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Abstract Existing classification algorithms focus on vectorial data given in Euclidean
space or representations by means of positive semi-definite kernel matrices. Many
real world data, like biological sequences are not vectorial, often non-euclidean and
given only in the form of (dis-)similarities between examples, requesting for efficient
and interpretable models. Vectorial embeddings or transformations to get a valid ker-
nel are limited and current dissimilarity classifiers often lead to dense complex mod-
els which are hard to interpret by domain experts. They also fail to provide additional
information about the confidence of the classification. In this paper we propose a
prototype-based conformal classifier for dissimilarity data. It is based on a prototype
dissimilarity learner and extended by the conformal prediction methodology. It (i) can
deal with dissimilarity data characterized by an arbitrary symmetric dissimilarity ma-
trix, (ii) offers intuitive classification in terms of sparse prototypical class represen-
tatives, (iii) leads to state-of-the-art classification results supported by a confidence
measure and (iv) the model complexity is automatically adjusted. In experiments on
dissimilarity data we investigate the effectiveness with respect to accuracy and model
complexity in comparison to different state of the art classifiers.

1 Introduction

Similarity and dissimilarity based learning, or simply learning from proximities, con-
stitutes a field of active research [6], since more and more data sets are naturally dealt
with in terms of domain dependent similarities or dissimilarities. Examples include
edit distance based measures for strings or images [14] or popular similarity mea-
sures in bioinformatics such as scores obtained by the Smith-Waterman, FASTA1, or
blast algorithm [13].
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Classifiers based on dissimilarity data assign a class label to a given example
based on the pairwise dissimilarities only without the need to consider an explicit
vectorial embedding of data. Formally, data are characterized by a dissimilarity ma-
trix D obtained from a set of objects where d(vi,vj) ∈ R constitutes a non-negative
measure of the dissimilarity between the two objects.

A popular way to analyze dissimilarity data is to consider the related similarity
matrix S which can be derived from D as a matrix of inner-products in some Hilbert
space. This process is known as double centering and explained in more detail in Sec-
tion 3. If S is obtained from a valid inner-product, S is a positive semi-definite matrix
(psd) and can be considered as a kernel matrix. This can be processed by kernel-
classifiers like the Support Vector Machine (SVM) [47]. If S is psd, it may be con-
sidered to be generated by a positive semi-definite inner product function κ (vi,vj),
fulfilling the Mercer conditions which can be expanded by means of its eigenvalues
and eigenfunctions:

κ (vi,vj) =

∞∑
i

λiφi(vi)φi(vj) = 〈φ (vi) , φ (vj)〉 (1)

The values κ (vi,vj) define the kernel matrix K ∀vi,vj . If S does not constitute
a valid kernel, additional transformations are necessary to guarantee semi positive
definiteness [6]. For a more detailed discussion about kernels and kernel classifiers
see [43].

As detailed in the following the majority of the available methods to analyze
proximity data has a lot of limitations. The available approaches are often quite com-
plex with cubic complexity and are in general black box concepts with limited or
no additional information about the model decisions. Prototype based methods of-
fer interesting alternatives to obtain interpretable models [16] and have been recently
extended to proximity learning [15,39]. Prototypes are representative points summa-
rizing larger parts of the data sets. This can be done unsupervised, where the proto-
types are often cluster centers or supervised, where the prototypes cover classes or
sub-classes and may model larger parts of the data across individual clusters. Pro-
totypes are interesting to get compact representations of a large set of points. Most
often the prototypes are the main parameters of a prototype based model. For classifi-
cation problems the decision functions, obtained by prototypes, are often comparably
simple and can be communicated easily with domain experts. The analysis problem
gets more accessible and domain knowledge can be integrated more easily [16]. The
challenge is to identify the prototypes and to define models with good generalization
capabilities using this rather sparse representation. If the prototypes are points of the
original data, in contrast to for example linear combinations thereof, they are also
called exemplars. Here we focus on classification tasks to solve two open problems
common in the context of proximity learning. The first one is the model complexity
and the second one is the reliability of the classification decision. Using concepts
from inductive conformal prediction [49,48] we will address both issues for a family
of prototype based learning algorithms.

The proposed method is based on a recent prototype based classifier for dissimi-
larity data [17]. This method extends popular prototype classifier techniques to gen-
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eral relational data. It works directly on the dissimilarity matrix and it arrives at a
prototype-based classifier which represents data by a fixed number of prototypes.
Thereby, it replaces an explicit distance measure by an implicit form which depends
on the given dissimilarity matrix only. While a very effective model with good clas-
sification accuracy and small model complexity arises, the sparseness of the resulting
model, i.e. the number of prototypes, is treated as a meta-parameter and has to be
chosen using cross-validation. Further the classification is done in a nearest prototype
approach which does not directly provide additional information about the reliability
of the classification decision.

In this contribution a relational prototype learner is proposed extended by con-
formal prediction concepts, referred to as Conformal Relational Prototype Classifier
(CRPC). CRPC can be directly applied to dissimilarity data, providing sparse inter-
pretable models where each classification is supported by a measure of confidence.
In addition, the confidence is used for a dynamic adaptation of the model complexity
during learning, growing the model complexity as required by the resulting conformal
regions.

First we will give some background and related work around proximity learning
and conformal predictors. Here we will also highlight alternative strategies to process
the considered data by available methods and the current limitations. Subsequently
we shortly revisit the basic relational prototype based classifier, and introduce the
concept of conformal prediction in this context, afterwards. In the main part we de-
rive a specific formulation of a relational prototype based learning algorithm coupled
with concepts from conformal prediction addressing the two mentioned challenges.
The suitability of the technique to arrive at sparse prototype-based models for dis-
similarity data with an automatic adaptation of the model complexity is demonstrated
using benchmark data from bioinformatics, afterwards.

2 Related work

Inspired by the work in [29], some dedicated classification methods which can di-
rectly deal with dissimilarity data have been proposed. In [9] a feature based dis-
similarity space classification is proposed which makes use of the dissimilarity space
strategy combined with different classifiers. It was found that the dissimilarity rep-
resentation is in average more effective than traditional feature representations [29].
For new test data however all dissimilarities to the training points have to be calcu-
lated which can be prohibitive for large data sets. In [30] a density-based classifier
is proposed which, again, is based on a dissimilarity space approach and requires
the determination of a prototype set. Various prototype selection methods are dis-
cussed in [33] but the approaches are not in closed form or applicable for two class
problems, only; additionally, results are quite limited. A good (sparse) representation
of dissimilarity data is still an issue [31]. Another dissimilarity-classifier, employing
Monte-Carlo simulation techniques, was proposed in [25]. This approach is, again,
quite complex for the multi-class case. In [23] different techniques are compared,
focusing on the determination/reduction of prototypes for dissimilarity learning. The
strategies discussed in [23] are in parts heuristic focusing on a direct optimization
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of the classification error in the training set and are not based on a cost function in
a closed form. Especially they are not formulated as margin optimizers but in parts
in an unsupervised manner optimizing a cluster model, widely unrelated to a super-
vised classification problem. The best results, obtained in [23] are competitive to the
classical LVQ which is known to be sub-optimal compared to the generalized LVQ
model (GLVQ). Our approach is based on [38] which also provides strong generaliza-
tion bounds [3,18]. In the approach presented here the model complexity is adapted
based on the conformal prediction approach.

Unlike [23] we will provide a strategy to obtain reference vectors of the dissimi-
larity matrix in a natural way, employing a cost function based margin optimizer and
conformal prediction. It is a common requirement for classifiers to provide not only
good generalization of the prediction on unseen data, but also to define a measure
about the safety of this classification. In the field of proximity learning only very few
methods provide such measures for example by a probabilistic classification [40,34].
For kernel classifiers the Probabilistic Classification Vector Machine [5] or the rele-
vance vector machine [45], provide probabilistic outputs but are not directly applica-
ble for dissimilarity data and also do not scale for large classification problems. These
methods make some assumptions in the modeling step, for example regarding under-
lying data distributions which may lead to potentially biased probability estimates.
Conformal prediction see [42] is an alternative to obtain measures of confidence and
credibility regarding a model prediction and provides calibrated p-values. Conformal
prediction is a very effective theoretical framework used for different problems in
classification and regression [2,28] but also more recently in a wider context like fea-
ture selection [51] and kernel learning [1]. We will employ and detail this approach
in the following to overcome some problems with classical prototype based relational
learning. While the original conformal prediction is very costly for larger data sets,
a more recent alternative called inductive conformal prediction [27,26,48] is also
applicable for larger data sets which we will focus on.

3 Preliminaries about dissimilarity data

Let vj ∈ V be a set of objects defined in some data space, with |V| = N and
vTj the transposed vector. We assume, there exists a dissimilarity measure such that
D ∈ RN×N is a dissimilarity matrix measuring the pairwise dissimilarities Dij =
d(vi,vj) between all pairs (vi,vj) ∈ V. Any reasonable (possibly non-metric) dis-
tance measure is sufficient. We assume zero diagonal d(vi,vi) = 0 for all i and
symmetry d(vi,vj) = d(vj ,vi) for all i, j.

For every symmetric dissimilarity matrix D, an associated similarity matrix S is
induced by a process referred to as double centering with costO(N2): S = −JDJ/2
where J = (I−11T /N) with identity matrix I and vector of ones 1. D is Euclidean
if and only if S is positive semi-definite (psd). Many classification techniques have
been proposed to deal with such psd kernel matrices implicitly such as the support
vector machine. In this case, preprocessing is required to guarantee psd. In [6] differ-
ent strategies (such as clipping, flipping, shift, vector-representation) are discussed to
obtain valid kernels from (dis-)similarity matrices. The idea is to change the eigen-
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value decomposition of the similarity matrix S such that negative eigenvalues are
avoided. More details can be found in the following.

Assuming we have a symmetric similarity matrix S, it has an eigenvalue decom-
position S = UTΛU , with orthogonal matrix U and diagonal matrix Λ collecting the
eigenvalues. In general, p eigenvectors of S have positive eigenvalues and q have neg-
ative eigenvalues; (p, q,N−p−q) is referred to as the signature. If there are negative
eigenvalues, i.e. q 6=0, the vector space is called pseudo-Euclidean space [21].

Definition 1 (Pseudo-Euclidean space ([21])) A pseudo-Euclidean space ξ = R(q,p)

is a real vector space equipped with a non-degenerate, indefinite inner product 〈., .〉ξ.
ξ admits a direct orthogonal decomposition ξ = ξ+ ⊕ ξ− where ξ+ = Rp and
ξ− = Rq and the inner product is positive definite on ξ+ and negative definite on
ξ−. The space ξ is therefore characterized by the signature (p, q).

The clip-operation sets all negative eigenvalues to zero, the flip-operation takes the
absolute values, the shift-operation increases all eigenvalues by the absolute value of
the minimal eigenvalue. The corrected matrix S∗ is obtained as S∗ = UTΛ∗U , with
Λ∗ as the modified eigenvalue matrix using one of the above operations. The obtained
matrix S∗ can now be considered as a valid kernel matrix K. The cost of such trans-
formation is O(N3). As an alternative, data points can be treated as vectors where
coefficients or variables are given by the pairwise similarities. These vectors can be
processed using standard kernels. In [6] an extensive comparison of these preprocess-
ing methods in connection to SVM is performed for a variety of benchmarks. Inter-
estingly, some operations such as shift do not affect the location of global optima of
important cost functions such as the quantization error [22], albeit the transformation
can severely affect other performance measures of different optimization algorithms
[15].

A further alternative is to embed the (dis-)similarity matrix into the so called
dissimilarity space by taking all dissimilarities of a point vi to all other points or a
subset only, resulting in an at most N -dimensional vector representation of vi [9].
However, this view is changing the original data representation and leads to a finite
data space, limited by the number of samples. The analysis in [32] indicates that for
non-Euclidean dissimilarities corrections like above should be avoided. A schematic
view of the relations between S and D and its transformations is shown in Figure 1.

Alternatively, techniques have been introduced which directly deal with possibly
non-psd similarity matrix S. Given a symmetric dissimilarity matrix D with zero
diagonal, an embedding of D in a pseudo-Euclidean vector space determined by the
eigenvector decomposition of S is always possible (see [29]). A symmetric bilinear
form in this space is given by 〈x,y〉p,q = xT Ip,qy where Ip,q is a diagonal matrix
with p entries 1 and q entries −1. Taking the eigenvectors of S together with the
square root of the absolute value of the eigenvalues, we obtain vectors vi in pseudo-
Euclidean space such that dij(vi,vj) = 〈vi − vj ,vi − vj〉p,q holds for every pair
of data points. If the number of data is not limited, a generalization of this concept to
Krein spaces with according decomposition is possible [29].

Vector operations can be directly transferred to pseudo-Euclidean space, i.e. we
can deal with prototypes as linear combinations of data in this space. Hence we can
use prototype-based learning explicitly in pseudo-Euclidean space since it relies on
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Fig. 1: Schema to illustrate the relation between similarities and dissimilarities.

vector operations only. One problem of this explicit transfer is given by the compu-
tational complexity of the embedding which is O(N3), and further, by the fact that
out-of-sample extensions to new data points characterized by pairwise dissimilari-
ties are not immediate. Because of this fact, we are interested in efficient techniques
which implicitly refer to this embedding only. As a side product, such algorithms are
invariant to coordinate transforms in pseudo-Euclidean space.

4 Relational prototype based learning

We assume a training set is given where data point vj is labeled lj ∈ L, |L| = L.
The objective is to learn a classifier f such that f(vk) = lk for any given data point.
Thereby, vk is represented implicitly by a vector of known dissimilarities with respect
to W ⊆ V. Subsequently, we review a recently published prototype classifier for
dissimilarity data [17] which we use as the basic method in the following.

Classification takes place by means of k prototypes wj in the pseudo-Euclidean
space, which are priorly labeled. Typically, a winner takes all rule is assumed, i.e.
a data point is mapped to the label assigned to the prototype which is closest to the
data in pseudo-Euclidean space, taking the bilinear form in pseudo-Euclidean space
to compute the distance. For relational data classification, the key assumption is to
restrict prototype positions to linear combinations of data points of the form

wj =
∑
i

γjivi with
∑
i

γji = 1 wj ∈W. (2)
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Then dissimilarities can be computed implicitly by means of

d(vi,wj) = [D · γj ]i −
1

2
· γTj Dγj (3)

where γj = (γj1, . . . , γjn) refers to the vector of coefficients describing the prototype
wj implicitly and can be randomly initialized, as shown in [15].

Using this observation, prototype classifier schemes which are based on cost func-
tions can be transferred to the relational setting. We use the cost function defined in
[38]. Alternatively a labeled Gaussian mixture model [41] could be used as shown in
[17], which, however is very sensitive to hyper-parameters. The corresponding cost
function of the relational prototype classifier (RPC) becomes:

ERPC =
∑
i

Φ

(
[Dγ+]i − 1

2
· (γ+)TDγ+ − [Dγ−]i +

1
2
· (γ−)TDγ−

[Dγ+]i − 1
2
· (γ+)TDγ+ + [Dγ−]i − 1

2
· (γ−)TDγ−

)
, (4)

where the closest correct and wrong prototypes are referred to, w+ and w−, re-
spectively, corresponding to the coefficients γ+ and γ−, respectively and Φ(x) =
(1 + exp(−x))−1. A simple stochastic gradient descent leads to adaptation rules for
the coefficients γ+ and γ− in RPC: component k of these vectors is adapted as

∆γ+k ∼ − Φ
′(µ(vi)) · µ+(vi) ·

∂
(
[Dγ+]i − 1

2
· (γ+)TDγ+

)
∂γ+k

(5)

∆γ−k ∼ Φ′(µ(vi)) · µ−(vi) ·
∂
(
[Dγ−]i − 1

2
· (γ−)TDγ−

)
∂γ−k

(6)

with

µ(vi) =
d(vi,w

+)− d(vi,w−)
d(vi,w+) + d(vi,w−)

(7)

µ+(vi) =
2 · d(vi,w−)

(d(vi,w+) + d(vi,w−))2
(8)

µ−(vi) =
2 · d(vi,w+)

(d(vi,w+) + d(vi,w−))2
(9)

The partial derivative yields

∂
(
[Dγj ]i − 1

2 · γ
T
j Dγj

)
∂γjk

= dik −
∑
l

dlkγjl (10)

Naturally, alternative gradient techniques can be used. After every adaptation step,
normalization takes place to guarantee

∑
i γji = 1. This way, a learning algorithm

which adapts prototypes in a supervised manner is given for general dissimilarity
data, whereby prototypes are implicitly embedded in pseudo-Euclidean space.

Initially the prototypes are indirectly modeled as random vectors corresponding
to random values γij which sum to one. It is possible to take class information into
account by setting all γij to zero which do not correspond to the class of the prototype.

Out-of-sample extension of the classification to new data is possible based on
the following observation [15]: for a novel data point v characterized by its pairwise
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dissimilarities D(v) to the data used for training, the dissimilarity of v to a prototype
modeled by γj can be calculated by

d(v,wj) = D(v)T · γj −
1

2
· γTj Dγj (11)

Then by finding the closest/most similar prototype based on the distances/dissimilarities
to all prototypes calculated by (11) the new data point will be classified by the label
of the closest prototype.

5 Conformal prediction

RPC is very effective as shown in [17] but has two major limitations. RPC is a crisp
classifier, where the classification function f predicts only the class label but no ad-
ditional information about the confidence of the prediction is given. Especially in
the life science some kind of reliability measure, similar to p- or q-values from statis-
tics would be beneficial. Only few attempts exist to give reliability estimates for these
methods (see [7,44]). A second drawback is that the complexity of the model in terms
of the number of prototypes needs to be specified a priori.

In this approach, we propose to use conformal prediction to enhance classifica-
tion results with a level of confidence, and to automatically grow a model which has
suitable model complexity. Reliability, sometimes also referred as confidence, has
been the subject of a theory called conformal prediction as introduced in [36,49]. See
[42] for a recent tutorial on the topic. Conformal prediction aims at the determina-
tion of confidence and credibility of classifier decisions. Thereby, the technique can
be accompanied by a formal stability analysis as provided in [49]. In the context of
vectorial data, sparse conformal predictors have been recently discussed in [19].

5.1 Conformal prediction for RPC

We follow the general approach of conformal prediction as reviewed in [49,42]. De-
note the labeled training data zi = (vi, li) ∈ Z = V × L. Furthermore let vN+1

be a new data point with unknown label . The conformal prediction computes for
given data (zi)i=1,...,N , an observed data point vN+1, and a chosen error rate ε an
(1− ε)-prediction region Γ ε(z1, . . . , zN ,vN+1) ⊆ L consisting of a number of pos-
sible label assignments. The method ensures that if the data zi are exchangeable 2

then
P (lN+1 /∈ Γ ε(z1, . . . , zN ,vN+1)) ≤ ε (12)

holds asymptotically forN →∞ for each distribution of Z. One says that the predic-
tor is asymptotically valid. It is important to mention, that the probability is uncon-
ditional, such that if we repeat the process of drawing samples vN+1 and generating
Γ ε a number of k times we will find with respect to statistical fluctuations that in less
than ε× k cases the real label lN+1 is not under the predicted labels of Γ ε.

2 Exchangeability is a weaker condition than data being i.i.d. [49] which is also interesting for the online
setting.
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Algorithm 1 Conformal Prediction (CP)
1: function CP(D, vN+1, ε)
2: for all l ∈ L do
3: zN+1 := (vN+1, l)
4: for i = 1, . . . , N + 1 do
5: Di := {z1, . . . , zN+1}\{zi}
6: αl

i := A(Di, zi) . non conformity of zi against Di, using eq. 13
7: end for
8: plN+1 :=

|{i=1,...,N+1 | αl
i≥α

l
N+1}|

N+1
9: end for

10: return Γ ε := {l : plN+1 > ε}
11: end function

Algorithm 2 Inductive Conformal Prediction (ICP)
1: function ICP(D, vN+1, ε)
2: Dtr ∪ Dcal := D . split D into proper training set Dtr and calibration set Dcal
3: W := the model trained using Dtr . train the model using Dtr
4: for all zi ∈ Dcal, i = 1, . . . , |Dcal| do
5: αi := A(W, zi) . non conformity of the calibration set : using W eq. 13
6: end for
7: for all l ∈ L do
8: zN+1 := (vN+1, l)
9: αlN+1 := A(W, zi) . non conformity of zN+1: using W eq. 13

10: plN+1 :=
|{i=1,...,n | αi≥αl

N+1}|
N+1

. p-value w.r.t label l using the non conformity of Dcal
11: end for
12: return Γ ε := {l : plN+1 > ε}
13: end function

5.1.1 Computation of the prediction region

To compute the conformal prediction region, a non conformity measure is fixed
A(D, z). It is used to calculate a non conformity value α that estimates how an ob-
servation z fits to given representative data D={z1, . . . , zN}. The original conformal
algorithm for classification is as follows: given a nonconformity measure A, signifi-
cance level ε, examples z1, . . . , zN , for an new object vN+1 and a possible label l, it
is decided whether l is contained in Γ ε(z1, . . . , zN ,vN+1): see algorithm 1.

However, the original method could yield high computational cost, duo to the
necessity of considering all leave-one-out multi-sets for each new object and all pos-
sible labels, especially for large data sets. In order to overcome this problem some
extensions have been investigated by [26]. One of these extensions is inductive con-
formal prediction (ICP), which split data into two subsets, i.e. proper training set and
calibration set. The proper training set is used to train the model, and based on the
trained model and a given non-conformity measure the non-conformity of the cali-
bration set is calculated and used for the classification of new objects. See algorithm
2.

In this work we generally follow the concept of inductive conformal prediction,
but with a small modification for adaptation of the model complexity. We split the
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data set into multiple subsets, where we assume that each of them should be reason-
ably large to cover the data statistic. For the later crossvalidation scheme the data are
split into three sets for training and one test set. The training sets are T1 := Dtr
({z1, . . . , zn}) which is used to learn the classifier in a standard manner also known
as the proper training set in inductive conformal prediction, T2 ({zn+1, . . . , zm})
called complexity set, which is used to adapt the complexity of the model and T3 :=
Dcal ({zm+1, . . . , zN=m+q}) the calibration set used during the prediction to cali-
brate the p-values. We will refer to the test set as T4 ({zN+1, . . . , zN+r}) and assume
that the labels of T4 are unknown and have to be predicted by the classifier.

In classical inductive conformal prediction the model is generated only once
based on T1, providing a general classification rule, and the data of T3 are used
to calculate the so called p-values which are taken to calculate the confidence and
credibility measures for unknown data T4. In the original scheme T2 does not exist
and is subsumed by T1.

Given a model trained using T1, for each entry of the calibration set T3 a non-
conformity value is calculated (line 4-6 in algo. 2). Based on these non-conformity
values a p-value is estimated for each possible label and test point from T4 (line
7-10). For classification using the conformal classifier, the label of a test item will
be finally predicted as the label with the largest p-value. This refers to the label set
provided by the conformal predictor which contains only one label. More complex
schemes, by analyzing for example label sets with more than one label would be
possible as well, but are not further considered here. The confidence value (cf ) is
given as one minus the second largest p-value (14) and the credibility (cr) is the
largest p-value of this item (15) (for more details see section 5.1.3).

5.1.2 Non Conformity Measure

As explained above, the non conformity measure A(D, z) should evaluate whether
a test example z fits to data D. It is this part of the method that can incorporate
detailed knowledge about the data distribution. Nevertheless one can use any real
valued function 3 but maybe with negative impact on the prediction efficiency.

Thus, we assume that conformal prediction is used in the context of prototype
based classifiers with a “sufficient number” of training data and where all informa-
tion in the data D is implicitly represented by a trained prototype based classifier.
Sufficient number should be understood in a statistical sense, as a number sufficient
to describe the underlying data distribution, permitting any statistical conclusions
from the data, this assumption is considered to be fulfilled in this work.

Given z = (x, l), we choose

αi :=
d+(x)

d−(x)
(13)

with d+(x) being the distance between x and the closest prototype labeled l, and
d−(x) being the distance between x and the closest prototype labeled differently
than l where distances are computed according to Eq. (3)

3 Any measurable function on Z(∗) × Z taking values in the extended real line is a non conformity
measure
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5.1.3 Confidence and credibility

The prediction region Γ ε(z1, . . . , zN,vN+1) stands in the center of conformal pre-
diction. For a given error rate ε it contains the possible labels of L that ensure (12).
But how can we use it for prediction?

Suppose we use a meaningful non conformity measure A. If the value ε is ap-
proaching 0, a conformal prediction with almost no errors is required, which can
only be satisfied if the prediction region contains all possible labels. If we raise ε we
allow errors to occur and as a benefit the conformal prediction algorithm excludes
unlikely labels from our prediction region, increasing its information content. In de-
tail those l are discarded for which the p-value is less than or equal to ε. Hence only
a few zi are as non conformal as zN+1 = (vN+1, l). This is a strong indicator that
zN+1 does not belong to the distribution Z and so l seems not to be the right label.
If one further raises ε only those l remain in the conformal region that can produce a
high p-value meaning that the corresponding zN+1 is rated as very typical by A.

So one can trade error rate against information content. The most useful predic-
tion is those containing exactly one label. Therefore, given an input li two error rates
are of particular interest, εi1 being the smallest ε and εi2 being the greatest ε so that
|Γ ε(D,vi)| = 1. εi2 is the p-value of the best and εi1 is the p-value of the second best
label. Thus, typically, a conformal predictor outputs the label l which describes the
prediction region for such choices ε, i.e. Γ ε = {l}, and the classification is accompa-
nied by the two measures

confidence : cfi = 1− εi1 = 1− py2nd (14)

credibility : cri = εi2 = py1st (15)

Confidence says something about being sure that the second best label and all worse
ones are wrong. Credibility says something about to be sure that the best label is right
respectively that the data point is (a)typical and not an outlier.

The non conformity measure has a direct impact on the efficiency of the predic-
tion region. A good, informative measure will exclude wrong labels for small error
rates and will reject typical data only for great error rates, meaning that εi2−εi1 is large
for typical data vi. That means, that a good measure can give useful information al-
ready for an ensured (12) small error rate εi1 and on the other hand one would have
to face up a high average error rate εi2 to exclude the right label from the prediction
region.

We would like to point out that the concept of conformal prediction permits point-
wise measures of confidence which change for adapted training data, also in case of
unchanged decision boundaries. This means, that similar as in classical statistics,
more densely populated training regions permit more reliable confidence estimates
during a decision. Some authors tried to obtain a kind of a probability from standard
classifiers like SVM, by rescaling the distance to the decision boundary. However,
with new training samples, far away from the decision boundary, a SVM model is
not changed and hence the distance to the boundary is the same. An appropriate con-
fidence measure of the classification can not be justified by such basic approaches,
motivating again our strategy.
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5.2 Complexity adaptation in a Conformal Relational Prototype Classifier

By traditional prototype methods the model complexity, i.e. number of prototypes,
has to be defined beforehand, and it highly depends on the data distribution. It is
difficult to find appropriate number of prototypes for different data sets. There are
some extensions investigated to automatically adjust the number of prototypes by
adding new prototypes or deleting redundant ones (see [12,20]), but most of them
are restricted to vector space and based on heuristics, but not in a statistical sense.
Especially, they can not be directly transferred to dissimilarity data.

Therefore, in this work we use the additional information provided by conformal
prediction to automatically adapt the structural complexity of the model. Depending
on the size of available data we can either use a full inductive conformal setting in the
complexity adaptation and model prediction phase or limit inductive conformal pre-
diction only to the model prediction. The last one means that the relational prototype
classifier is not using inductive conformal prediction during the complexity adapta-
tion but only in the prediction of the items from test set T4 using the calibration set
T3. Accordingly, for model complexity adaptation based on the complexity set T2
we would not use a calibration set.

Alternatively we can use inductive conformal prediction also during the com-
plexity adaptation of the relational prototype classifier. This however requires an
additional calibration set in Algorithm 3, line 25. In the following we discuss the
simplified case where the model complexity adaptation is based on T1 and T2 only.

As discussed before the available data are divided into multiple subsets, for train-
ing (T1), complexity (T2), calibration (T3) and test (T4). We use 80% of the training
data as (T1) to train the model and 20%, denoted T2 to estimate the suitability of the
current model, or the model complexity, by means of conformal prediction. Note that
in this case we use a simplified version of conformal prediction in which we ignore
all leave-one-out multisets and train the model on the whole T1. That means training
only has to be performed once. The reasons thereof are: First, the locations of the
prototypes depend on the whole data distribution, and will not be widely affected by
a single data point. Secondly, the information loss will be minimal if the size of train-
ing data is sufficiently large, in this case adding a data point but leaving out another
data point will not really affect the learning results. The calibration set T3 and the
test set T4 are left out and used only in the prediction phase of the final trained model
and not during the model complexity adaptation.

For T1 and T2, we compute α-values according to section 5.1.2. These values
are used to calculate p-values for T2 (here an alternative calibration set can be used
to get unbiased p-value estimates for T2 given a large data set). This provides point
estimates for confidence and credibility of the classifier. We collect the set of points
B with low credibility and/or confidence.

A low confidence is given if (1− εi1) ≤ ζ1, where ζ1 is a user defined threshold,
for example above the upper quartile of confidence values for the second best label.
A low credibility is observed for εi2 ≤ ζ2, where ζ2 is another threshold, e.g below
the first quartile of confidence values for the best label.
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Hence we define the so-called low confidence/credibility region B

B = {vi : cfi ≤ ζ1 ∨ cri ≤ ζ2} (16)

If |B| is large (in our case we take a threshold of ≥ 1% · |T2|), the complexity of the
classifier is not yet sufficient. Hence, this parameter and ζ1, ζ2, control the sparsity of
the model. For the data considered in the experimental section the threshold of |B| is
in the range of [4− 10]. A new prototype is created and set to the representative data
point (median) in B.

Pseudocode of the C-RPC method

Algorithm 3 Conformal relational prototype classifier.
1: init: prc := 20%; W := randomly initialized (see Sec. 4)
2: Define Trainingset T1

⋃
T2, a calibration set T3 and a testset T4

3: B := {∅};
4: T1 := randomly selected 1− prc of training data (proper set)
5: T2 := the remaining training data (complexity set)
6: improve := 1%; . threshold of improvement: default 1%
7: itr := 0 . iteration counter
8: ctn best := 0 . counter for best result
9: max itr := 100 . maximal total iterations

10: max ctn best := 10 . maximal iterations for a result as winner
11: acc := 0
12: repeat
13: W :=W

⋃
{new prototype representation(s) from B} . See description around Eq (16)

14: W := retrain W using RPC on T1;
15: acc new := evaluation of W ; . accuracy w.r.t. T1
16: if acc new − acc ≥ improve then
17: W Best =W ; acc = acc new; ctn best = 0;
18: else
19: ctn best = ctn best+ 1;
20: end if
21: . adaptation of the model complexity step: see section 5.2
22: AT1 := {αi,∀i ∈ T1}, . α-values of T1 w.r.t. W : eq. (13)
23: AL

T2 := {αli,∀i ∈ T2, ∀l ∈ L} . α-values of T2 for all possible labels w.r.t. W : eq. (13)
24: PT2 := {pli, ∀i ∈ T2, ∀l ∈ L} . p-values of T2 for all possible labels based onAT1 andAL

T2
25: CF := {cfi, ∀i ∈ T2}, CR := {cri, ∀i ∈ T2}
26: . confidence/credibility of T2 by means of PT2: eq. (14) (15)
27: generate B . eq. (16)
28: until |B| < 1% · |T2| or itr = max itr or ctn best = max ctn best
29: . inductive conformal prediction process
30: AT3 := {αi, ∀i ∈ T3},
31: AL

T4 := {αi, ∀i ∈ T4,∀l ∈ L}, . α-values of T3 and T4 w.r.t. W Best : eq. (13)
32: PT4 := {pli, ∀i ∈ T4, ∀l ∈ L} . p-values of T4 for all possible labels based onAT3 andAL

T4

return labels with largest pli for each i ∈ T4

Algorithm 3 consists of three steps. Step one, covering lines 1-11, is the initial-
ization phase where the data are divided into four datasets as described before and
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some basic variables are initialized. Step two (lines 12-28) cover the training of RPC,
which is repeated each time the model complexity is adapted. First a RPC model
is learned, based on the current prototype representations given in W and using the
training data T1. The optimized prototype representation is kept given there is a sub-
stantial improvement in the prediction accuracy on the training data T1. Further we
test for data regions not well covered by the model using T1 and T2, see lines 21-27.
This triggers a model complexity adaptation as described in more detail before. The
algorithm iterates until the stopping criteria are met: line 28. The representation of the
prototypes summarized in W is the matrix of the γ coefficients used in Eq. (3) and is
based on T1 and T2. The size of this matrix (number of columns) is adapted in each
complexity modeling step. Eventually, in step three, the obtained optimized proto-
type representation W Best is used to predict the label and confidence or credibility
values of the points from set T4 using T3 in accordance to the schema in algorithm
2 and by using Eq. (11) as the non-conformity measure.

5.3 Sparse approximation of prototypes

The RPC algorithm represents prototypes indirectly by means of coefficient vectors
which are not directly interpretable since they correspond to typical positions in the
pseudo-Euclidean space. However, because of their representative character, we can
approximate these positions in pseudo-Euclidean space by its closest exemplars, i.e.
data points originally contained in the training set. Unlike prototypes, these exemplars
can be directly inspected in the same way as data. We refer to such an approximation
asK-approximation if a prototype is substituted by itsK closest exemplars, the latter
being directly accessible to humans. We will see in experiments that the resulting
classification accuracy is still quite good for the approximated models with K = 1
and we present an example showing the interpretability of the result. We refer to
results obtained by a K-approximation by the subscript RPCK or CRPCK for the
conformal classifier, respectively.

RPC (just as SVM) depends on the full proximity matrix and thus displays quadratic
time and space complexity. Depending on the chosen dissimilarity, the main com-
putational bottleneck is given by the computation of the dissimilarity matrix itself.
Alignment of biological sequences, for example, is quadratic in the sequence length
(linear, if approximations such as FASTA are used), such that a computation of the
full dissimilarities for some thousand points as in the subsequent examples, would
already lead to a computation time of more than some days (Intel Xeon QuadCore
2.5 GHz, alignment done by Smith-Waterman or FASTA) and a storage requirement
of some 100 Megabyte. Efficient approximation strategies based on the Nyström ap-
proximation as introduced in [50] can be used. Here, we use the K− approximation
to obtain interpretable models and consider full similarity and dissimilarity matrices
during training. The K-approximation is also extremely helpful in the test case be-
cause (dis-)similarities of the test point need only be calculated to very few training
samples.
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5.4 Theoretical complexity analysis

With respect to the runtime complexity, kernel methods, for example SVM needs
O(N2) − O(N3) operations to transfer the (dis-)similarity matrix into a valid ker-
nel, as discussed before, and SVM training scales with ≈ O(N2) (using Sequential
Minimal Optimization (SMO) [35]). Taking both operations together we still have a
runtime complexity of O(N2), for non-psd matrices.

The size of the model, given by the number of support-vector depends on the data
sets. Often support vector models are large and may cover the whole training set. The
relational prototype method on the other hand is trained on non-psd matrices directly
and scales quadratic with the number of examples for the training [15] and the size
of prototype representations is linear with respect to the number of examples.

For CRPC, due to the model adaptation CRPC has to retrain the model several
times (denoted as k), normally k � N , so the retraining process of CRPC remains
O(N2). Additionally, the complexity of conformal prediction can be considered as
linear O(N), since after each retraining the α-values with respect to all possible
labels have to be calculated, i.e.O(k·N ·|L|), and usually |L| � N , so the complexity
of conformal prediction step is O(N).

The training time of kNN-Diss is O(N2) with maximum model complexity.
Again we would like to point out that the transformation to a valid psd matrix is not
only costly, but also can degenerate the results as pointed out in [32]. The complex-
ity of all methods is at least O(N2), either due to the psd-correction or the training
procedure. Our objective is not to obtain a faster training time, nor to achieve higher
prediction accuracy. Instead we focus on sparse, interpretable models which can be
trained in reasonable time and keep good generalization and query time for the test
set, permitting pointwise measures of confidence.

6 Experiments

Initial experiments were done for the simulated checkerboard data, with known vec-
tor representation. It consists of two classes with 1250 points, in two dimensions and
5 × 5 clusters (see Figure 2 (left)). The dissimilarity matrix D was obtained using
the Euclidean distance. RPC can learn this data only if the prototypes are initialized
near the centers of the multi-modal distributions, provided a sufficient number of
prototypes. The CRPC on the other hand automatically adapts its model complexity
according to the introduced schema, leading to an effective model with a minimum
initialization of 1 prototype per class only. We observe that the number of prototypes
is slightly above the true number of 25 clusters, but the clusters are slightly overlap-
ping and a number of 34 prototypes is considered a good result. The runtime behavior
of the confidence and credibility measure during learning is shown in Figure 3.

We observe that at the initial point of learning, with only two prototypes, the
number of points with a low confidence is very high but the credibility is in average
quite good. This is an indicator that a large number of points is wrongly assigned,
since the second label maybe similar likely. Due to the small number of prototypes a
reasonable number of assignments are however considered to be correct, or the cred-
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Fig. 2: Typical result of the CRPC for the two class checkerboard data, with 25 clus-
ters. The initial model contained only 1 prototype per class, using the described con-
formal prediction schema the number of prototypes are auto-adjusted to 34 with al-
most perfect (96.48%(3.56)) separation of the true clusters evaluated on the test.
A standard RPC model with the same number of prototypes, as finally obtained by
CRPC, was not able to learn the data and we got 50.72%(2.59) accuracy on the test
data. The class labels are given in the circled numbers. Right: statistic of the credibil-
ity and confidence for the different prototypes.

ibility is rather high, which is a natural consequence, because by chance ≈ 50% got
the correct label. To modify the model complexity, CRPC continuously analyzes the
behavior of confidence and credibility. If one or both measures drop below the thresh-
old an adaptation of the model complexity takes place. In the experiment above, the
number of prototypes increased step wise, leading to a higher confidence on average.
The credibility on the other hand suffers, because there are more similar prototypes
(actually, those with the same label), which are alternative clusters for the consid-
ered point. Figure 3 also shows that the approach shows a convergent behavior which
is also caused by limiting the minimal cluster size ( if |B|<1%·|T2| terminates the
program (Algorithm 2 line 27)). As the final prediction accuracy for CRPC1 we get
96.48%± 3.56 which is a very good result.

We compare with SVM where, since data are Euclidean, a valid kernel results
automatically4. The resulting prediction accuracy within a 10− fold cross validation
is between 99−100%. The number of support vectors is 285−387 which accounts to
23%−31% of the full data set. Also the kNN-Diss (see [29]) classifier performs very
well with an accuracy of 100% on the test data but with all data in the model. Thus,
the complexity of the alternative models is at least one order of magnitude larger as
compared to CRPC1 with automatic adjustment of the model complexity.
For further comparison, we test the algorithm on four biomedical data sets:

4 We optimized the parameter C by a standard grid search.
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iterations

# prototypes
# pts low credibility
# pts low confidence 

Fig. 3: Change of the number of low confidence/credibility data points during learn-
ing as well as the number of prototypes

– The ProDom dataset with signature (1502, 682, 420) consists of 2604 protein se-
quences with 53 labels. It contains a comprehensive set of protein families and
appeared first in the work of [37]. The pairwise structural alignments are com-
puted by [37]. Each sequence belongs to a group labeled by experts, here we use
the data as provided in [8].

– The Protein data set with signature (209, 0, 4) consists of 213 data from 4 classes,
representing globin proteins (heterogeneous globin, hemoglobin-A, hemoglobin-
B, myoglobin) compared by an evolutionary measure, used already in [6].

– The SwissProt data set (SWISS), with a signature (4578, 1212, 1), consists of
5,791 samples of protein sequences in 10 classes taken as a subset from the pop-
ular SwissProt database of protein sequences [4]. The considered subset of the
SwissProt database refers to the release 37. A typical protein sequence consists
of a string of amino acids, and the length of the full sequences varies between
30 to more than 1000 amino acids depending on the sequence. The 10 most com-
mon classes such as Globin, Cytochrome b, Protein kinase st, etc. provided by the
Prosite labeling [11] where taken leading to 5,791 sequences. Due to this choice,
an associated classification problem maps the sequences to their corresponding
Prosite labels. These sequences are compared using Smith-Waterman which com-
putes a local alignment of sequences [13]. This database is the standard source for
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identifying and analyzing protein sequences such that an automated classification
and processing technique would be very desirable.

– The Bacteria data set (Bacteria), with a signature (2007, 0, 0), consists of 2007
samples of bacteria mass spec fingerprints in 30 classes taken as a subset from
a commercial database provided by [24]5. The selected bacteria classes are the
most prominent ones, consisting of 22 up-to 203 entries. The underlying similar-
ity measure and data generation are discussed in [24]. Basically, the similarities
are measures of the alignment of two different spectra and the spectra encode a
peptide snapshot of the considered bacterium.

We compare our results with the reference method for dissimilarity learning, the
kNN-Dissimilarity classifier (kNN Diss) [33] and a support vector machine (SVM)
implementation [47]. For SVM results for different preprocessing of the similarity-
matrix are reported, as detailed before. The crossvalidation scheme, the kNN-Diss
algorithm and the SVM have been implemented using prtools and distools [8]. The
parameterC for the SVM was estimated in an internal cross validation on the training
data, with a grid search C ∈ [0.25, 2.5] with a step size of 0.25 using a linear kernel
6. The k in kNN-Diss was auto-optimized by the distools-Toolbox, typically resulting
in k = 5. The initial prototypes for RPC and CRPC were initialized within the class
centers using random samples from the classes and optimized in the pre-described
training procedure with up to 10 cycles (full training data sweeps). The initial number
of prototypes is chosen according to the priorly known number of classes. We used
10 for SWISS and 21 for CHROMO and 4 for PROTEIN.

Experiments are done within a 10−fold cross validation and with 10 repeats. We
report the mean and standard deviation of the error on the test sets. For CRPC label
prediction is based on the label with the highest p-value. Further we provide values
for the model complexity, by means of the number of points used to represent the
prototypes or, in case of SVM, the number of support vectors in the full-class model
(see Table 1). For SVM we provide results where the proximity matrices have been
processed as mentioned before to obtain metric similarities using clipping or flipping.
This procedure has a complexity of O(N3) but is necessary for kernel machines. For
comparison we also tried to obtain models without a costly eigenvalue correction
(indicated by no) but failed for SVM due to convergence issues. Instead we provide
some obtained results using a core vector machine (CVM) [46]. Theoretically CVM
also can be used only for psd matrices but is less sensitive with respect to non psd
matrices as long as the negative eigenvalues are small or not so relevant. For the
ProDom data the negative eigenvalues are a substantial part of the data space, with
a similar scale as the positive eigenvalues and it was not possible to run a kernel
machine on the unprocessed proximity data.

In Figure 4, as two examples, we show the important advantage of CRPC by pro-
viding the confidence measure. After the model adaptation process one can analyze
the test data with respect to their high / low confidence and credibility values. Instead

5 The database is not public but part of the sold product the article references to, here we use the version
with 3034 bacteria groups. Details can be obtained by contacting the authors at Bruker.

6 For the considered data we did not observe relevant improvements using an RBF kernel or similar, in
particular since, in most cases, the Gram matrix is dealt with directly.
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Table 1: Mean test set accuracies for different dissimilarity data using the knn-
Dissimilarity classifier, SVM with clipping or flipping and (conformal) RPC. The
standard deviations are given in parenthesis, together with the (mean) number of dis-
tinctive sample points or support vectors, rounded to whole numbers, used in the
models. Full - indicates that roughly all training points belong to the model.

ProDom (2604) SWISS (5791) PROTEIN (213) Bacteria (2007)

RPC 95.00 (1.44—Full) 93.33 (0.96—Full) 97.91 (2.83—Full) 91.96(0.25-Full)
RPC1 67.24 (4.73—53) 94.37 (0.83—10) 88.73 (3.22—4) 42.43(1.05-30)
CRPC 86.65 (1.84—Full) 93.74 (0.98—Full) 98.18 (0.41—Full) 88.71(0.38-Full)
CRPC1 85.83 (2.31—88) 94.59 (1.12—12) 88.77 (1.14—4) 59.72(1.79-50)
kNN-Diss 99.44 (0.00—Full) 98.08 (0.10—Full) 79.48 (0.45—Full) 91.85 (0.19 — Full)
CVM-no - 97.27 (0.74—33) 76.73 (8.94—18.8) 72.54 (2.24 — 67)
SVM-flip 97.73 (1.02—782) 99.43 (0.36—712) 98.10 (3.33—140) 90.48 (2.24 — 1807)
SVM-clip 98.00 (1.05—779) 99.52 (0.25—699) 94.78 (5.70—165) 90.38 (2.53 — 1807)
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Fig. 4: Confidence values after training for two exemplary data sets: (a) the confi-
dence values of the test data of protein (b) the confidence values of the test data of
bacteria. Point wise confidence and credibility values can be used to identify items
which are not well classified, although the proposed label is correct.

of providing only a predicted label the pointwise measures for confidence and cred-
ibility also permit to identify the safety of this prediction and the consideration of
alternative class label prediction (for example if a larger predicted label set, not only
containing a single label, is similar likely). For the bacteria data set it is common
see [24] to support the identification by a so called score measure. While this score
is based on a simple non-metric measure of the similarity between the test item and
a reference sample a conformal prediction is based on sound mathematical founda-
tions. It would for example possible to identify regions of weak support or strong
overlap in such databases.

Considering the different experiments we could not identify one single best method,
with respect to the prediction accuracy. For PROTEIN, CRPC performed best with
20% better prediction compared to kNN-Diss and slightly better compared to SVM.
For the SWISS data the best prediction result was obtained by SVM with 99.5% com-
pared to 94.37% using RPC and 98.08% with kNN-Diss. The ProDom data have been
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best predicted by kNN-Diss with 99.44% which is 1.5% better than with SVM and
4% better compared with RPC. As expected the Bacteria data are effectively modeled
by all methods. Using K-approximation the results remain often quite good. Consid-
ering only K = 1 we obtain for CRPC1 86.65% (ProDom), 94.59% (SWISS) and
88.77% (PROTEIN) which is not as good as the best reported results, but with a sig-
nificantly less number of sample points in the model. For ProDom only 3% of the
points build the model, compared to ≈ 30% using SVM. This effect is even more
pronounced for SWISS with 0.2% of the points used by CRPC1 and 12% by SVM
and similar for PROTEIN ≈ 2% with CRPC and 65% using SVM. The kNN-Diss
classifier keeps roughly all points in the training data.

The reason why k-approximation for bacteria data set was found to be less effec-
tive is mainly due to the intrinsic dimensionality of bacteria data, which is very high.
The intrinsic dimensionality can be estimated by looking at the ratio of the num-
ber of absolute eigenvalues of corresponding similarity matrix above a predefined
threshold to the size of the matrix. In this case we transformed the dissimilarity to
similarity matrix by using double centering and took 10% of the maximal eigenvalue
as the threshold. For ProDom we obtained an intrinsic dimensionality 14.59%, for
SwissProt 4.35%, for Protein 7.47%, and for Bacteria 90.43%. For high intrinsic di-
mensionality the prototypes can not be approximated well by using small k, they may
depend on all data points. But still by means of conformal prediction we got some
improvement compared to the standard approach.

The number of sample points in the model is often very relevant for dissimilarity
data. As mentioned before the calculation of the scores, for example by the Smith-
Waterman algorithm, is very costly. To map a new training point into the models, the
(dis-)similarities to all points in the training data have to be calculated, hence a small
number of sample points or sparse model is very desirable.

6.1 Interpretation of CRPC models

Considering the SWISS data set and (C-)RPC and a K-approximation of K = 1
we obtain a prediction accuracy of ≈ 94. This provides direct access to a very small
number of associated data points, for which meta-information can be inspected.

Selecting the point associated with the K = 1 approximation of the Zinc-finger
class we can track back the original swiss/uniprot reference number. Here, we get
the ID ’O13124’ as most representative for the group Zinc-finger. This leads directly
to all associated meta information in the swiss-prot database. The expert can now
consider the items represented by this prototype as very similar to the ’O13124’ entry,
revealing potential similar chemical properties within the group Zinc-finger modeled
by (C)RPC.

For some dissimilarity data like mass-spectrometry scores in the context of bac-
teria identification [24] the K-approximated prototypes can be directly linked to me-
dian representations of the underlying data, here spectra. These databases are quite
new and rapidly growing, requesting for inspection tools and interpretable classifiers
to ensure validity of the stored results and data.



Sparse conformal prediction for dissimilarity data 21

In contrast, the kNN-Diss classifier model is quite complex and an inspection
is ineffective. In case of SVM the model parameters are the support vectors, which
are close to the decision boundary, and hence, in general, atypical – limiting their
usefulness for an interpretation.

For new points the model now also provides pointwise estimates of the confidence
and credibility of the classification according Eq. (13). The classification is therefore
accompanied by two values indicating the safety of the classification. Points which
are probably assigned to the wrong class can be identified by, most often low confi-
dence and low credibility values. But also cases where points are equally similar to
two classes, for example, can be detected and appropriate analysis of the meta-data,
more specific sub-models or reject operations can be applied.

7 Conclusions

We have defined the sparse conformal relational prototype classifier, an efficient clas-
sifier for dissimilarity data based on the relational prototype classifier and the confor-
mal prediction concept. In addition to the good prediction accuracy, CRPC automati-
cally adapts the model complexity and outputs measures of its accuracy by means of
point wise confidence and credibility values, with a clear probabilistic interpretation.
The experimental results show good performance compared to standard techniques
but with easier access to much sparser models. In future work we will in more detail
address the interpretability of the obtained models and how this can be linked to the
supervised modeling of sequence databases and other application fields.
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25. Manolova, A., Guérin-Dugué, A.: Classification of dissimilarity data with a new flexible mahalanobis-
like metric. Pattern Anal. Appl. 11(3-4), 337–351 (2008)

26. Papadopoulos, H.: Inductive conformal prediction: Theory and application to neural networks. In:
Tools in Artificial Intelligence, Chap. 18, pp. 315–330. I-Tech (2008)

27. Papadopoulos, H., Proedrou, K., Vovk, V., Gammerman, A.: Inductive confidence machines for re-
gression. In: Elomaa et al. [10], pp. 345–356

28. Papadopoulos, H., Vovk, V., Gammerman, A.: Regression conformal prediction with nearest neigh-
bours. Journal of Artificial Intelligence Research 40, 815–840 (2011)

29. Pekalska, E., Duin, R.: The dissimilarity representation for pattern recognition. World Scientific
(2005)

30. Pekalska, E., Duin, R.P.W.: Dissimilarity representations allow for building good classifiers. Pattern
Recognition Letters 23(8), 943–956 (2002)

31. Pekalska, E., Duin, R.P.W.: Beyond traditional kernels: Classification in two dissimilarity-based rep-
resentation spaces. IEEE Transactions on Systems, Man, and Cybernetics, Part C 38(6), 729–744
(2008)



Sparse conformal prediction for dissimilarity data 23

32. Pekalska, E., Duin, R.P.W., Günter, S., Bunke, H.: On not making dissimilarities euclidean. In: A.L.N.
Fred, T. Caelli, R.P.W. Duin, A.C. Campilho, D. de Ridder (eds.) SSPR/SPR, Lecture Notes in Com-
puter Science, vol. 3138, pp. 1145–1154. Springer (2004)

33. Pekalska, E., Duin, R.P.W., Paclı́k, P.: Prototype selection for dissimilarity-based classifiers. Pattern
Recognition 39(2), 189–208 (2006)

34. Pekalska, E., Haasdonk, B.: Kernel discriminant analysis for positive definite and indefinite kernels.
IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1017–1032 (2009)

35. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. pp. 185–
208. MIT Press, Cambridge, MA, USA (1999)

36. Proedrou, K., Nouretdinov, I., Vovk, V., Gammerman, A.: Transductive confidence machines for pat-
tern recognition. In: Elomaa et al. [10], pp. 381–390

37. Roth, V., Laub, J., Buhmann, J.M., Müller, K.R.: Going metric: Denoising pairwise data. In: S. Becker,
S. Thrun, K. Obermayer (eds.) NIPS, pp. 817–824. MIT Press (2002)

38. Sato, A., Yamada, K.: Generalized learning vector quantization. In: D.S. Touretzky, M. Mozer, M.E.
Hasselmo (eds.) NIPS, pp. 423–429. MIT Press (1995)

39. Schleif, F.M., Villmann, T., Hammer, B., Schneider, P.: Efficient kernelized prototype based classifi-
cation. Int. J. Neural Syst. 21(6), 443–457 (2011)

40. Schneider, P., Geweniger, T., Schleif, F.M., Biehl, M., Villmann, T.: Multivariate class labeling in
robust soft lvq. In: Proceedings of ESANN 2011, pp. 17–22 (2011)

41. Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Computation 15(7), 1589–1604
(2003)

42. Shafer, G., Vovk, V.: A tutorial on conformal prediction. Journal of Machine Learning Research 9,
371–421 (2008)

43. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis and Discovery. Cambridge
University Press (2004)

44. de Stefano, C., Sansone, C., Vento, M.: To reject or not to reject: that is the question: an answer in
case of neural classifiers. IEEE Transactions on Systems, Man and Cybernetics Part C 30(1), 84–93
(2000)

45. Tipping, M.E.: The relevance vector machine. In: S.A. Solla, T.K. Leen, K.R. Müller (eds.) NIPS, pp.
652–658. The MIT Press (1999)

46. Tsang, I.W., Kocsor, A., Kwok, J.T.: Simpler core vector machines with enclosing balls. In: Z. Ghahra-
mani (ed.) ICML, ACM International Conference Proceeding Series, vol. 227, pp. 911–918. ACM
(2007)

47. Vapnik, V.: The nature of statistical learning theory. Statistics for engineering and information science.
Springer (2000)

48. Vovk, V.: Conditional validity of inductive conformal predictors. Journal of Machine Learning Re-
search - Proceedings Track 25, 475–490 (2012)

49. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World. Springer, New
York (2005)

50. Williams, C., Seeger, M.: Using the nyström method to speed up kernel machines. In: Advances in
Neural Information Processing Systems 13, pp. 682–688. MIT Press (2001)

51. Yang, M., Nouretdinov, I., Luo, Z., Gammerman, A.: Feature selection by conformal predictor. IFIP
Advances in Information and Communication Technology 364 AICT(PART 2), 439–448 (2011)


