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Abstract

Mass spectrometry has become a standard technique to analyse clinical samples
in cancer research. The obtained spectrometric measurements reveal a lot of in-
formation of the clinical sample at the peptide and protein level. The spectra are
high dimensional and, due to the small number of samples a sparse coverage of
the population is very common. In clinical research the calculation and evaluation
of classification models is important. For classical statistics this is achieved by hy-
pothesis testing with respect to a chosen level of confidence. In clinical proteomics
the application of statistical tests is limited due to the small number of samples
and the high dimensionality of the data. Typically soft methods from the field of
machine learning like prototype based vector quantizers [17], Support Vector Ma-
chines(SVM) [32], Self-Organizing Maps (SOMs) [17] and respective variants are
used to generate such models. However for these methods the classification decision
is crisp in general and no or only few additional information about the safety of the
decision is available.
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In this contribution the spectral data are processed as functional data by a wavelet
based preprocessing [29] employing a functional metric [30,28] in the prototype
based classifiers. In particular, we demonstrate applications of the weighted Eu-
clidean metric and the weighted functional norm (based on weighted Lp-norm) tak-
ing the specific nature of mass-spectra into account. This also allows the detection
of potential biomarker candidates. To judge the classification decisions and model
accuracy we focus on a method for the estimation of confidence using prototype
based networks.

We demonstrate the usefulness of the above extensions in the analysis of mass
spectra in proteomics and related knowledge discovery. In particular, we give appli-
cation examples for biomarker detection based on feature selection and classification
of spectra.

Key words: clinical proteomics, cancer informatics, mass spectrometry, prototype
classifiers, confidence estimation

1 Introduction

Analysis of clinical proteomic spectra obtained from mass spectrometric mea-
surements is a complicated issue [22]. One major objective is the search for
potential biomarkers in complex body fluids like serum, plasma, urine, saliva,
or cerebral spinal fluid [6,24,25,10]. Typically the spectra are given as high-
dimensional vectors. Thus, from a mathematical point of view, an efficient
analysis and visualization of high-dimensional data sets is required. Moreover,
the amount of available data is restricted: usually patient cohorts are small in
comparison to the dimensionality of the data.

In contrast to the widely applied multilayer perceptron [2], prototype based
classification allows an easy interpretation, which is of particular interest for
many (clinical) applications. One prominent prototype based classifier is the
Supervised Relevance Neural Gas algorithm (SRNG)[12]. SRNG leads to a
robust classifier where efficient learning of labeled high dimensional data is
possible and has been already used in different types experiments [37,27,38,34].
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(a) Cancer Spectrum (b) Control Spectrum

Fig. 1. (a) MALDI-TOF spectrum of a colorectal cancer patient and (b) a healthy
subject after peptide isolation with C8 magnetic beads. On the Y-axis the relative
intensity is shown. The mass to charge ratio (m/z) is demonstrated on the X-axis
in Dalton. The spectra are already preprocessed (baseline correction,recalibration)
using ClinProTools 2.1

In general the available approaches to model classifiers in clinical proteomics
initially transform the spectra into a vector space followed by training a clas-
sifier. In this way the functional nature of the data is lost, which may lead
to suboptimal classifier models. A functional representation of the data with
respect to the used metric and a weighting or pruning of (priorly not known)
irrelevant parts of the inputs, would be desirable. A discriminative data repre-
sentation is necessary. The extraction of such discriminant features is difficult
for spectral data and typically done by a parametric peak picking procedure.
This peak picking is often the focus of criticism because some present peaks
may not be detected and the functional nature of the data is partially lost.
To avoid this difficulties we focus on the approach as given in [30,28] and
apply a wavelet encoding to the spectral data to get discriminative features.
The obtained wavelet coefficients are sufficient to reconstruct the signal, still
containing all relevant information of the spectra in a functional encoding.
However this better discriminating set of features is typically more complex
and hence a robust approach to determine the desired classification model is
needed. Taking this into account a feature selection is applied based on a sta-
tistical pre-analysis of the data and the SRNG algorithm is used to obtained
predictive models.

In this contribution, we focus on the conformal prediction concept incorpo-
rated in prototype based learning vector quantizers (LVQ). The paper is or-
ganized as follows. First we briefly review the functional encoding of mass
spectrometric data by means of a wavelet based encoding. Subsequently the
theory of the Supervised Relevance Neural Gas (SRNG) and its equipment
with a functional metric is reviewed. After these settings, the method of con-
formal prediction [39,9] is reviewed and we show how it can be used together
with LVQ approaches. Subsequently the methodology is applied on experimen-
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tal data from two clinical proteom studies. We evaluate the results not only
using cross validation but also in the light of conformal prediction which al-
lows the assessment of the classification safety by means of p-values as known
from classical statistics.

2 Preprocessing

The classification of mass spectra involves multiple preprocessing steps. In
general peak picking is used to locate and quantify positions of peaks within
the spectrum and feature extraction is applied on the peak list to obtained
an adequate feature matrix. In the first step a number of procedures as base-
line correction, optional denoising, noise estimation and normalization are
needed[16,26]. Upon these prepared spectra the peaks have to be identified by
scanning all local maxima and the associated peak endpoints followed by a
S/N thresholding such that one obtains the desired peak list.

The procedure of baseline correction and recalibration (alignment) of mul-
tiple spectra is standard, and has been done using ClinProTools (details in
[16]) 1 . Here we propose an alternative feature extraction procedure preserv-
ing all (potentially small) peaks containing relevant information by use of
the discrete wavelet transformation (DWT). The feature extraction has been
done by Wavelet analysis using the Matlab Wavelet-Toolbox 2 , due to the
local analysis property of wavelet analysis the features can still be related
back to original mass position in the spectral data which is essential for fur-
ther biomarker analysis. In a first step a feature selection procedure using the
Kolmogorov-Smirnoff test (KS-test) was applied. The test was used to identify
features which show a significant (p < 0.01) discrimination between the two
groups (cancer,control). To get valid results a p-value adjustment by means of
the bonferroni-correction has been applied as well. This is done in accordance
to [40] where also a generation to a multiclass experiment is given.

2.1 Feature Extraction by Bi-orthogonal Discrete Wavelet Transform

Wavelets have been developed as powerful tools [1,19] used for noise removal
and data compression. The discrete version of the continuous wavelet trans-
form leads to the concept of a multiresolution analysis (MRA). This allows
a fast and stable wavelet analysis and synthesis. The analysis becomes more
precise if the wavelet shape is adapted to the signal to be analyzed. For this

1 Biomarker software available at http://www.bdal.de
2 The Matlab Wavelet-Toolbox can be obtained from www.mathworks.com
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reason one can apply the so called bi-orthogonal wavelet transform[3] which
uses two pairs of scaling and wavelet functions. One is for the decomposi-
tion/analysis and the other one for reconstruction/synthesis. The advantage
of the bi-orthogonal wavelet transform is the higher degree of freedom for the
shape of the scaling and wavelet function.

In our analysis such a smooth synthesis pair was chosen to avoid artifacts.
It can be expected that a signal in the time domain can be represented by a
small number of a relatively large set of coefficients from the wavelet domain.
The spectra are reconstructed in dependence of a certain approximation level
L of the MRA which can be considered as a hard-thresholding. The denoised
spectrum looks similar to the reconstruction as depicted in Figure 2. The
starting point for an argumentation is the simplest example of a MRA which
can be defined by the characteristic function χ[0,1). The corresponding wavelet
is the so-called Haar wavelet. Assume that the denoised spectrum f ∈ L2(R)
has a peak with endpoints 2jk and 2j(k + 1), the integral of the peak can be
written as ∫ 2j(k+1)

2jk
f(t)dt =

∫
R
f(t)χ[2jk,2j(k+1))(t)dt

Obviously the right hand side is the Haar DWT scaling coefficient cj,k =
〈f, ψj,k〉 at scale a = 2j and translation b = 2jk.

One obtains approximation- and detail-coefficients [3]. The approximation co-
efficients describe a generalized peak list of the denoised spectrum encoding
primal spectral information and depend on the level L which is determined
with respect to the measurement procedure. For linearly MALDI-TOF spectra
a device resolution of 500− 800Da can be expected. This implies limits to the
minimal peak width in the spectrum and hence, the reconstruction level of the
Wavelet-Analysis should be able to model corresponding peaks. A level L = 4
is typically sufficient for a linear measured spectrum with ≈ 20000 measure-
ment points (see Figure 2). The level L can be automatically determined by
considering expected peak width in Da and the reconstruction capabilities of
wavelet analysis at a given level. Alternatively multiple levels can be tried and
a standard peak picking approach can be applied on both, the original and
the reconstructed spectrum. If the obtained peak lists are sufficiently similar,
which means, that at least peaks with good S/N values in the original spec-
trum are sufficiently recovered in the reconstruction the taken level can be
considered as acceptable for the experiment.

Applying this procedure including the KS-test on the spectra with an initial
number of ≈ 4000 measurement points in a range of 1500 − 3500Da per
spectrum one obtains 416 wavelet coefficients used as representative features
per spectrum, still allowing a reliable functional representation of the data.
An application of the KS-Test still keeps 101 coefficients for the final analysis
of the colorectal cancer patients (CRC) data set and 40 coefficients for the
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(a) Wavelet reconstruction L = 4 (b) Wavelet reconstructionL = 5

Fig. 2. Wavelet reconstruction of the spectra with L = 4, 5, x measurement positions,
y-arbitrary unit. The original signal is plotted with the interrupted line (blue) and
the reconstruction with the solid with a white band inside. One observes that a
wavelet analysis with L = 5 is too rough to approximate the sharp peaks.

lung cancer (LC) data set 3 .

3 Bioinformatic methods

The Supervised Relevance Neural Gas (SRNG) algorithm is a prototype based
classification model, which will be introduced very briefly. Subsequently we ex-
tend the concept of conformal prediction as introduced in [39,9] in the context
of prototype based networks which is used in the evaluation part to determine
confidence values for obtained classification results.

3.1 Supervised Relevance Neural Gas with generalized metrics

Supervised Neural Gas (SNG) is considered as a representative for prototype
based classification approaches as introduced by Kohonen. Different proto-
type classifiers have been proposed so far [17,23,14,36] as improvements of the
original approach. The SNG has been introduced in [36] and combines ideas
from the Neural Gas algorithm (NG) introduced in [20] with the Generalized
learning vector quantizer (GLVQ) as given in [23]. Subsequently we give the
basic notations and some remarks to the integration of alternative metrics into
Supervised Neural Gas (SNG). Details on SNG including convergence proofs
can be found in [36].

Let us first clarify some notations: Let cv ∈ L be the label of input v, L a set of
labels (classes) with #L = NL. Let V ⊆ RDV be a finite set of inputs v. LVQ
uses a fixed number of prototypes (weight vectors, codebook vectors) for each
class. Let W = {wr} be the set of all codebook vectors and cr be the class

3 The ks-test is an optional data reduction step, the removed dimensions are in
general neighbored, closed stripes of noise and not discriminating signals
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label of wr. Furthermore, let Wc= {wr|cr = c} be the subset of prototypes
assigned to class c ∈ L.

The task of vector quantization is realized by the map Ψ as a winner-take-all
rule, i.e. a stimulus vector v ∈ V is mapped onto the closest ws,

Ψλ
V→A : v 7→ s (v) = argminr∈Ad

λ (v,wr) (1)

with dλ (v,w) being an arbitrary differentiable distance measure 4 which may
depend on a parameter vector λ and A a (ordered) grid of neurons. Subse-
quently we only expect that the used distance measure is differentiable with
respect to its parameters. For the moment we take λ as fixed. The neuron
s (v) is called winner or best matching unit. The subset of the input space

Ωλ
r = {v ∈V : r = ΨV→A (v)} (2)

which is mapped to a particular neuron r according to (1), forms the (masked)
receptive field of that neuron forming a Voronoi tessellation. If the class infor-
mation of the weight vector is used, the boundaries ∂Ωλ

r generate the decision
boundaries for classes. A training algorithm should adapt the prototypes such
that for each class c ∈ L, the corresponding codebook vectors Wc represent
the class as accurately as possible. This means that the set of points in any
given class Vc = {v ∈V |cv = c}, and the union Uc =

⋃
r|wr∈Wc

Ωr of receptive
fields of the corresponding prototypes should differ as little as possible.

Supervised Neural Gas (SNG) constitutes a method to train prototypes ef-
ficiently according to given data points. Again, let Wc= {wr|cr = c} be the
subset of prototypes assigned to class c ∈ L and Kc its cardinality.

Further we assume to have m data vectors vi. As pointed out in [36], neigh-
borhood learning for a given input vi with label c is applied to the subset Wc.
The respective cost function is

CostSNG (γ) =
m∑

i=1

∑
r|wr∈Wci

hγ (r,vi,Wci
) · f (µλ(r,v))

C (γ,Kci
)

(3)

with f (x) = (1 + exp (−x))−1 , hγ (r,v,W) = exp
(
−kr(v,W)

γ

)
and µλ(r,v) =

dλ
r−dλ

r−
dλ
r +dλ

r−
and dλ

r− is defined as the squared distance to the best matching pro-

4 A distance measure is a non-negative real-valued function, which, in contrast to a
metric does not necessarily fulfill the triangle inequality and the symmetry property.
For prototype algorithms of the mentioned type the used distance measure need
not to be a metric. A detailed discussion of this fact with respect to the considered
methods is available in [11,13]
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totype but labeled with cr− 6= cv, say wr− and dλ
r = dλ (v,wr). Details on the

corresponding update rules are given in [36].

3.1.1 Incorporation of a functional metric to SNG

As pointed out before, the distance measure dλ (v,w) is only required to be
differentiable with respect to λ and w. The triangle inequality has not to be
fulfilled necessarily. This leads to a great freedom in the choice of suitable
measures and allows the usage of non-standard metrics in a natural way. We
now review the functional metric as given in [18], the obtained derivations
can be plugged into the above equations leading to SNG with a functional
metric, the data are functions represented by vectors and, hence, the vector
dimensions are spatially correlated.

Common vector processing does not take the spatial order of the coordinates
into account. As a consequence, the functional aspect of spectral data is lost.
For proteom spectra the order of signal features (peaks) is due to the nature of
the underlying biological samples and the measurement procedure. The masses
of measured chemical compounds are given ascending and peaks encoding
chemical structures with a higher mass follow chemical structures with lower
masses. In addition multiple peaks with different masses may encode parts of
the same chemical structure and hence are correlated.

In [18] a distance measure has been proposed taking the functional structure of
the data into account, involving the previous and next values of vi in the i-th
term of the sum, instead of vi alone. V can be represented as V = (v1, . . . , vD).
Assuming a constant sampling period τ , the proposed norm is:

Lfc
p (v) =

(
D∑

k=1

(Ak (v) +Bk (v))p

) 1
p

(4)

with

Ak (v) =


τ
2
|vk| if 0 ≤ vkvk−1

τ
2

v2
k

|vk|+|vk−1|
if 0 > vkvk−1

(5)

Bk (v) =


τ
2
|vk| if 0 ≤ vkvk+1

τ
2

v2
k

|vk|+|vk+1|
if 0 > vkvk+1

(6)

are respectively the triangles on the left and right hand sides vi. Just as for Lp,
the value of p is assumed to be a positive integer. At the left and right ends
of the sequence, v0 and vD are assumed to be equal to zero. The derivatives
for the functional metric taking p = 2 are given in [18].
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Now we consider the scaled functional norm where each dimension vi is scaled
by a parameter λi ≥ 0 λi ∈ (0, 1] and

∑
i λi = 1. Then the scaled functional

norm is:

Lfc
p (λv) =

(
D∑

k=1

(Ak (λv) +Bk (λv))p

) 1
p

(7)

with

Ak (λv) =


τ
2
λk |vk| if 0 ≤ vkvk−1

τ
2

λ2
kv2

k

λk|vk|+λk−1|vk−1|
else

Bk (λv) =


τ
2
λk |vk| if 0 ≤ vkvk+1

τ
2

λ2
kv2

k

λk|vk|+λk+1|vk+1|
else

(8)

The prototype update changes to:

∂δ2
2 (x,y, λ)

∂xk

=
τ 2

2
(2− Uk−1 − Uk+1) (Vk−1 + Vk+1)4k (9)

with

Uk−1 =

0 if 0 ≤ 4k4k−1(
λk−14k−1

λk|4k|+λk−1|4k−1|

)2
else

, Uk+1 =

0 if 0 ≤ 4k4k+1(
λk+14k+1

λk|4k|+λk+1|4k+1|

)2
else

Vk−1 =

1λk if 0 ≤ 4k4k−1
λk|4k|

λk|4k|+λk−1|4k−1|
else

, Vk+1 =

1λk if 0 ≤ 4k4k+1
λk|4k|

λk|4k|+λk+1|4k+1|
else

and 4k = xk − yk For the λ-update one observes:

∂Lfc
p (λv)

∂λk

=
∂
(∑D

k=1
(Ak (λv) + Bk (λv))p

) 1
p

∂λk

= p

(
D∑

k=1

(
Ak−1 (λv) + Ak+1 (λv)

)p

) 1−p
p

∂
[∑D

k=1
(Ak (λv) + Bk (λv))p

]
∂λk

= Cp

∂
[∑D

k=1
(Ak (λv) + Bk (λv))p

]
∂λk

= Cp

∑D

k=1
∂ [(Ak (λv) + Bk (λv))p]

∂λk

= Cp

∂
[(

Ak−1 (λv) + Bk−1 (λv)
)p

+ (Ak (λv) + Bk (λv))p +
(

Ak+1 (λv) + Bk+1 (λv)
)p]

∂λk

= Cp

(
c

k−1
p

∂
[

Ak−1 (λv) + Bk−1 (λv)
]

∂λk

+ c
k
p

∂ [Ak (λv) + Bk (λv)]

∂λk

+ c
k+1
p

∂
[

Ak+1 (λv) + Bk+1 (λv)
]

∂λk

)

with the following expressions
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cjp = p · (Aj (λv) +Bj (λv))p−1

= p ·




τ
2
λj |vj| if 0 ≤ vjvj−1

τ
2

λ2
jv2

j

λj |vj |+λj−1|vj−1| if 0 > vjvj−1

+


τ
2
λj |vj| if 0 ≤ vjvj+1

τ
2

λ2
jv2

j

λj |vj |+λj+1|vj+1| if 0 > vjvj+1



p−1

putting all together and with some minor mathematical transformations one
obtains:

∂Lfc
p (λv)

∂λk

= Cp

{
0 + ck

p

(
τ
2 |vk|

)
if 0 ≤ vk−1vk

1
2 τ

λ2
kck

pv2
k|vk|−ck−1

p |vk|v2
k−1λ2

k−1+2λkck
pv2

k

∣∣∣vk−1
∣∣∣λk−1(

λk|vk|+
∣∣∣vk−1

∣∣∣λk−1
)2 if 0 > vk−1vk

+Cp

{
ck

p

(
τ
2 |vk|

)
+ 0 if 0 ≤ vk+1vk

1
2 τ

λ2
kck

pv2
k|vk|−ck+1

p |vk|v2
k+1λ2

k+1+2λkck
pv2

k

∣∣∣vk+1
∣∣∣λk+1(

λk|vk|+
∣∣∣vk+1

∣∣∣λk+1
)2 if 0 > vk+1vk

Using this parametrization one can emphasize/neglect different parts of the
function for classification. This distance measure can be put into SNG as
shown above and has been applied subsequently in the analysis of clinical pro-
teom spectra. SNG with metric adaptation is subsequently referred as SRNG.

4 Evaluation of Prototype based classifier models

Advanced prototype based classification models show typically high regularisa-
tion capabilities [11]. Nevertheless also the results of prototype networks need
a thoroughly analysis by cross validation to get practical measures to rate the
prediction capabilities of the current model. Beside these generic measures of
confidence in the results obtained by a classification model a more fine grained
confidence analysis would be desirable. Classical statistics typically allows a
judgment on the classification accuracy of a single item by means of p-values
[15] but are not applicable (in a valid sense) for these type of data, in general.
Also Gaussian Mixture Models allow to determine the probability of a clas-
sification decision, but make additional constraints on the considered type of
data [15]. This techniques are well understood but in general not available for
soft methods like SVM or prototype networks. Only few attempts were made
to give reliability estimate for these soft methods (see e.g. [4,5]). Thereby the
reliability estimate can be helpful to judge on the reliability of a decision but
also in a more generic framework to improve the overall performance of the
classifier. Reliability sometimes also referred as confidence, has been subject
of a quite new theory called conformal prediction as introduced in [39] which
fills this gap under some moderate constraints. Here we show how the concept
of conformal prediction can be applied to prototype networks and allows the
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determination of statistical significance values as needed in clinical studies and
cancer informatics.

4.1 Conformal Prediction for Prototype based Networks

Conformal predictors aim at the estimation of confidence of a given classifi-
cation decision. They remain automatically valid (in average) under the ran-
domness assumption [39,9]. It is assumed, that the objects and their labels are
generated independently from the same probability distribution. This appears
to be a strong assumption but in fact it is a much weaker assumption than
assuming a parametric statistical model. Conformal predictors never overrate
the accuracy and reliability of their predictions [39,9]. When the stochastic
mechanism significantly deviates from the model, conformal predictors remain
valid but their efficiency inevitably suffers [39,9]. As conformal predictors are
provably valid, efficiency with respect to computational performance as well
as with respect to the effort to extend a classifier to a conformal predictor, are
the only things which we need to worry about. First we will give some basic
notations and review the main concepts of conformal prediction as given in
[39,9].

4.1.1 Conformal prediction a brief overview

We now briefly review the concepts of conformal prediction as presented [7]
and the tutorial given in [31]. The basics of conformal prediction rely on
confidence intervals from classical statistics and are well theoretically founded
[8]. Here we focus on classification and deal with labeled data. The task is:
predict each label after seeing its object:

• from x1 predict y1

• from (x1, y1), x2, predict y2

• from (x1, y1), (x2, y2), x3 predict y3 and so on

Here we assume randomness. In reality we choose the examples independently
from some probability distribution Q on Z = D×Y. The samples are indepen-
dent and identically distributed. And we do not make any assumptions about
Q. Usually independence can be weakened to exchangeability [31]. To do the
prediction with confidence we write Z∗ for the set of all finite sequences of
elements of Z such that:

Z∗ = ∪∞n=0Z
n

11



A level (1− ε) confidence predictor is a mapping

Γ : Z∗ × D → 2Y

after observing old examples z1, . . . , zn−1 and the new object xn, we predict
that the label of (xn, yn) will be in the subset

Γ(z1, . . . , zn−1, xn)

of the label space Y . A (1−ε) confidence predictor is exactly valid if its hits are
independent and all happen with probability (1−ε). It is conservatively valid if
the probability that the predictions on rounds n1, . . . , nk are all hits is always
at least (1−ε)k. This does not depend on a specific probability function. Valid
confidence predictors are constructed from nonconformity measures by means
of real values functions A: (x1, y1), . . . , (xn−1, yn−1), (x, y) as a measure of how
different (x, y) is from (x1, y1), . . . , (xn−1, yn−1). Here one predicts values of yn

that make xn, yn differ minimally from the rest. From a given nonconformity
measure, we construct a (1 − ε) confidence predictor Γε for every ε ∈ [0, 1],
and they are nested in the natural way: Γε1(z1, . . . , zn, xn) ⊆ Γε2(z1, . . . , zn, xn)
when ε1 ≥ ε2. The more confident one wants to be, the larger the region must
be chosen. So e.g. Γ0.05 the prediction region, is a set that contains the true
labeling with a probability of at least 95%. Typically Γ0.05 also contains the
prediction ŷ. We call ŷ the point prediction. In case of classification Γ0.05 may
consist of a few of these values or, in the best case, just one [31]. Given a non-
conformity measure, the conformal prediction algorithm produces a prediction
region Γε for every probability of ε. The region for Γε is a 1− ε prediction in-
terval which contains ŷ. with a probability of at least 1 − ε. The regions for
different ε are nested: when ε1 ≤ ε2: so that 1− ε1 is a lower level of confidence
than 1 − ε2 , we have Γε1 ⊂ Γε2 . If Γε consists of only one entry (label) we
may ask our self how small ε can be made until the cardinality changes, the
obtained 1− ε is the level of confidence.

To summarize these points, the most useful prediction is those containing
exactly one label. Therefore two error rates are of particular interest, ε1 being
the smallest ε and ε2 being the greatest ε so that |Γε| = 1. ε2 is the p-value of
the best and ε1 is the p-value of the second best label y. So the prediction can
be summarized as

(confidence) = 1− ε1 = 1− py2nd
(10)

(credibility) = ε2 = py1st (11)

Confidence says something about being sure that the second best label and
all worse ones are wrong. Credibility says something about to be sure that the
best label is right respectively that the data point is (un)typical and not an
outlier.
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As further pointed out in [39,9] there are two approaches to construct confor-
mal predictors by means of inductive or transductive learners, here we focus
on transductive learners (for details see [39,9]). While the just sketched the-
oretical framework of conformal prediction is a generic statistical approach,
the concrete utilization needs a so called nonconformity measure which is in-
dividual for each type of algorithm.

Definition 1 (Nonconformity measure) A nonconformity measure is a
function A : B × Z → R With B as the set of all finite bags of elements
in Z.

In practical applications A is chosen such that large values of A(B, z) indicate
that z is strange relative to B. As an example for classification suppose D = Rk

and Y finite. Then, a useful nonconformity measure is:

A(z1, . . . , zn, z) =
mini:yi=y d(xi, y)

mini:yi 6=y d(xi, y)

where d refers to an arbitrary distance measure. A 95% confidence region for
yn is constructed by a nonconformity measure A, old examples z1, . . . , zn−1 and
a new object xn. The procedure can be summarized as follows. We consider
each labeling y ∈ Y with B a bag consisting of z1, . . . , zn−1 together with xn, y.
Let now B−i the bag obtained by removing zi, further define Wi = A(B−i, zi)
with i = 1, . . . , n and set:

py =
#i = 1, . . . , n|Wi ≥ Wn

n

Then py is the p-value for the current labeling y. It is the fraction of the
elements in B that are at least as strange relative to the others as (xn, y).
Finally we include y in the confidence region if and only if py > 0.05.

4.1.2 Conformal prediction with prototype based classifiers

GLVQ and variants are successful prototype based learning algorithms with
a winner rule in accordance or similar to the Eq. 1 used in the corresponding
cost function. Multiple variants of this scheme have been presented but their
common property is the existence of the distances d+ and d− (closest winner
with the same (+) labeling or closest prototype with a different label (−))
used in the cost function to optimize the prototype positions. To transform
GLVQ variants into conformal predictors a nonconformity measure has to be
determined which is of the form of Def. 1

For prototype based networks one natural measure of non-conformity (C(vi, ci)
for a given sample vi and a given (crisp) labeling ci is the sample margin as
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the distance of the data point to the closest prototype with the same label
(+) normalized by the distance of this item to the closest prototype with an
alternative labeling (−):

C(vi, ci) = d+
min,λ(wr,vi)/d

−
min,λ(wr,vi) = d+

min,λ(xr,yi)/d
−
min,λ(xr,yi) (12)

Here, λ is some parametrization of the underlying distance measure d and the
classifier decision is considered to be safe if the obtained non-conformity score
is small - by means of a small distance of the datapoint to its closest prototype
with the same labeling.

4.1.3 Confidence estimates within clinical studies

Conformal predictors require the definition of a valid nonconformity measure
of the used modeling approach. In the former section such as measures have
been presented for GLVQ networks which is applicable for SRNG as well. The
estimation of confidence and credibility based on conformal prediction can be
done by either induction or transduction. While the former is very common
it has the drawback, that multiple splits in the data into hold-out-subsets are
necessary. The transductive method avoids additional splits but is computa-
tionally expensive if the number of samples or the number of labels becomes
(very) large. In clinical proteomics the number of samples is typically small,
in general around 50− 500 samples per class with a number of classes below
10. Hence a transductive approach is still applicable, avoiding unnecessary
splittings of the data while keeping computations reliably effective. The num-
ber n used in the modeling should, however not become to small. Otherwise
the validity of the conformal prediction will be decreased, or more precise the
confidence bounds getting worse.

5 Clinical Data

Serum protein profiling is a promising approach for classification of cancer ver-
sus non-cancer samples. The data used in this paper are taken from a colorectal
cancer (CRC) study and patients from healthy individuals 5 . Here it should
be mentioned only that for each profile a mass spectrum is obtained within
an analyzed mass-to-charge-ratio of 1500 to 3500Da. Two sample spectra are
depicted in Figure 1. The data have been preprocessed as explained before

5 Details about the data source can be obtained via Bruker Daltonik GmbH, 04109,
Leipzig, Deutscher Platz 5d, Germany (km@bdal.de)

14



using the approach published in [28]. The spectra are encoded by 416 wavelet-
coefficients which leads to a data reduction of ≈ 95% using the rawdata and
is approximately twice the range of the number of peaks as obtained by the
standard peak picking approach as proposed in [16] The preprocessing step
has to be included in the crossvalidation procedure to avoid overfitting. For
the considered data set it could be observed that the discriminating wavelet
coefficients (with respect to the ks-test) at p ≤ 0.01 including a p-value ad-
justment in accordance to bonferroni, reduce further to 101 (CRC) or 40 (LC)
significant coefficients in a 5−fold double cross validation. The wavelet method
was used as mentioned in the previous section with L = 4.

The data set consist of 100 - colorectal cancer (CRC) and 90 - lung cancer
(LC) data points. For the colorectal cancer and lung cancer study, 50 samples
are taken from patients suffering from colorectal or lung cancer and the re-
maining samples are taken from a matched healthy control group. Colorectal
cancer (CRC) is among the most common malignancies and remains a lead-
ing cause of cancer-related morbidity and mortality. It is well recognized that
CRC arises from a multistep sequence of genetic alterations that result in the
transformation of normal mucosa to a precursor abdomen and ultimately to
carcinoma. Given the natural history of CRC, early diagnosis appears to be
the most appropriate tool to reduce disease-related mortality. Currently, there
is no early diagnostic test with sufficient diagnostic quality, which can be used
as a routine screening tool. Therefore, there is a need for new biomarkers for
colorectal cancer that can improve early diagnosis, monitoring of disease pro-
gression and therapeutic response and detect disease recurrence. Furthermore,
these markers may give indications for targets for novel therapeutic strategies.

6 Experiments and Results

We focus on a supervised data analysis and reduce the dimensionality of the
data by use of a problem specific wavelet analysis combined with a statistical
selection criterion. We avoid statistical assumptions with respect to the under-
lying data sets, but take only measurement specific knowledge into account.

Hence we have a 101 and a 40 dimensional space of wavelet coefficients and
we use multiple algorithms and metrics to determine classification models. We
focus on the presented SRNG algorithm.

We trained in a first investigation a SRNG with 1 prototype per class which has
been initialized as the mean of 30 randomly selected points from the training
data, labeled by a post labeling procedure. The prototype optimization was
done until convergence with an upper limit of 2000 iterations and a learning
rate of α = 0.01 using the strategy as proposed in [35] and [12]. The relevance
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parameters λi of the scaled Euclidean metric are adapted in parallel. This
leads to a ranking of the input dimensions according to their importance
for classification. A typical relevance profile using scaled Euclidean metric is
depicted in Figure 3. The most important frequencies are indicated by high
spiked (absolute) values. The depicted frequencies contribute substantially
to classification accuracy and, therefore, are important for distinction of the
classes. In all analyses we used a 5-fold CV in accordance to the suggestions
in [21] because the number of sample is not so small and they are reliable
homogeneous per group.

Considering the CRC study the SRNG models obtained at least ≈ 78% cross
validation accuracy in a 5-fold cross-validation. The usage of relevance learning
typically improved the results by 10% such that a good prediction accuracy
of around 90% could be achieved. The LC data set was found to be more
complicated and the best obtained predictions are close to 80%. Considering
the relevance profiles, looking for high ranked features, the data show the fol-
lowing picture. For the CRC study both metrics scaled functional and scaled
Euclidean metric show similar profiles as depicted in Figure 3, the most sig-
nificant features are consistent with findings as obtained by a standard peak
based analysis. For the LC data set the situation is different. For the profile
with scaled Euclidean metric most features are ranked as equally important
with some minor exceptions. The most significant feature is encoding a peak
not picked by the standard approaches and gives a cross validation accuracy
of ≈ 78% for its own using a kNN (k = 3) classifier on that feature. This
shows that the wavelet encoding may help to reveal discriminative features
and peaks not identified so far. The relevance profile on the LC data using
the functional metric is a bit more diverse. The feature rankings are still sim-
ilar with respect to the Euclidean profile but some features are pruned. Here
different explanations are possible. For one position in the profile at around
2660Da a closer inspection with respect to the original data shows that this
peak is the main peak of a quintet of closely located peaks. In the Euclidean
relevance profile each peak got some relevance and the main peak obtained
a higher relevance. In the functional metric only the right neighbor of the
main peak is weighted high while the remaining neighbored peaks are pruned
out. Further a correlation analysis of the intensities of the associated peak at
2670Da shows, that the discrimination power of this peak is similar to that
of the new peak at around 2790Da which was pruned out in the functional
metric but was most significant using the Euclidean metric. Hence the data
representation of the functional metric is more sparse but similar discrimina-
tive as also visible in the crossvalidation results which are slightly better using
the scaled functional norm on the LC data set. A comparison of the SRNG
results using the different metrics and alternative algorithms is given in Ta-
ble 1. It should be mentioned that for SVM the presented functional metric
can not be applied directly because the generalized Lp distance has no inner
product. A potential alternative would be the use of a Sobolev metric which
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Fig. 3. Visualization of a typical relevance profile obtained by SRNG using scaled
Euclidean metric (upper part) and the functional norm (lower negative part of the
plot) on the CRC study. Features with larger values indicate higher relevance with
respect to the classification task. The x-axis indicates the relative mass position
of the corresponding wavelet coefficient in the original spectrum. The y-axis is a
relevance measure ∈ [0, 1]. Here relevances for the functional norm are indicated by
negative values for illustration purposes.

mimics the functional nature of Lp distance but supports an inner product
making the generation of a functional kernel possible [33].

One observes that the results are competitive with respect to other classifiers.
The wavelet prepared data perform similar than a standardized peak picking
approach with other parameters fixed but allow also the usage of features
with complicated peak shape or smaller S/N level, which may be overseen by
a standard peak picking approach. Considering the cross validation results for
each data set in Table 1 it can be observed, that similar results were obtained
using the different metrics. However the metrics itself show different properties.
The relevance profile of the scaled Euclidean metric indicates most important
data features in a univariate interpretation whereas the generalized Lp norm
takes local neighborhoods or correlations in the data space into account while
keeping the functional nature of the MS spectra. Therefore also descents in the
function and not just peaks as well as correlative effects can be interpreted
as relevant features. This trace of information can be further analysed by
e.g. LC/MS techniques to test if a potential useful pattern can be observed
which in the current linear measurement has not been sufficiently resolved so
far. Beside of these good results the LVQ based approaches generates models
which can be interpreted very easily by clinicians because the primal model
parameters (prototypes) are representative for their receptive field. This is
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Fig. 4. A gel view of the two classes (LC study) with the control class (region A)
and cancer class (region B). The relevant mass positions are indicated by arrows
(bottom) using the relevance profile of SRNG with scaled Euclidean metric (top
overlaid plot) or functional norm (bottom overlaid plot).

similar to the concept of a prototypical patient.

In Figure 5 an illustration of conformal prediction results for 20 samples of
the lung cancer data set is given. The conformal prediction was done using the
SRNG with the parametrized functional metric and the parameter settings as
mentioned above. To interpret the shown values one should remember that
high (e.g. 100%) confidence means, that all labels except the predicted one
are unlikely. If say, the 10th example where predicted wrongly, this would
mean that a rare event (of probability arround 1%) had occured; therefore,
we expect the prediction to be correct which it is. In the case of the item
8 the confidence is also quite high (arround 90%), but we can see that the
credibility is low arround 30%. From the confidence we can conclude, that
the alternative label is excluded at the 10% level, but the predicted label
itself is excluded at a level of around 30%. This shows, that the prediction
algorithm was unable to extract from the training set enough information to
allow us to confidently classify this example: the strangeness of the labeling
different from the predicted label may be due to the fact, that the object
itself is strange; perhaps the spectrum is very different from all examples in
the training set. Unsurprisingly, the prediction for this example is wrong. In
general, high confidence shows that all alternatives to the predicted label are
unlikely. Low credibility means that the whole situation is suspect. In summary
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Fig. 5. Visualization of conformal prediction results for 20 samples of the lung cancer
data set using the parametrized functional metric. Positive entries show the values
for the credibility in an obtained class prediction and negative values indicate the
confidence of the single results. The predicted class labels 0, 1 are given by black
circles at 0 or 1 respectively. Miss classifications are indicated by red stars at the
0-level.

we can trust a prediction if the confidence is close to 100% and the credibility
is not low (e.g. not less than 5%) [39,9]. Taking this advice into account (with
a confidence threshold of 95%) and reanalyzing the results shown in figure 5,
only the items {4, 5, 9, 10, 15} would be consideres as trusty results with high
confidence and moderate or high credibility and indeed the labels for these
items are correct predicted. Lowering the confidence level to 90% gives 10
trusty results, but for item 11 the prediction is wrong which means, that for
this item a rare event has occurred. An analysis of further samples sets, in the
way as shown in Figure 5 reveals that in general very low credibility or low
confidence with high credibility, for a single item is indeed a good indicator
for miss classifications, motivating the rejection of this item or assignment to
the reject class. Which in our case of two classes should be interpreted as an
unclear classification, where the considered item may belong to non of the two
classes. Using the methodology of conformal prediction classification results
can be judged not only on the basis of averaged cross validation accuracies
but also in a fine granular single item analysis.

Initial results using the conformal prediction approach are promising. The
conformal prediction on the test data sets give similar accuracy than with the
standard classifiers but in addition for each datapoint a confidence and credi-
bility measure becomes available which allows a judgment of the classification
decision for each single patient in a statistical manner.
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Dataset CRC data LC data

Method CV-R̄ec CV- ¯Conf CV- ¯Cred CV-R̄ec CV- ¯Conf CV- ¯Cred

SNG-EUC 77.89% 89.28% 60.15% 75.00% 85.07% 64.15%

SNG-Lp 78.95% 89.41% 60.00% 75.00% 85.06% 64.20%

SRNG-EUC 90.53% 95.86% 53.48% 74.00% 88.52% 63.74%

SRNG-Lp 89.47% 95.68% 56.42% 78.00% 88.80% 59.67%

SVM-Linear 88.42% n.a. n.a. 67% n.a. n.a.

SVM-RBF 90.53% n.a. n.a. 72% n.a. n.a.

SVM-CPT 86.00% n.a. n.a. 74.00% n.a. n.a.

SNN-CPT 85.78% n.a. n.a. 72.00% n.a. n.a.

Table 1
Cross validated prediction accuracies, and corresponding mean confidence and cred-
ibility values for SRNG using conformal prediction and different distance measures
in comparison to alternative standard approaches on wavelet encoded data. The
last two rows are for comparison with the standard peak picking based approach
as available in ClinProTools using default settings for SVM and SNN (a prototype
classifier approach similar to SRNG).

7 Conclusions

We presented a specific pre-processing for mass spectrometric data analysis
combined with an extension of the SRNG by a functional metric and inte-
gration of conformal prediction. The presented processing of the spectra aims
on a natural compact encoding of the signals by means of a functional repre-
sentation, while the classification model is especially suited to deal with high
dimensional sparse data and allows strong regularizations to reduce overfitting
effects.

In an initial setup the presented scenario has been embedded into a conformal
prediction approach which allows the determination of clinical relevant confi-
dence measures. The extension of conformal prediction for multiple types of
prototype based classifiers has been presented.

Beside of the good results the problem of high dimensionality is still remain-
ing. An analysis of proteomic spectra based on peak lists is in general easier
to handle, e.g. it is easy to apply multiple different classification models. The
wavelet based approach leads to a compact but still high dimensional repre-
sentation of the data and overfitting may be a stronger issue than in contrast
to a standard peak picking approach.

In future research a stronger integration of domain specific knowledge will be
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tried to overcome these problems and to make the approach more robust and
easier to apply 6 . We will also apply the method using the priorly motivated
Sobolev-Kernel[33] to improve the functional encoding using SVM.
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