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Abstract

Clustering of very large data sets frequently requires a preprocessing such that the
complexity of the clustering task is reduced. One method is to compress the informa-
tion by prototype based crisp vector quantization and to cluster the prototypes subse-
quently. For the evaluation of such generated cluster solution the so-called Conn-index
was proposed. In this paper we generalize this Conn-index such that it is also ap-
plicable to cluster solutions based on fuzzy vector quantizers, which allows a greater
variability for vector quantization model selection.
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Abstract

Clustering of very large data sets frequently requires a preprocess-
ing such that the complexity of the clustering task is reduced. One
method is to compress the information by prototype based crisp vec-
tor quantization and to cluster the prototypes subsequently. For the
evaluation of such generated cluster solution the so-called Conn-index
was proposed. In this paper we generalize this Conn-index such that
it is also applicable to cluster solutions based on fuzzy vector quan-
tizers, which allows a greater variability for vector quantization model
selection.

1 Introduction

Clustering of data is a challenging task. However, the evaluation of obtained
cluster solutions is difficult because the task belongs to the class of ill-posed
problems. Therefore, different cluster validity indices were developed reflect-
ing different aspects [6, 7|. The Conn-index was designed for the evaluation
of cluster solutions for very large data sets represented by prototypes [14].
In particular, the cluster solution generated on the basis of these prototypes
is assessed using the information about the whole data set collected in the
receptive fields of the prototypes.
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2 The Conn-Index

For the Conn-index C' it is supposed that the data set V = {vl};il CR™
is represented by a set W = {w;}!", C R™ of prototypes where N is huge
and n < N. The protototypes are obtained by an arbitrary vector quanti-
zation algorithm based on a dissimilarity measure d (v;, w;). Frequently, the
quadratic Euclidean distance is chosen. We further assume that the proto-
types itself are clustered into K clusters =,. Thereby, it is not important
for the calculation of the Conn-index, how the cluster partition of the pro-
totypes is obtained. However, the mapping information of data points to
prototypes plays an essential role. This information is included using the
best matching and second best matching prototype for a given data point to
reflect the neighborhood relations between the prototypes are known from
topology representing networks [10].

For a given data vector v; the best matching prototype is determined by

so (vi) = argmin; (d (vi, w;)) (1)

defining a crisp winner take all mapping rule (WTA). More general, a winning
rank function for the ith prototype can be defined as

ki (vi, W) = Z@(d(%wi) —d(vi,w;)) (2)
where '
G i ®

is the Heaviside function [11]. Obviously, rks,) (vi,W) = 0 is the rank
of the best matching prototype. Analogously, the jth winner is denoted by
sj—1 (vi) with 7k, v,y (vi, W) = j. If it is clear from the context we will
abbreviate s; = s; (v;) . The receptive field €2; of the ith prototype is then
the non-empty set given by

QG ={vieV|rk (v,W)=0}. (4)

The Conn-index weights separation and connectivity of the prototype
clusters taking into account the receptive field information of the prototypes.
For the estimation of the connectivity, first, the non-symmetric cumulative
adjacency matrix A

A=) V(v (5)



with respect to the receptive fields €2; and data set V is considered. Here,
W (v;) is the zero (n x n)-matrix except the element

\Ij80781 =C (6)

with a positive constant c;, which is usually set to ¢; = 1. Yet, any other
choice of ¢; would deliver exactly the same results for the Conn-index. The
matrix W (v;) is called the response matrix with respect to the data vector
v;. As pointed out in [14], the row vector a; = (a;1,...,a;,) of A describes
the density distribution within the receptive field §2; with respect to the other
n — 1 prototypes.

Since the diagonal elements a; ; of the cumulative adjacency matrix A are
never used for the calculation of the Conn-index, we can take these to store
additional information about the winning frequency, i.e. the importance

of the respective prototype. A possible choice could be W, , = cy where
co = #82, is the size of the receptive field.
The symmetric connectivity matrix
C=A+AT (7)

reflects the topological relations between the prototypes based on the re-
ceptive field evaluation. Thereby, the elements c; ; reflect the dissimilarities
between the prototypes based on the local data density.

The Conn-index C' combines the intra-cluster connectivity Ciniq € [0, 1]
and the inter-cluster connectivity Cipner € [0, 1] balancing the overall cluster
compactness and separation:

= Cintra : (1 - Cinter) . (8)

The intra-cluster connectivity Cj,., measures the compactness of the clus-
ters. It is based on the cumulative adjacency matrix A from (5) and the
average is taken over the local intra-cluster connectivities

D i jling 1@y | Wi, Wi € i}
Dijlisti {aij | wi € Ex}
for each cluster =, i.e. Cira = Y5 Cintra (k). The greater the compact-
ness of a cluster = the closer their intra-connectivity Cipnq (k) is to one.
The overall intra-cluster connectivity Cy,.- 18 obtained by averaging all local

intra-connectivities Ci,irq (k).

The inter-cluster connectivity C;,., evaluates the separation between the
clusters. Analogously, it is the average Cjnter = Y Cinter (k) over the local
inter-cluster connectivities

Cinter (k) = max Cinter (ka l) (10)

1<I<K k£l

Cintra (k> =

(9)



of all clusters Z; evaluating the separation of each cluster =, to the other
cluster =;, k # [. Thereby, Ciper (K, 1) judges the separation of cluster = to
cluster =; based on the connectivity matrix C (7) and is defined as

Cinter (k1) ! if Su=10 -
inter \K, L) = i jlinilciiIWi€EL, W €S}
i jlists L Cini[Wi€Sk } if Ska#0

where the sets
SkJ = {VVZ | w; € 2 A E|Wj €= Qi > O}

describe the neighborhood relations between the clusters =, and =; based on
the contained prototypes. Similar to Cj,s.q, the value of Cj,;., increases with
better separability.

The usefulness of the Conn-index C' is extensively studied in [14]. For
many cluster problems reflecting typical cluster situations this index is su-
perior over most other cluster validity indices. Thus, the Conn-index can
be seen as a standard for the validation of cluster solutions resulted from
prototype based vector quantization.

3 Generalizations of the Conn-Index

The calculation of the Conn-index C' in Sec. 2 takes only the best matching
unit so (v;) and the second best matching unit s; (v;) into account discarding
any information provided by higher ranked prototypes. Yet, this information
will be used in the following to achieve a more general cluster validity index.

3.1 The Generalized Conn-Index

For the generalized Conn-index Cj, which incorporates the higher winning
ranks, the redefinition ¢ (v;) of the original response matrix ¥ (v;) now in-
volves the full response of the whole vector quantizer model for a given input
v;. The matrix v (v;) is a zero matrix of the same size as W (v;) except the
row vector regarding the winner sy (v;). It is set to be

sy (Vi) =1 (Vi) (12)

where r (v;) is the so-called response vector of all prototype responses for a
given input v;. The vector elements r; (v;) of the ith prototype are defined
according to

ri (Vi) = g (rki (vi, W) (13)



with ¢, (z) being an arbitrary monotonically decreasing function in x and
the winning ranks rk; (v;, W) are taken from (2). The parameter o deter-
mines the range of influence and should be determined carefully. A simple

choice of the function ¢, (z) would be the exponential function ¢, () =
1_id(w)

exp | ——2— |. Yet, an alternative approach could be the direct utilization

of the distances d (v;, w;) instead of the winning ranks and ¢, (z). In case
of vector quantization algorithms including neighborhood cooperativeness in
learning like neural gas (NG, [11]) or self-organizing maps (SOM,|[8|), the
o-parameter should be chosen accordingly in agreement to the neighborhood
range used in the respective model.

Now, the generalized Conn-index C, uses for the calculation of the cumu-
lative adjacency matrix A in (5) the new response matrices ¢ (v;) instead of
the original response matrices ¥ (v;).

The original Conn-index is obtained for the choice

co for =0
ol@x)=4¢ ¢ for z=1
0 else

3.2 The Fuzzy Conn-Index

So far we assumed that the vector quantization model is based on a crisp
mapping according to the WTA rule (1). In such models the response in-
formation of the network is collected in the response vector r (v;) based on
the winning rank and, therefore, reflecting the topological relation between
the prototypes. In fuzzy vector quantization algorithms like fuzzy c-means
(FCM, |1, 5]), fuzzy variants of neural gas (FNG - [16]) or self-organizing map
(FSOM, [3, 2, 4, 12, 13, 15]) this information is not longer available because
data points are gradually assigned to all prototypes. This fuzzy mapping
information is stored in the assignment variables u;; € [0,1], I = 1,...,N
and 1 = 1,...,n, determining the fuzzy degree regarding the mapping of the
data vector v; onto the ith prototype. If the restriction >  u;; = 1 holds,
the vector quantizer realizes a probabilistic fuzzy quantization. Otherwise,
the quantization is called possibilistic [9]. The crisp WTA mapping can be
seen as probabilistic variant with assignments restricted to be u;; € {0, 1}.

Now, we give an extension of the Conn-index C for such fuzzy vector
quantization models. The idea is to use these fuzzy assignments instead of
the response vector r (v;) for the determination of the response matrix ¥ (v;)
involved in the calculation of the generalized Conn-index C,. The resulting
Juzzy Conn-index is denoted as C.



Generally, in fuzzy vector quantization schemes the information about the
topographic relations between the prototypes is implicitly contained in the
fuzzy assignments. Therefore, we collect all fuzzy assignments for a given
data vector v; in the fuzzy response vector w;. Obviously, the assignment
vector u; is comparable to the response vector r (v;) used for the generalized
Conn-index Cy. Consequently, the best matching prototype sq for a given
data vector can be seen as the prototype with the highest fuzzy assignment
Uy ;-

so = argmax; {u;;} . (14)

Now, the row vector g, (v;) of the redefined response matrix v (v;) can
simply be chosen as the fuzzy response vector u;:

Vso (Vi) = wy. (15)

Again, the cumulative adjacency matrix A is calculated as before for the
original Conn-index C' according to (5) and the further calculations remain
unaffected.

Hence, the resulting new fuzzy Conn-index C} is the counterpart of the
generalized Conn-index Cy in case of fuzzy vector quantization models.

4 Conclusion

In this paper we propose generalizations of the Conn-index for the evalua-
tion of cluster solution based on prototype based vector quantization. These
generalizations concern, on the one hand, the incorporation of the full vec-
tor quantizer response for a given data point. On the other hand, cluster
solutions based on fuzzy vector quantizers are considered. For this purpose,
the assignment vectors for each data point determining the mapping proba-
bilities to the prototypes are taken into account for the respective extension
of the Conn-index. The article shows the theoretical justification of the new
variants of the Conn-index.
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