.

3 Class Border Sensitive Learning in GLVQ

As we have seen in the previous section, GLVQ can be proceeded using kernel

distances while prototypes remain class typical. This might be a disadvantage if

precise decisions are favored toward class typical prototypes with maybe slightly

decreased accuracy. For this situation it would be desirable to have a GLVQ

variant o�ering such an ability. In this section we provide two possibilities to do

so in GLVQ. The �rst one uses parametrized sigmoid transfer functions f , where

the parameter controls the class border sensitivity. The second approach applies

an additive attraction force for prototypes with di�erent class responsibilities.

3.1 Class Border Sensitive Learning by Parametrized

Transfer Functions in GLVQ

Following the explanations in [24, 29], we investigate in this subsection the in�u-

ence of an appropriate chosen parametrized transfer function f to be applied in

the cost function (1) of GLVQ. For the considerations here the logistic function

(3) is used. It is well-known that the derivative f ′θ (µ (v)) of the logistic function

can be expressed as

f ′θ (µ (v)) =
fθ (µ (v))

2θ2
· (1− fθ (µ (v))) , (10)

which appears in the scaling factors in ξ± (6) and (7) for the winning prototypes

w±. Looking at these derivatives (see Fig. 2) we observe that a signi�cant pro-

totype update only takes place for a small range of the classi�er values µ in (2)

depending on the parameter θ.
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Figure 2: Visualization of the derivative sigmoid transfer function fθ (µ) from (3)

for di�erent parameter values θ.

Hence, we consider the set

Ξ =

{
v ∈ V |µ (v) ∈

]
−1− µθ

1 + µθ
,
1− µθ
1 + µθ

[}

with µθ chosen such that f ′θ (µ) ≈ 0 is valid for µ ∈ Ξ. Complementarily we de�ne

the active set

Ξ̂ = V \Ξ (11)

of the data contributing signi�cantly to a prototype update, see Fig. 3. Obviously,

the active set is distributed along the class decision bounderies, because only there

f ′θ (µ) � 0 is valid. This corresponds to µ (v) ≈ 0. Hence, this active set Ξ̂ can

be understood as another formulation of Kohnen's window rule in LVQ2.1

min

(
d+ (v)

d− (v)
,
d− (v)

d+ (v)

)
≥ 1− w

1 + w
(12)

taking there w = µθ [7, 29]. A similar rule was also obtained for SLVQ and SNPC

[20, 19]. It was used to optimize learning in these algorithms in [21, 15]. The

learning of the parameter θ in GLVQ was explicitly addressed in [29]. Optimization

for accuracy improvement was discussed in [24].
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Figure 3: Visualization of the active set Ξ̂ (green points) for a simple example.

Here we emphasize the aspect that the parameter θ allows a control of the width

of the active set surrounding the class borders. Small θ-values de�ne small stripes

as active sets. In consequence, only these data contribute to the prototype updates.

In other words, according to (11) the active set is crisp but the possibilities for

control are smooth such that we could speak about thresholded active sets. Hence,

border sensitive leads to prototype locations close to the class borders depending

on the control parameter θ.

3.2 Border Sensitive Learning in GLVQ by a Penalty Func-

tion

Class border sensitivity learning by an additive penalty term was proposed for

two-class-problems using two unsupervised fuzzy-c-means models in [30]. The

generalization for more-class-problems and incorporation of neighborhood cooper-

ativeness for convergence improvement is recently proposed in [4]. Here we adopt

these ideas for class border sensitive learning in GLVQ (BS-GLVQ).

For this purpose we suggest a cost function EBS−GLV Q (W ) as a convex sum

EBS−GLV Q (W, γ) = (1− γ) · EGLV Q (W ) + γ · Fneigh (W,V ) (13)
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with the new neighborhood-attentive attraction force (NAAF)

Fneigh (W,V ) =
N∑

v∈V

∑

k:wk∈W−(v)

hNGσ
(
k,w+,W− (v)

)
d
(
w+,wk

)
(14)

and the sensitivity control parameter γ ∈ (0, 1). The set W− (v) ⊂ W is the

set of all prototypes with incorrect class labels for a given data vector v. The

neighborhood function

hNGσ−
(
k,w+,W− (v)

)
= cNGσ− · exp

(
−(rkk (w+,W− (v))− 1)

2

2σ2
−

)
(15)

de�nes a neighborhood of the prototypes inW− (v) with respect to the best match-

ing correct prototype w+ . Here rkk (w+,W− (v)) is the dissimilarity rank function

of the prototypes wk ∈ W− (v) with respect to w+ de�ned as

rkk
(
w+,W− (v)

)
=

∑

wl∈W−(v)

H
(
d
(
w+,wk

)
− d

(
w+,wl

))
(16)

with H being the Heaviside function (4). The neighborhood range is implicitly

controlled by the parameter σ− > 0. This kind of neighborhood function is known

from Neural Gas (NG,[8]) with the modi�cation used in Fuzzy-NG [26, 25].

Remark 3.1 We emphasize at this point that the NAAF Fneigh (W,V ) depends on

the dissimilarity measure used for GLVQ learning via (16). However, it is robust

because only ranks of dissimilarities are involved.

Because of the assumed separability of W (see Remark 2.1) the NAAF

Fneigh (W,V ) is di�erentiable such that gradient based learning is possible. We

have
∂Fneigh (W,V )

∂wj

= hNGσ−
(
j,w+,W− (v)

)
· ∂d (w+,wj)

∂wj

(17)

for a given input vector v and wj ∈ W− (v), i.e. all incorrect prototypes are

gradually moved towards the correct best matching prototype w+ according to

their dissimilarity rank with respect to w+. For decreasing neighborhood range,

as it is usual in learning, only the incorrect prototype with smallest dissimilarity

to w+ is attracted in the limit σ− ↘ 0.

Summarizing we can state that σ− adjusts the neighborhood cooperativness

while the weighting coe�cient γ controls the in�uence of border sensitive learning

in this model.
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3.3 Kernel GLVQ and Class Border Sensitive Learning as

an Alternative to SVMs

Obviously, both proposed methods of class border sensitive learning can be com-

bined with KGLVQ from sec. 2.2: The parametrized transfer function fθ of the

GLVQ cost function (1) takes the underlying dissimilarity measure involved in the

classi�er function µ from (2) into account. However, now explicit new dependence

is installed such that kernel distances are immediately applicable also for this kind

of class border sensitive learning.

For the second method, the dissimilarity measure is explicitly occurring in the

penalty force Fneigh (W,V ) from (14). This penalty term compel an additional

update term for prototype updates (17) containing, hence, the derivative of the

applied dissimilarity measure. Yet, in KGLVQ the dissimilarity is the kernel dis-

tance kernel dκΦ
from (9). Obviously, it is di�erentiable if the kernel is assumed

to be di�erentiable. Therefore, there is no restriction for border sensitive learning

in case of universal di�erentiable kernel.

Summarizing, both methods for border sensitive learning can be combined

with GLVQ. Thus, prototypes in KGLVQ are enabled to detect class borders in

the kernelized data space V like SVMs in the function space Iκ⊕ . However, the

prototypes are neither data vectors itself like support vectors in SVM nor exact

class border vectors. They remain an average over the local data points surround-

ing the class borders. A further di�erence to SVMs is the model complexity, which

is automatically prede�ned by the choice of the number of prototypes used for each

class. As pointed out above, SVMs may occupy many data to serve as support

vectors. In the worst case all data become support vectors. KGLVQ without any

growing strategy would deliver reduced accuracy in case of underestimated num-

ber of needed prototypes. The restriction to prototypes being data vectors could

be realized applying median variants of LVQ [12]. An extension of this idea to

GLVQ is topic of current research.

4 Illustrative Simulations

In the following we give some illustrative examples for the above introduced con-

cepts. All data sets are two-dimensional for better visualization.

The �rst example demonstrates the in�uence of the parameter θ of the logistic

function fθ in the cost function EGLV Q (W ) from (1). We consider a two-class-

problem, see Fig.4. Depending on the chosen value θ, the active set Ξ̂ varies and
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Figure 4: Visualization of in�uence of the parameter θ of the logistic function fθ
in the cost function EGLV Q (W ). Depending on θ, the active set Ξ̂ becomes thin

or thick and the prototypes (black symbols) move accordingly.

the prototypes are adapted accordingly. We can observe, that for smaller values

of θ the active set becomes smaller and, hence, the prototypes are localized closer

to the border.

In the second example we consider the BS-GLVQ for a three-class problem.

In the �rst simulation of this task only one prototype is used per class. If we

have a non-vanishing penalty in�uence, i.e. γ > 0 in the cost function (13), the

prototypes are moved to the class borders whereas for γ = 0, which is equivalent to

standard GLVQ, the prototypes are positioned approximately in the class centers,

see Fig. 5. If more than one prototype per class are used, the prototypes are

placed close to the class borders as well as in the inner class regions, see Fig. 6.

Hence, the slowly vanishing neighborhood cooperativeness according to (15) with

decreasing range σ− ↘ 0 during the adaptation process, distributes the prototypes

close to the class borders as well as into the class centers.
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Figure 5: Visualization of in�uence of the penalty term Fneigh (W,V ) in the cost

function EBS−GLV Q (W, γ) controlled by γ. Only one prototype per class is allowed.
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Figure 6: Visualization of border sensitive learning using the penalty term

Fneigh (W,V ) with 4 prototypes per class (black symbols). Three prototypes per

class detect the class borders whereas one prototype for each class is responsible

for the inner class areas.
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5 Conclusion and Outlook

In the present contribution we considered two possibilities for class border sensi-

tive learning in GLVQ whereas original GLVQ adjusts the prototypes in the center

of the classes. This is in contrast to SVMs, where the support vectors (proto-

types) represent the class borders. The �rst possibility to achieve such a behavior

in GLVQ uses the parametrized logistic function as transfer function in GLVQ,

whereby the parameter controls the strength of the class border sensitivity. The

second approach utilizes an additive penalty term in the cost function of GLVQ to

obtain class border sensitivity. We have shown illustrative examples that both ap-

proaches deliver the expected results. An advantage of the introduced approaches

compared to SVM is the explicit control of the model complexity, because the

number of prototypes has to be chosen in advance whereas in SVMs the number

of support vector may become quite large in case of di�cult classi�cation tasks.

Hence, the provided extensions of GLVQ can be seen as an alternative to SVM, in

particular, if border sensitivity is combined with KGLVQ, because it o�ers a good

control over the model complexity while o�ering both border-sensitive prototypes

and class-representing prototypes at the same time. Additionally, the range of

neighborhood cooperativness in BS-(K)GLVQ allows a control of the amount of

prototypes to be sensitive for class borders.

MIWOCI Workshop - 2012

Machine Learning Reports 53



References

[1] N. Aronszajn. Theory of reproducing kernels. Transactions of the American

Mathematical Society, 68:337�404, 1950.

[2] K. Bunte, P. Schneider, B. Hammer, F.-M. Schleif, T. Villmann, and M. Biehl.

Limited rank matrix learning, discriminative dimension reduction and visu-

alization. Neural Networks, 26(1):159�173, 2012.

[3] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-

chines and other kernel-based learning methods. Cambridge University Press,

2000.

[4] T. Geweniger, M. Kästner, and T. Villmann. Border sensitive classi�cation

learning in fuzzy vector quantization. Machine Learning Reports, 6(MLR-04-

2012):in press, 2012. ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/˜

fschleif/mlr/mlr_04_2012.pdf.

[5] B. Hammer and T. Villmann. Generalized relevance learning vector quanti-

zation. Neural Networks, 15(8-9):1059�1068, 2002.

[6] S. Haykin. Neural Networks. A Comprehensive Foundation. Macmillan, New

York, 1994.

[7] T. Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Informa-

tion Sciences. Springer, Berlin, Heidelberg, 1995. (Second Extended Edition

1997).

[8] T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. 'Neural-gas' network

for vector quantization and its application to time-series prediction. IEEE

Trans. on Neural Networks, 4(4):558�569, 1993.

[9] J. Mercer. Functions of positive and negative type and their connection with

the theory of integral equations. Philosophical Transactions of the Royal

Society, London, A, 209:415�446, 1909.

[10] E. Mwebaze, P. Schneider, F.-M. Schleif, J. Aduwo, J. Quinn, S. Haase,

T. Villmann, and M. Biehl. Divergence based classi�cation in learning vector

quantization. Neurocomputing, 74(9):1429�1435, 2011.

[11] E. Pekalska and R. Duin. The Dissimilarity Representation for Pattern Recog-

nition: Foundations and Applications. World Scienti�c, 2006.

MIWOCI Workshop - 2012

54 Machine Learning Reports



[12] I. Pitas, C. Kotropoulos, N. Nikolaidis, R. Yang, and M. Gabbouj. Order

statistics learning vector quantizer. IEEE Transactions on Image Processing,

5(6):1048�1053, 1996.

[13] A. Sato and K. Yamada. Generalized learning vector quantization. In D. S.

Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural

Information Processing Systems 8. Proceedings of the 1995 Conference, pages

423�9. MIT Press, Cambridge, MA, USA, 1996.

[14] B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2002.

[15] P. Schneider, M. Biehl, and B. Hammer. Hyperparameter learning in robust

soft LVQ. In M. Verleysen, editor, Proceedings of the European Symposium

on Arti�cial Neural Networks ESANN, pages 517�522. d-side publications,

2009.

[16] P. Schneider, K. Bunte, H. Stiekema, B. Hammer, T. Villmann, and M. Biehl.

Regularization in matrix relevance learning. IEEE Transactions on Neural

Networks, 21(5):831�840, 2010.

[17] P. Schneider, B. Hammer, and M. Biehl. Adaptive relevance matrices in

learning vector quantization. Neural Computation, 21:3532�3561, 2009.

[18] P. Schneider, B. Hammer, and M. Biehl. Distance learning in discriminative

vector quantization. Neural Computation, 21:2942�2969, 2009.

[19] S. Seo, M. Bode, and K. Obermayer. Soft nearest prototype classi�cation.

IEEE Transaction on Neural Networks, 14:390�398, 2003.

[20] S. Seo and K. Obermayer. Soft learning vector quantization. Neural Compu-

tation, 15:1589�1604, 2003.

[21] S. Seo and K. Obermayer. Dynamic hyperparameter scaling method for LVQ

algorithms. In Proc. of the International Joint Conference on Neural Net-

works (IJCNN'06), pages 3196 � 3203. IEEE Press, 2006.

[22] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis and

Discovery. Cambridge University Press, 2004.

[23] I. Steinwart. On the in�uence of the kernel on the consistency of support

vector machines. Journal of Machine Learning Research, 2:67�93, 2001.

MIWOCI Workshop - 2012

Machine Learning Reports 55



[24] M. Strickert. Enhancing M|G|RLVQ by quasi step discriminatory func-

tions using 2nd order training. Machine Learning Reports, 5(MLR-06-

2011):5�15, 2011. ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/ ˜

fschleif/mlr/mlr_06_2011.pdf.

[25] T. Villmann, T. Geweniger, M. Kästner, and M. Lange. Theory of fuzzy

neural gas for unsupervised vector quantization. Machine Learning Reports,

5(MLR-06-2011):27�46, 2011. ISSN:1865-3960, http://www.techfak.uni-

bielefeld.de/˜fschleif/mlr/mlr_06_2011.pdf.

[26] T. Villmann, T. Geweniger, M. Kästner, and M. Lange. Fuzzy neural gas

for unsupervised vector quantization. In L. Rutkowski, M. Korytkowski,

R. Scherer, R. Tadeusiewicz, L. Zadeh, and J. Zurada, editors, Arti�cial In-

telligence and Soft Computing - Proc. the International Conference ICAISC,

Zakopane, volume 1 of LNAI 7267, pages 350�358, Berlin Heidelberg, 2012.

Springer.

[27] T. Villmann and S. Haase. Divergence based vector quantization. Neural

Computation, 23(5):1343�1392, 2011.

[28] T. Villmann and S. Haase. A note on gradient based learning in vec-

tor quantization using di�erentiable kernels for Hilbert and Banach spaces.

Machine Learning Reports, 6(MLR-02-2012):1�29, 2012. ISSN:1865-3960,

http://www.techfak.uni-bielefeld.de/˜fschleif/mlr/mlr_02_2012.pdf.

[29] A. Witoelar, A. Gosh, J. de Vries, B. Hammer, and M. Biehl. Window-

based example selection in learning vector quantization. Neural Computation,

22(11):2924�2961, 2010.

[30] C. Yin, S. Mu, and S. Tian. Using cooperative clustering to solve multi-

class problems. In Y. Wang and T. Li, editors, Foundation of Intelligent

Systems - Proc. of the Sixth International Conference on Intelligent Systems

and Knowledge Engineering (ISKE 2011), Shanghei, China, volume 122 of

Advances in Intelligent and Soft Computing, pages 327�334. Springer, 2012.

MIWOCI Workshop - 2012

56 Machine Learning Reports



Accelerated Vector Quantization by Pulsing

Neural Gas

Lydia Fischer, Mandy Lange, Marika Kästner, Thomas Villmann

University of Applied Sciences Mittweida,

Technikumplatz 17, 09648 Mittweida, Germany

Abstract

In this article we introduce a new variant of neural vector quantization

based on neural gas. It is a combination of standard neural gas vector

quantizer with a simulated annealing approach while keeping the rank-based

approach. Especially, for the batch version of neural gas, which usually

converges rapidly but have a strong tendency to stuck in local optima, this

might be a strategy overcome these di�culties.

1 Introduction

Clustering and vector quantization is still a challenging task requiring powerful

algorithms, in particular, if large data sets have to be processed. Neural vector

quantizer like self-organizing maps (SOM,[8]) or neural gas (NG,[10]) are powerful

prototype-based methods for fast and accurate data analysis. The Heskes-variant

of SOM [5] as well as NG realize a stochastic gradient descent on a cost function

related to the squared description error. However, stochastic gradient approaches

usually require long-time training processes according to the underlying theory

[3, 9, 11]. Faster learning may cause suboptimal solution because the algorithms

stuck in local minima. This property is frequently observed for the batch variants.

A strategy to avoid this behavior is simulated annealing [7].

In the present contribution we combine the NG vector quantizer with ideas

adopted from simulated annealing, i.e. we introduce a reverse learning: It is carried

out with some probability during learning to achieve a temporarily deterioration

of the prototype con�guration, which increases the probability to abandon a local

1
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optimum. For this purpose, we brie�y revisit the NG. Thereafter, we introduce

the new reverse learning obtaining the so-called Pulsing NG.

2 Neural Gas

For the neural gas, we consider a data set V with data points v and we would like

to have a set of prototypes W = {wj|j = 1, . . . , N} which represent the data set

V = {vk|j = 1, . . . ,M}. The NG minimizes the cost function

ENG =
1

2 · C(λ)

ˆ N∑

j=1

P (v) · hλ(rgj(v,W)) · (v −wj)
2dv (1)

by means of stochastic gradient descend learning [10]. Here,

d(v,wj) = (v −wj)
2

is the squared Euclidean distance and P (v) is the data point density. The function

rgj(v,W) ∈ {0, . . . , N − 1} quotes the position of each prototype wj according

to the data point v. It can be calculated in the following way

rgj(v,W) =
N∑

i=1

H(d(v,wj)− d(v,wi)) (2)

and H(x) is the Heaviside-function. According to rgj(v,W) we introduce a neigh-

borhood function hλ(rgj(v,W)). It is de�ned as

hλ(rgj(v,W)) = e

(
− rgj(v,W)

λ

)

. (3)

The prototypes wj are updated correspondingly to the stochastic gradient decent

on ENG (1) as

wj = wj − ε
∂ENG
∂wj

(4)

with
∂ENG
∂wj

∼ −hλ(rgj(v,W)) · (v −wj). (5)

In each update step, a randomly selected data point v is presented according to the

data distribution P (v). Then the prototypes are updated by means of (4). This

update rule (4) is a 'soft-max ' adaption because not only the closest prototype to
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the data point is updated assort all prototypes get an update according to their

position rgj(v,W). The number of prototypes taken e�ecctively into account

during the update can be controlled by the neighborhood range λ.

In [1] an advanced version of the NG, the Batch NG (BNG) was presented,

which converges faster. In each iteration step all data points are considered and

therefore all prototypes are updated. The update rule for the prototypes is the

following:

wj =

M∑
k=1

hλ(rgj(v,W)) · vk
M∑
k=1

hλ(rgj(v,W))

. (6)

However, this BNG shows a strong tendency to stuck in local minima. This

is demonstrated for the well-known two-dimensional (multimodal) checkerboard

data set from [4], visualized in Fig. 1.

3 A Simulated Annealing Modi�cation of Neural

Gas Algorithm

In the following we discuss a strategy to improve the convergence behavior of

BNG adopting ideas from Simulated Annealing (SA) [7]. First we brie�y review

SA. After this we consider its integration into NG/BNG.

3.1 Simulated Annealing

An e�ective strategy of optimization is the heuristic SA [7]. The idea of SA comes

from thermodynamics such that a deterioration during the optimization process is

accepted with a certain probability. This strategy allows to leave local optima in

order to �nd the global one. In particular, let us assume a cost function f(x)→ R
and a setX of feasible solutions. Without loss of generality the cost function has to

be minimized. We start with a feasible solution x ∈ X and create a neighborhood

N(x) ⊆ X related to this solution. Afterwards another solution xnew ∈ N(x) is

picked. It will be immediately accepted, if f(xnew) < f(x) is valid. Otherwise, it

will be accepted only with some probability

p(∆, T ) = e(−
∆
T ). (7)
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Figure 1: Clustering of a (multimodal) checker board data set by NG (batch)

and PNG (batch). The NG-variants use as many prototypes as clusters in the

checkerboard. The PNG achieves better results than NG: the latter one shows

more inaccurate prototypes.
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with ∆ = f(xnew) − f(x). In fact, p(∆, T ) is chosen as a Boltzmann-Gibbs

probability with the 'temperature' T , which is slowly decreased during time. Thus,

the algorithm temporarily approves worse solutions with decreasing probability.

3.2 Integration of Simulated Annealing into Neural Gas �

Pulsing Neural Gas

The Pulsing Neural Gas (PNG) is a combination of NG and SA. In the following

we denote a time step in which an iterative algorithm generates an de�nitely worse

solution as a negative learning or negative learning step. In terms of the NG cost

function ENG (1) a negative learning would yield an increasing cost function value.

In case of stochastic gradient learning a descent is not guaranteed in each learning

step. Hence, the character, positive or negative, has to be determined separately

based on the evaluation of ENG. Of course, in average, i.e. with high probability,

we can assume positive learning for usual NG.

Negative learning would correspond to an acceptance of a deterioration in SA.

A possibility for averaged negative learning would be to apply a gradient ascent

step with some probability. This probability should follow the Boltzmann-Gibbs

distribution as in SA. However, investigations have shown that this strategy cause

unstable learning [2]. Therefore, we suggest another way instead of a gradient

ascent: According to the Gibbs-probability a reverse ranking

rg−j (v,W) = (N − 1)−
N∑

i=1

H(d(v,wj)− d(v,wi)). (8)

of the prototypes for a given data point v is applied. It reverses the usual (positive)

ranking from (2) in such a way that here the prototype with the largest distance

becomes the best zero-rank, see Fig.2.

Then, a reverse learning step in online NG is executed as

wj = wj + ε
∂E−NG
∂wj

. (9)

whereby E−NG is the cost function of NG but with the new negative rank function

(8). Analogously, a reverse learning in BNG is accomplished by

wj =

∑
v∈A

hλ(rg
−
j (v,W)) · v

∑
v∈A

hλ(rg
−
j (v,W))

. (10)
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Figure 2: Comparison of the positive and negative ranking in NG for a given

data vector v and resulting adaptation shifts: left - usual (positive) ranking in

NG according to the rank function rgj(v,W) from (2) with usual NG-learning;

right - negative ranking according to rg−j (v,W) from (8) with reverse learning.

Prototypes are depicted as red squares and data points as black dots.

whereas A ⊂ V is an non-empty subset.

In average, reverse learning leads to negative learning and, hence, realizes the

SA-strategy. The resulting pulsing NG (PNG) algorithm is summarized in Alg.

1.

A careful reverse learning (10) has a strong in�uence on the realization of a

severe degradation. To avoid too heavy distortions one can use a convex linear

combination of usual NG-learning and reverse learning [2].

Application of the PNG to the above checkerboard problem delivers better

results, see Fig. 1. The development in time of the NG cost function ENG is

depicted in Fig. 3 for BNG and (batch) PNG.

We clearly observe the improved convergence behavior.

4 Conclusion

In this contribution we introduce the pulsed neural gas (PNG) as an alternative

to standard NG. It incorporates ideas of simulated annealing into NG to avoid

local minima. This is is of particular interest, if batch variants are applied, which

frequently cause only local optimality. It should be noted at this point that PNG
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Figure 3: Clustering of a checker board data set by NG (batch) and PNG (batch).

The PNG achieves better results than NG, which shows more inaccurate proto-

types.
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Algorithm 1 PNG
Input: data set V, number of prototypes

Output: prototypes wj

initialization

for T = 0 to training steps do

determine p(T ), uniformly distributed random number z

if p(T ) < z then

original NG step

else

reverse learning step

end if

end for

is not restricted to the Euclidean distance. Obviously, other di�erentiable dissim-

ilarity measures like divergences or kernel distance may be applied replacing the

respective derivatives accordingly [6, 12, 13, 14].
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