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Abstract

Exemplar based techniques such as affinity propagation represent data in terms of
typical exemplars. This has two benefits: (i) the resulting models are directly inter-
pretable by humans since representative exemplars can be inspected in the same way
as data points, (ii) the model can be applied to any dissimilarity measure including
non-Euclidean or non-metric settings. Most exemplar based techniques have been
proposed in the unsupervised setting only, such that their performance in supervised
learning tasks can be weak depending on the given data. We address the problem
of learning exemplar-based models for general dissimilarity data in a discriminative
framework in this contribution. For this purpose, we extend a generative model to an
exemplar based scenario using a generalized EM framework for its optimization. The
resulting classifiers represent data in terms of sparse models thereby reaching state-
of-the art results in benchmarks.
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Abstract

Exemplar based techniques such as affinity propagation [13] represent
data in terms of typical exemplars. This has two benefits: (i) the resulting
models are directly interpretable by humans since representative exemplars
can be inspected in the same way as data points, (ii) the model can be ap-
plied to any dissimilarity measure including non-Euclidean or non-metric
settings. Most exemplar based techniques have been proposed in the un-
supervised setting only, such that their performance in supervised learning
tasks can be weak depending on the given data. We address the problem
of learning exemplar-based models for general dissimilarity data in a dis-
criminative framework in this contribution. For this purpose, we extend a
generative model proposed in [36] to an exemplar based scenario using a
generalized EM framework for its optimization. The resulting classifiers
represent data in terms of sparse models thereby reaching state-of-the art
results in benchmarks.



1 Introduction

Machine learning has revolutionized the possibility to deal with large electronic
data sets. Nevertheless, rapid technological developments continue to pose chal-
lenges to the field, such as the big data challenge, or the problem of complex
non-vectorial structures, which are increasingly common. Examples of the latter
include biological sequences, mass spectra, or metabolic networks, where com-
plex alignment techniques, background information, or general information theo-
retical principles, for example, drive the comparison of data points [29, 23, 18].
These data cannot be embedded in Euclidean space, and they often do not even
fulfill the properties of a metric. Further, for dissimilarities such as used in so-
cial network analysis even pseudo-Euclidean embedding such as proposed in [28]
might fail due to asymmetric dissimilarities. These developments have caused
the need for non-vectorial machine learning tools such as e.g. structure kernels,
recursive models, relational models, or quotient embeddings [19, 16, 10].
Since learning tasks become more and more complex, the specific objectives are
often not clear a priori. This challenge requires increasingly interactive systems
which allow humans to shape the problems according to human insights and ex-
pert knowledge at hand [37]. A vital property of machine learning models in this
context is their interpretability by means of semantically meaningful interfaces
[31]. While interpretable models enable the change of their functionality by ex-
perts, popular black box techniques such as the SVM often only provide an excel-
lent classification performance, but no insight on why this is the case. It is hardly
possible to visualize its decisions to domain experts in such a way that relevant
information can be inferred based thereon by a human observer. The same argu-
ment, although to a lesser degree, is valid for alternatives such as the relevance
vector machine or sparse models which typically still rely on complex nonlinear
combinations [38].
The demand of interpretability can be met with quite diverse technologies, such
as sparsity, relevance learning, or enhancement by visualization [3]. One example
is offered by dissimilarity based learning: this relies on comparisons of given data
to known labeled data points. Hence it is usually easy to interpret the decision: a
small number of closest neighbors accounts for the observed classification. These



neighbors can directly be inspected by experts in the same way as data points.
Because of this fact, similarity based techniques enjoy a large popularity in appli-
cation domains such as biomedical applicatons, whereby the methods range from
simple k-nearest neighbor classifiers and learning vector quantization up to ad-
vanced techniques such as affinity propagation which represents a clustering in
terms of typical exemplars [21, 13, 1].
Dissimilarity based techniques can be distinguished according to different criteria:
(i) The number of data points used to represent the classifier ranging from dense
models such as k-nearest neighbor to sparse representations such as prototype
based methods. To arrive at easily interpretable models, a sparse representation in
terms of few data points is necessary. (ii) The degree of supervision ranging from
clustering techniques such as affinity propagation to supervised learning. Here we
are interested in classification techniques, i.e. supervised learning. (iii) The com-
plexity of the dissimilarity measure the methods can deal with ranging from vecto-
rial techniques restricted to Euclidean spaces, adaptive techniques which learn the
underlying metrics, up to tools which can deal with arbitrary similarities or dis-
similarities [27, 33, 30]. Typically, Euclidean techniques are well suited for simple
classification scenarios, but they fail if complex structures are encountered.
Learning vector quantization (LVQ) constitutes one of the few methods to infer a
sparse representation in terms of prototypes from a given data set in a supervised
way [21], such that it offers a good starting point as an intuitive classification tech-
nique which decisions can directly be inspected by humans. Albeit original LVQ
has been introduced on somewhat heuristic grounds [21], recent developments in
this context provide a solid mathematical derivation of its generalization ability
and learning dynamics: LVQ classifiers can be substantiated by large margin gen-
eralization bounds [9, 33]; the dynamics of LVQ type algorithms can be derived
from explicit cost functions [33, 36, 35]. Interestingly, already the dynamics of
classical LVQ provably leads to very good generalization ability in typical model
situation as investigated in the framework of online learning [4].
A severe drawback of LVQ type classifiers is their dependency on the Euclidean
metric. This problem can partially be avoided by appropriate metric learning, see
e.g. [33], or by kernel variants, see e.g. [30], which turn LVQ classifiers into state-
of-the-art techniques e.g. in connection to humanoid robotics or computer vision



[12, 20]. However, if data are inherently non-Euclidean, these techniques cannot
be applied. Recently, an extension of LVQ type learning by means of an implicit
embedding in pseudo-euclidean space has been proposed [17]. Albeit yielding
state-of-the-art results, this technique faces two problems: it cannot be used for
asymmetric dissimilarities where no pseudo-euclidean embedding exists; by rep-
resenting prototypes in terms of distributed coefficient vectors, interpretability,
one of LVQ’s main benefits, is lost. In this contribution, we address the problem
by taking an alternative point of view: we address LVQ algorithms derived from
generative statistical models, and we extend these techniques to exemplar based
learners suitable for arbitrary dissimilarities, similar to the unsupervised setting as
proposed in [13].
Unlike unsupervised generative models for density estimation such as classical
mixtures of Gaussians, extensions towards more general data structures, or ex-
tensions towards richer functionality [5, 6, 14] supervised generative models face
two partially contradictory objectives: parameterized generative models describe
the data distribution using few, preferably interpretable model parameters; at the
same time, the discriminative power of the model depends on its ability to repre-
sent a suitably nonlinear and possibly complex decision boundary. Often, these
two objectives are taken into account in separate steps only, e.g. training gener-
ative models individually on every given class, or incorporating supervised label
information as side information for the adaptation of some model parameters only,
such as e.g. metric parameters [5, 15].
One interesting approach which transfers classical generative mixture models to
a discriminative setting by means of an explicit discriminative cost function has
been proposed in [36]: prototypes are equipped with labels, which determine the
classification of a given data point. Training takes place by means of a likelihood
ratio maximization. In the limit of small bandwidths, a learning rule similar to a
classical heuristic LVQ variant results; however, in this limit, the performance of
the classifier is often worse as compared to the full probabilistic model [4]. Here,
we extend this approach towards general dissimilarity data by taking an exem-
plar based point of view. A training algorithm can be derived thereof by means
of a generalized EM scheme, yielding a state-of-the-art classifier with superior
performance as opposed to unsupervised exemplar-based approaches [13].



2 Supervised generative models in Euclidean space

Assume the data space X is a standard Euclidean vector space. Assume data points
x1, . . . , xN together with labels y1, . . . , yN ∈ {1, . . . , C} are given. Robust soft
learning vector quantization (RSLVQ) as proposed in [36] represents data in terms
of a mixture model with model parameters Θ = {θ1, . . . , θM} ∈ X which induce
the probability

p(xi|Θ) =
M∑

j=1

p(θj)p(xi|θj)

where, typically, the prior probabilities p(θj) are chosen as constant and p(xi|θj)
is given by a Gaussian distribution in Euclidean space. In [36], the correlation
matrix is taken as unit matrix, a generalization towards a general form has been
proposed in [34]. For such a mixture of Gaussian, the model parameters θi take
the role of prototypes and they can serve as an interface towards an interpretation
of the model.
For the supervised setting, every prototype is equipped with a class label ci ∈
{1, . . . , C}, yielding the joint distribution

p(xi, yi|Θ) =
M∑

j=1

δyicj · p(θj)p(xi|θj)

with Kronecker δ. Marginalization gives p(yi|Θ) =
∑M

j=1 δ
yi
cj
· p(θj). Thus

p(yi|xi,Θ) =
p(xi, yi|Θ)

p(xi|Θ)
=

∑M
j=1 δ

yi
cj
· p(θj)p(xi|θj)∑M

j=1 p(θj)p(xi|θj)
.

Trainings takes place by an optimization of the log likelihood ratio, assuming i.i.d.
data:

K(X,Θ) =
N∑

i=1

ln p(yi|xi,Θ)

In Euclidean space, a standard gradient technique can be used for optimization.



3 Supervised generative models for dissimilarity
data

Assume X is a possibly non-Euclidean measurable space equipped with a proba-
bility distribution p. The cost function of RSLVQ can be transferred to this setting
provided a suitable probability measure p(xi|θj) is given. There remain, however,
two problems:

• In the absence of an underlying vector space, how to define a suitable prob-
ability p(xi|θj) and a suitable space of parameters θj for this model, which
still yields interpretable representations?

• How to train the model? Optimization by means of gradient techniques is
usually impossible unless X is embedded in a real-vector space.

Here, we are particularly interested in settings where data are characterized by
pairwise dissimilarities only, as discussed e.g. in [28, 7]. This corresponds to data
xi being represented by terms d(xi, xj) for all pairs of points where d(xi, xj) ≥ 0

is some reasonable measure for the dissimilarity of two objects. Thereby, we do
not assume Euclideanity of d, in which case kernel techniques can be used. Nor do
we assume symmetry, which would enable the embedding into pseudo-Euclidean
spaces [28].

Extension of the objective to exemplars

Since the underlying space X is unknown, we take an exemplar based approach
similar to [13]: model parameters θj are restricted to data points {x1, . . . , xN},
such that the dissimilarity d(xi, θj) is always well defined. If d is measurable and
non negative, we can define a probability in analogy to Gaussians as

p(xi|θj) =
1

Kj

· exp(−d(xi, θj)/σ
2)

with normalizing constant Kj =
∫
X exp(−d(xi, θj)/σ

2)dp(x). Thereby, Kj is
usually not known and it has to be estimated from data; for simplicity, isotropy is



often assumed, i.e. Kj is constant. Note that this choice preserves interpretabil-
ity of the model parameters θj provided d constitutes a reasonable dissimilarity
measure, since decisions are based on the dissimilarity compared to the closest
exemplar.

Optimization

For optimization of the model parameters, instead of gradient techniques as used
in the vectorial case, a generalized EM strategy is possible, as we will show in the
following. The objective

K(X,Θ) =
N∑

i=1

ln p(yi|xi,Θ) =
N∑

i=1

ln
M∑

j=1

δyicj ·
p(θj)p(xi|θj)∑M
j=1 p(θj)p(xi|θj)

decomposes into a sum of nonnegative functions

g(xi, yi, θj) = δyicj ·
p(θj)p(xi|θj)∑M
j=1 p(θj)p(xi|θj)

Set

p(θj|xi, yi) =
δyicj · p(θj)p(xi|θj)∑M
j=1 δ

yi
cj · p(θj)p(xi|θj)

=
g(xi, yi, θj)∑M
j=1 g(xi, yi, θj)

as probability of mode number j. Assume that γ(θj|xi, yi) is any probability dis-
tribution of the mode θj conditioned on the point xi with label yi. Then, the



objective can be decomposed as

K(X,Θ) =
N∑

i=1

ln

(
M∑

j=1

g(xi, yi, θj)

)

= −
N∑

i=1

(
M∑

j=1

γ(θj|xi, yi)
)

ln

(
1∑M

k=1 g(xi, yi, θk)

)

=
N∑

i=1

M∑

j=1

γ(θj|xi, yi) ln

(
g(xi, yi, θj)

γ(θj|xi, yi)

)
−

N∑

i=1

M∑

j=1

γ(θj|xi, yi) ln

(
g(xi, yi, θj)

γ(θj|xi, yi)

)

−
N∑

i=1

M∑

j=1

γ(θj|xi, yi) ln

(
1∑M

k=1 g(xi, yi, θk)

)

=
N∑

i=1

M∑

j=1

γ(θj|xi, yi) ln

(
g(xi, yi, θj)

γ(θj|xi, yi)

)

−
N∑

i=1

M∑

j=1

γ(θj|xi, yi) ln


 g(xi, yi, θj)(∑M

k=1 g(xi, yi, θk)
)
γ(θj|xi, yi)




=
N∑

i=1

Li (γ,Θ) +
N∑

i=1

Ki (γ||p)

where

Li (γ,Θ) =
M∑

j=1

γ(θj | xi, yi) ln

(
g(xi, yi, θj)

γ(θj | xi, yi)

)

and

Ki(γ||p) = −
M∑

j=1

γ(θj | xi, yi) ln

(
p(θj | xi, yi)
γ(θj | xi, yi)

)

denotes the Kullback-Leibler divergence of the two probabilities. Since the latter
is non-negative, the function

∑N
i=1 Li (γ,Θ) constitutes a lower bound for the

objective K(X,Θ).
Within a generalized EM scheme, starting from a random initialization of the
model parameters θj as random data points xi with suitable label, an iterative
improvement of the objective is possible as shown in Algorithm 1, similar to a
classical EM scheme as introduced in [11, 25]. Note that the objective K(X,Θ) is



improved in every adaptation cycle, since step 2 sets the Kullback-Leibler diver-
gence to 0 such that, for this choice of γji, the objective coincides with its lower
bound

∑N
i=1 Li (γ,Θ). Step 3 improves this function per definition. Since only a

finite number of different model parameters θj are available, stemming from the
given exemplars, the algorithm converges in a finite number of iterations.
Note that step 2 can easily be realized by setting

γji ←
δyicj · p(θj)p(xi|θj)∑
j δ

yi
cj · p(θj)p(xi|θj)

The objective
∑N

i=1 Li (γ,Θ) in step 3 decomposes for every j into summands of
the form

N∑

i=1

γji ln
g(xi, yi, θj)

γji

hence we can optimize the terms by setting a parameter θj ← xl where
N∑

i=1

γji ln g(xi, yi, θj) <
N∑

i=1

γji ln g(xi, yi, xl)

This can be evaluated in O(N2) for every mode j and all xl .

Alternative objectives

This generalized EM scheme allows us to transfer the method to alternative costs
which are not explicitly formulated as likelihood optimization, but which can be

Algorithm 1 Generalized EM algorithm for the optimization of the likelihood
cost function

1. Initialize Θold

2. E Step: γji := γ(θj | xi, yi)← p(θold
j | xi, yi) ∀j, i

3. M Step: for fixed γji, determine Θnew which improves the function∑N
i=1 Li (γ,Θ)

4. If Θnew = Θold then stop, else set: Θold ← Θnew and go to step 2.



decomposed into a sum of non-negative contributions. Alternative optimization
schemes for LVQ type classifiers have been proposed in [32] based on the ob-
jective of margin maximization and in [35] based on the misclassification error.
These objectives can be decomposed in a similar way, offering the possibility to
introduce exemplar based counterparts suited for general dissimilarity data. Note
that, albeit the training objective is different in these settings, the form of the
resulting classifier is the same as for RSLVQ, being an exemplar based nearest
neighbor classifier. We exemplarily evaluate median generalized LVQ (mGLVQ)
as extension of [32].

4 Experiments

We evaluate the proposed model in comparison to alternatives using the bench-
mark scenarios as proposed in [7]. These benchmarks contain dissimilarity data
represented in terms of pairwise dissimilarities only. In general, these data are
non-Euclidean, such that SVM techniques cannot directly be applied. The ap-
proach [7] investigates a preprocessing of the data by diverse techniques to enforce
a positive semidefinite kernel for SVM. In addition to SVM, we compare to an
exemplar-based unsupervised clustering with posterior labeling obtained by affin-
ity propagation (AP) [13], and kernel LVQ variants and relational LVQ, which
implicitly embed data in Euclidean or pseudo-Euclidean space [17]. Note that
only the exemplar based techniques AP and the LVQ variant as developed in this
contribution represent data in terms of a small number of exemplars suitable for a
direct inspection. Both, kernel and relational LVQ, represent prototypes in terms
of distributed coefficients only. For SVM and kernel variants, preprocessing of
non-Euclidean data is necessary; for this purpose the best results obtained by clip,
flip, or shift are reported [7].
The data sets are as follows:

1. Voting contains 435 samples in 2 classes, representing categorical data com-
pared based on the value difference metric [7].

2. Aural Sonar consists of 100 signals with two classes (target of inter-



est/clutter), representing sonar signals with dissimilarity measures accord-
ing to an ad hoc classification of humans [7].

3. Protein consists of 213 data from 4 classes, representing globin proteins
compared by an evolutionary measure [7].

4. Face Recognition consists of 945 samples with 139 classes, representing
faces of people, compared by the cosine similarity [7].

5. The sonatas data set contains complex symbolic data similar to [24]. It
contains dissimilarities between 1,068 sonatas from the classical period
(Beethoven, Mozart and Haydn) and the baroque era (Scarlatti and Bach).
The data are in the MIDI file format, taken from the online MIDI collec-
tion Kunst der Fuge1. Their mutual dissimilarities are measured with the
normalized compression distance (NCD), see [8], which is applied to a a
specific preprocessing, which integrates invariances for music information
retrieval, see [24]. The musical pieces are classified according to their com-
poser.

6. The Copenhagen Chromosomes data set constitutes a benchmark from cy-
togenetics [22]. A set of 4,200 human chromosomes from 21 classes (the
autosomal chromosomes) are represented by grey-valued images. These
are transferred to strings measuring the thickness of their silhouettes. These
strings are compared using edit distance [26].

7. The Vibrio data set consists of 1,100 samples of vibrio bacteria populations
characterized by mass spectra. The spectra contain approx. 42,000 mass
positions. The full data set consists of 49 classes of vibrio-sub-species. The
mass spectra are preprocessed with a standard workflow using the BioTyper
software [23]. As usual, mass spectra display strong functional characteris-
tics due to the dependency of subsequent masses, such that problem adapted
similarities such as described in [2, 23] are beneficial. In our case, sim-
ilarities are calculated using a specific similarity measure as provided by

1www.kunstderfuge.com



the BioTyper software[23]. The Vibrio similarity matrix S has a maximum
score of 3. The corresponding dissimilarity matrix is obtained asD = 3−S.

All data sets are characterized by dissimilarity matrices only, which are symmet-
ric, but not Euclidean. One can characterize the non-Euclideanity of the data by
a reference to the signature, which corresponds to the triplet formed by the num-
ber of positive eigenvalues, the number of negative eigenvalues, and the number
of (numerically) zero eigenvalues of a pseudo-Euclidean embedding of the data
[28]. Obviously, data are pdf iff the second entry is zero. For the data as described
above, we obtain the following signature values:

Voting Aural Protein FaceRec Sonatas Chromosom Vibrio
(16,1,418) (61,38,1) (169,38,6) (45,0,900) (1063,4,1) (1951,2206,43) (573,527,0)

This indicates, that Voting, FaceRec, and Sonatas are almost Euclidean while all
other data contain a significant contribution of non-Euclidean nature.
For all experiments, the setup as described in [7] is used, i.e. results are obtained
by a repeated ten-fold cross-validation with ten repeats. Parameters are optimized
by a cross-validation within this scheme. The number of prototypes is chosen as a
small multiple of the number of classes. We report the result of median RSLVQ,
as described in this contribution, and median GLVQ, which can be derived in an
analogous way based on the GLVQ cost function, the latter implicitly formalizing
the objective to optimize the hypothesis margin of the classifier [32, 33]. To avoid
local optima while iterative optimization of the M step, we use 10 random restarts
for this step.
Interestingly, the median variants based on a probabilistic framework (mRSLVQ)
and a large hypothesis margin approach (mGLVQ) provide almost identical re-
sults. In all but one case, the two discriminative exemplar-based techniques im-
prove the performance of the exemplar based unsupervised method AP, clearly
indicating that taking label information into account while training has beneficial
effects for clustering tasks. In all but one case, the results obtained by median
LVQ variants are comparable to best results obtained by relational or kernel LVQ
variants, the latter implicitly embedding data in a high dimensional Hilbert space
(possibly after preprocessing a non-Euclidean data matrix), or pseudo-Euclidean



mRSLVQ mGLVQ Relational/Kernel AP SVM # Prototypes
RSLVQ/GLVQ

Voting 0.956 0.956 0.9466 0.935 0.9511 20 (20)
Aural 0.91 0.907 0.8875 0.685 0.88 6 (10)

Protein 0.912 0.904 0.986 0.771 0.9802 4 (20)
Face Rec 0.986 0.987 0.9665 0.951 0.9627 139 (139)
Sonatas 0.799 0.808 0.8493 0.7087 0.8914 5 (5)

Chromosom 0.854 0.889 0.9571 0.895 0.9755 105 (21)
Vibrio 1 1 1 0.99 1 49 (49)

Table 1: Results of Median RSLVQ (mRSLVQ) and Median GLVQ (mGLVQ)
in comparison with the best results for Relational and Kernel variants of LVQ,
with Affinity Propagation (AP) and Support Vector Machines (SVM) taking the
best data preprocessing from clip/flip/shift for SVM and kernel LVQ variants.
The classification accuracy was produced by repeated 10-fold cross-validation
with 10 repeats. The last column contains the number of prototypes used for
mRSLVQ/mGLVQ and in brackets the number of prototypes which was used for
the kernel / relational variants.



case, respectively. Unlike the latter which represent prototypes in a distributed
way, median LVQ represents prototypes in the form of a single exemplar, i.e. a
data point, which can be directly inspected by a human observer in the same form
as data points. In three cases, the results obtained by median LVQ are better than
SVM, whereby the former represent data in terms of a small number of represen-
tative exemplars and not by points lying at the class boundaries, and the former
do not require preprocessing of the data in case of a non-Euclidean signature.
For two data sets, Sonatas and Chromosomes, the classification accuracy is worse
than SVM results by 10%. These data sets are the two largest data sets each
containing more than 1000 data points. It can be expected that SVM benefits
from the possibility to fine tune the decision boundaries in these cases, which
is not possible for LVQ variants with a small number of prototypes per class.
Interestingly, Chromosomes is the only data set where the unsupervised exemplar
based technique AP and relational variants obtain a classification accuracy which
is better by 4% resp. 10% accuracy, indicating that the choice of exemplars seems
tricky in this case, giving rise to local optima of the algorithm.
However, in general, the results show that discriminative exemplar based tech-
nique are able to improve unsupervised exemplar based techniques, reaching state-
of-the-art performance in all but two data sets. Since the methods can be used
without data preprocessing also for non-Euclidean settings, and since they offer
interpretable models in terms of few data exemplars, median LVQ variants seem
a good alternative in settings where interpretability constitutes a crucial require-
ment.

5 Conclusions

The supervised generative model RSLVQ has been extended to general dissim-
ilarity data by means of an exemplar based approach. Optimization of the cost
function could be done based on a generalized EM scheme, which provably con-
verges towards a local optimum in a finite number of steps in this setting. Unlike
relational or kernel LVQ variants, the model preserves the intuitive interpretabil-
ity of classical LVQ for the non-Euclidean case by restricting prototypes to data



positions. Unlike kernel techniques, preprocessing of non-Euclidean data to en-
force pdf is superfluous. As demonstrated in experiments, this approach can lead
to sparse models with state-of-the-art performance.
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