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ABSTRACT

Motivation:  The analysis of metabolic processes is becoming
increasingly important to our understanding of complex biological
systems and disease states. Nuclear magnetic resonance
spectroscopy (NMR) is a particularly relevant technology in this
respect, since the NMR signals provide a quantitative measure of
metabolite concentrations. However, due to the complexity of the
spectra typical of biological samples, the demands of clinical and
high throughput analysis will only be fully met by a system capable
of reliable, automatic processing of the spectra. An initial step in this
direction has been taken by Targeted Profiling (TP), employing a
set of known and predicted metabolite signatures fitted against the
signal. However, an accurate fitting procedure for 'H NMR data is
complicated by shift uncertainties in the peak systems caused by
measurement imperfections. These uncertainties have a large impact
on the accuracy of identification and quantification and currently
require compensation by very time consuming manual interactions.
Here, we present an approach, termed Extended Targeted Profiling
(ETP), that estimates shift uncertainties based on a genetic algorithm
(GA) combined with a least squares optimization (LSQO). The
estimated shifts are used to correct the known metabolite signatures
leading to significantly improved identification and quantification. In
this way, use of the automated system significantly reduces the effort
normally associated with manual processing and paves the way for
reliable, high throughput analysis of complex NMR spectra.

Results:  The results indicate that using simultaneous shift
uncertainty correction and least squares fitting significantly improves
the identification and quantification results for 'H NMR data
in comparison to the standard targeted profiling approach and
compares favorably with the results obtained by manual expert
analysis. Preservation of the functional structure of the NMR spectra
makes this approach more realistic than simple binning strategies.
Availability:  The simulation descriptions and scripts employed are
available under: http://139.18.218.40/metastemwww
/bioinf/bioinf_suppl_nmr_ga_opt_schleif_et_al.tgz

Contact: schleif@informatik.uni-leipzig.de

1 INTRODUCTION

metabolite detection are mass spectrometry (MS) and nuclear
magnetic resonance spectroscopy (NMR). While each has its
specific advantages, the inherently quantitative nature of NMR
makes it most attractive for providing data for the development
of mathematical models. However, the current challenge is to
extract reliably quantitative data from experimental spectra which
are often complex and subject to background variability. Here we
focus on the exact extraction of metabolite information frokh
NMR measurements. The general strategy involves pre-processing
steps such as phase- and baseline correction, smoothing and data
reduction (Xi and Rocke (2008); Chargd al. (2007)), followed

by the identification of distinct metabolite signatures in the signal
and the estimation of metabolite concentrations with respect to
the original biological samples. Details of the basic pre-processing
used in this work are provided in (Schleif (2007); Schleifal.
(2008)). A number of approaches have been reported to help
in the subsequent identification and quantification of individual
metabolites from preprocessed daté¢Beret al. (2009); Xiaet al.
(2008); Zhaoet al. (2006); Weljieet al. (2006)). However, none

of the methods currently available can be applied in the reliable,
automated fashion necessary for the high-throughput processing of
complex biological samples (Moget al. (2007); Mendes (2006)).

As an initial step towards automatic processitaggeted profiling

(TP) (Weljie et al. (2006)), employs a set of known and predicted
metabolite signatures (targets) fitted against the signal. However,
an accurate fitting procedure foH NMR data is complicated by
small but significant shift uncertainties in the peak systems, caused
by even minor variations in parameters such as temperature and pH
(Defernez and Colquhoun (2003)).

These uncertainties have a large impact on the accuracy
of identification and quantification and currently need to be
compensated by very time consuming manual interactions.
Independent correction of the shift followed by fitting of the
corrected target descriptions against the signals is not generally
feasible because of the strong overlaps typicdldbNMR spectra.

Generic methods for the compensation of peak shifts are typically
based on a specific or average reference signal taken from the data
(Forshedet al. (2005)). If such a reference is available, then the
NMR spectra are locally aligned to it such that the final set of
spectra is reasonable aligned and corresponding peaks match. The

The quantitative profiling of metabolites and the mathematicalysed optimization techniques commonly employed include partial
modeling of metabolic networks is set to make a major contributionieast squares approaches (Vogetisl. (1996)), genetic algorithms

to our understanding of complex biological systems, including(Forshedet al. (2003)) and procedures based on the fourier
the processes underlying development and tissue homeostasiginsformation (Savoranét al. (2010)). This type of alignment
(Weckwerth (2003)). The most commonly used methods for
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Fig. 1. Overlapping effect in 8H NMR spectrum of multiple metabolites. It can clearly be seen, that thergsin of the Lorentzian fails
to provide an accurate approximation in some regions. This can lead twantestimates of target heights and hence wrong concentration
estimates.

problem is relevant not only to NMR but also to other data, includingalready been applied to spectroscopic data (Jarvis and Goodacre
mass spectrometry (Piera al. (2007); Schleif (2006)). While (2005); Hastieet al.(2001)). The estimated shifts are used to correct
the proposed approaches are promising and reasonable fast, thie known metabolite signatures, leading to significantly improved
assume the availability of a reference spectrum to be used as thdentification and quantification results. The shift uncertainties
objective goal. Sometimes it is merely assumed that a set of commoare generally corrected with sufficient accuracy that little or no
reference peaks is available so that an alignment function can b&ubsequent manual interaction is necessary to generate the final
estimated based on these data (Schleif (2006)). However, this iguantifications. The method has been tested on a range of NMR
often not realistic and in the setting considered here we do nospectra obtained from cell culture experiments. We have evaluated
assume the existence of a (global) reference spectrum. Furthermotée models obtained in comparison to a standard targeted profiling
even for the aligned spectra one can not ensure that the pealkgproach as well as to the defacto standard of a careful manual
are aligned to theitrue position, only they are aligned to one analysis. We have also studied the observed shift uncertainties with
another. If the chosen reference is not an undisturbed signal themrespect to their influence on the concentration estimates during the
there is no guarantee that the aligned spectra show correct ppm arultiple steps of the GA.
mass positions for the peaks. In the case of metabolic profiling,
this leaves the problem of correct identification and quantification
of the metabolites in a spectrum with potential peak shifts. Our2 APPROACH AND METHODS
approach focuses on this special problem. The prior mentione
alignment methods can be used as a potential preprocessing o 1 NMR Spectroscopy
if the analyzed spectra are reasonable similar, as it should be th&ll '"H NMR-spectra were acquired on an AVANCEO MHz
case for replicates. In this case it is possible to align the spectra firddMR-spectrometer (Bruker, Rheinstetten, D) equipped with a
before using the approach, presented below. mm cryo-probe. A pulse acquire sequence was used @ith

The targets consist of a set of parametrized peak models showingccumulations,65536 complex points,8389.2 Hz sweep width
uncertainties in their positions with respect to a true measuremengorresponding ta 1.982 ppm on the chemical shift axis (.002
as described in more detail below. A typical NMR signal from a ppm , 0.13 Hz nominal spectral resolution, respectively) and a
biological sample containing a variety of targets contains aroundepetition time of20 seconds% five times the T1 of the reference
100 erroneous shift parameters. Local shift uncertainties need t@nd metabolites) ensuring fully relaxed, quantifiable signals.
be corrected within a given tolerance for all these parameters andMR samples were prepared by re-suspending lyophilised cell
often within the context of overlapping targets. Furthermore, NMRextracts in500u! D-O (99.9 atom %, Sigma Aldrich, Steinheim,
data show very spiked peaks so that both the correct peak positiot®) potassium phosphate-buffen.Q5M, pH 7.4) containing a
and accurate target height estimates are decisive to the accurapown concentration60 — 120uM) of 2, 2'dimethylsilapentane-
of metabolite concentration estimates. This makes a completg-sulfonate (DSS,99.0%, Fluka, Taufkirchen, Germany) as a
evaluation of all possible solutions unfeasible and the problem igeference for chemical shift and quantification. Each extract was
ill posed. then mixed vigorously by vortexing and centrifuged fomin at

We present here an approach designed to improve this situation by0-000g. The supernatants (approx)0ul) were transferred t&
semi-automatic analysis of the spectra such that only minor, simplédm NMR-tubes (Wilmad, Vineland NJ USA). All samples were
interaction steps are necessary to allow the processing of large dagalbject to NMR analysis &98 K within 12 h.
sets. We developed an approach estimating shift uncertainties based
on a genetic algorithm (GA) (Goldberg (1989); Mitchell (1995)) 2.2 Data pre-processing
combined with a least squares optimization (LSQO) (Fletchefyg focus on the analysis ofH liquid NMR spectra obtained
(2000)). Genetic algorithms are known to be very effective infom extracts of cultured stem/progenitor cells,  detailed
finding local optimal solutions for ill-posed problems and havesubsequently. Each spectrum was preprocessed using in-house
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Matlab (Mathworks Inc (2008)) routines. Spectra were phasedgonstants from the simulation were carefully adjusted within a range
baseline corrected and referenced using DSS as a chemical shdf < 0.01 ppm to enable stringent fitting of the frequency pattern of
and shape indicator (CSH. Furthermore, the region around the individual spin systems to the cell extract-spectrum. The criteria
(4.5 — 5.9ppm) was set to zero for each spectrum to removefor an acceptable fit were firstly that all of the simulated peaks be
the water resonance contributions. Further details on the basipgresent in the measured NMR-spectrum (i.e. identification of the

pre-processing are given in (Schleif (2007); Schétiél. (2008)). metabolite) and secondly that the difference spectrum resulting from
subtraction of the simulation from the measurement exhibited a
2.3 Data set description smooth baseline at the position of metabolite frequencies. The latter

step requires that the simulated signal is folded by a line broadening
function that is as close as possible to that of the measured spectrum.
This was achieved by using up to three exponential broadening
?unctions, independent in amplitude, damping and frequency
offset, for folding the simulated spectral time signal. Metabolite
concentrations were calculated from the identified metabolite’'s
NMR time-signal amplitude relative to the time signal amplitude
of the known DSS reference concentration taking into account the
relative number of contributing protons.

We employed a set o6 NMR spectra from cells cultured under
a range of conditions to provide biologically realistic degrees of
sample complexity and variation. The expected metabolites in th
signal (subsequently referenced as targets) wekinine - (Ala),
Asparagine - (Asn), Aspartate - (Asp), Citric Acid - (Cit)y€eine - (Cys),
Glutamate - (Glu), Glutamine - (GIn), Glycine - (Gly), Histig - (His), Iso-
Leucine - (lle), Lactate - (Lac), Leucine - (Leu), Malate -4l Methionine
- (Meth), Myo-Inositol - (Myo), Phenyl-Alanine - (Phe), Riree - (Pro),
Pyruvate - (Pyr), Serine - (Ser), Succinate - (Succ), Threon (Thr),
Tryptophan - (Trp), Tyrosine - (Tyr), Valine - (Val), Fumagat (Fum) and
DSsSas the standard reference. The signal is also expected to contaj -
some unspecified metabolites. aES NMR and targeted profiling

The murine multipotent hematopoietic progenitor cell line High resolution'H NMR spectra consist of a large number of
FDCPmix (Factor Dependent Cells Paterson mixed potential) wagelevant signals. Metabolite signatures are represented in general by
grown in IMDM supplemented witts mM D-glucose,2 mM L- multiple narrow peaks located on top of a wide underlying complex
glutamine,1 mM sodium pyruvate20% horse serum and0 u/ml baseline. The NMR signad(~) can be approximated as a super
IL-3. Six independent cultures were analysed, generated separatedpmposition of Lorentzians (Koét al. (2008)), Gaussian functions
over a period ofl8 months under the same culture conditions. or mixtures thereof. However, such assumptions are highly
The cells were maintained at °C in 5% CO in air at densities  idealized. In practical measurements the line shape of the peaks
between6 x 10* and 5 x 10° cells per ml by passaging every is much more complex and inhomogeneous due to measurement
2 — 3 days. At the final passage, the cells were transferred to freshmperfections. This poses multiple challenges in the analysis
medium and cultured foB days. Betweerl x 10® and2 x 10° because almost all relevant signals in the NMR measurement show
cells from each experiment were harvested by centrifugation angtrong overlapping components. Without an appropriate model of
washed four times with ice cold phosphate buffered saline (PBS) tthe signal structure and line shape a deconvolution is extremely
remove medium constituents. The cell pellets were shock frozen igomplicated. This is especially true for signal components at low
liquid nitrogen and extracts prepared by additior8of. ice cold  concentrations which may otherwise be easily overlooked.
methanol:acetonitrile:watelr : 1 : 1 mixture. To ensure efficient The TP approach (Weljiet al. (2006)) analyses metabolites by
cell disruption the cells were subjectedZox 1 minute bursts of  referencing to a set of known signatures. Taking some relatively
ultrasound in an ice cold ultrasonic bath. The samples were thetrong assumptions concerning the line shape and knowledge about
transferred to &0 °C water bath forl0 minutes to denature the the structure of the targets, TP tries to identify and quantify these
proteins before being diluted: 7 with water and lyophilized. target metabolites in the complex NMR spectrum.

Additionally we analyzed a set df spectra of wet-lab mixtures The TP approach assumes an almost perfect knowledge of the
of the 5 metabolites (lle,Leu,Glu,Val,Meth) and DSS as a standardoeak or line shape, which is typically modeled as a Lorentzian

with known concentrations. or a Gaussian function. It is also assumed, that the number of
candidate signatures in the mixtus@) is small and restricted to
2.4 Manual NMR expert analysis a specific subset of known metabolites, the targets. Furthermore, it

is assumed that for all targets, their peak sequence, i.e. the signal

The metabolites of interest were first measured individually bysignature defined by the position and height of the peaks, is known

NMR to provide reference-spectra. A known concentration of the L e ’ .
. . erfectly beforehand. In practice it is often very difficult to provide

metabolite { - 20 mM) together with DSS{.1 — 2 mM) was P y practice it | very diicu provi

i such a description analytically for complex mixtures with extensive
prepared in5004 buffered D>O solute (see 2.1) and measured overlaps. For this reason the peak system is constructed (manually)

under the same cor_1d|t|_ons as those u_sed fof the cell extracts. ™ adding appropriate peaks at the correct ppm position and height.
allowed the determlnathn of al Che”?'ca' shifis) e_md coupling o targets are subsequently fitted against the measurement.

con_stants L) of _each .5'9”?".‘99_”6“““9 metat_)ohte_ proton as a  rp g being adopted as a standard technique in metabolite analysis
basis for the reliable identification of metabolites in subsequent 4 < already been employed in a number of studies see e.g

exl?/lirti;)%rllittsel identification and quantification was achieved using(TiZiani etal. (2009); Swireet al. (2009); Soret al. (2009)). While
. . TP has been found to be very effective in a range of applications
purpose-developed NMR software (NMRj,Schlumm and Riemer: y g bp

2001)) allowing for the int i btract f a simulated f it remains suboptimal in many cases: (1) Due to variations in the
( )) allowing for the interactive subtraction of a simulated from measurement conditions (e.g. temperature, pH) the position of the

a measured NMR- spectrum. The chemical shifts and couplin%i in a target (groups of peaks) may shift in a non-linear manner.
(2) A specific line shape has to be chosen for the fitting of the

1 Other choices for the CSI e.g. trimethylsilyl propionate PJSwre also ~ candidate targets against the signal. Since the actual line shape may
possible. The ideal CSl is only one peak with no overlap teofieaks. deviate from the chosen forms, this assumption can lead to further




Schleif et al

problems especially for strongly overlapping signals as depicted o OH O% OH
in Figure 1. (3) The simple fit of individual targets against the N

signal s(v) may fail for strongly overlapping structures, while the Hx
use of lower constraints on the fitting commonly leads to incorrect HA

identifications of targets. In the later case it can happen that lines are H.C NH NH,
fitted into regions without signal. 3 2 Ha

The TP approach also lacks the formal and mathematical Ha
derivation and modeling basis which would simplify adaptations,
for instance to accommodate moderate changes in the device,:ig. 3: Structure of L-alanine (left) and a3 X notation (right).
settings such as alternative measurement frequencies, or to
incorporate alternative peak shape models. Index PPM Intensity Group index AsX
In the following section we formalize targeted profiling and detail 1 1.4596 11.2046 1 i
our extension thereof. We provide an appropriate mathematica

modeling for the fitting and parameter estimation approach, taking éijgg 1019247:’3582 ; A3X
the functional characteristic of the measurements into account. 7 37603 > 8187 5 <
5 3.7706 2.8061 2 X
6 3.7809 0.9311 2 X

3 EXTENDED TARGETED PROFILING Table 1. Transition table providing the information for a line spectr

An arbitrary metabolite may formally be given by fanctional reconstruction of L-alanine. The table was generated ustamggard settings
description f(v) for a target signal ag(v) = Z]G g;(v) with for a 700.153 MHz NMR systerhH channel as specified before.

g;(v) as a peak pattern or a function of delta functions with non-
zero entries only on the appropriate peak positions as detailed belo
andG as the number of such peak patterns. Using the TP approac
f(v) may be folded with an appropriate line shape e.g. a Gaussia
A reconstruction of alanine using the functional description is given

ssumed line shape, leading to our functional descriptien of a
ven target (see Figure 2). Taking this approach we can model the,
hased and baseline corrected sigral) as

in Figure 2. J
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01_ 1L i We employ a non-negative Least Squares Fit oves alentified

3775 375 1475 1,45 targetsf; (v) using the functional description and the subsequently
chemical shift (e} chemical shit ppm] generated peak information. Therebyrepresents a global shift
) ) . ) . . which can be compensated by a reference shift correctioneand
Fig. 2: R(_acc_)ns?ructl_on of L-alanine using the functlon_al des_c_rlptlon.represemS noise. The targét can be approximated as a super
The x-axis is given in ppm and the y-axis shows the intensities. (2)oomposition of its component functions or peak grogpsefined
the quartet generated by th. proton with a shift parameter(/.)  py the numbers; of chemical shifts in the molecule’s spin system.
and (b): th.e doqblet caused by the three magnetically equivAlgnt A small local shift—y < A; < -~ typically within a range
protons with shift parameter(/1.4). of |y| < 0.005 ppm can be expected for each peak group. Each
componen®Oy (v) of g;(v) can be considered as a delta function,
An alternative compact description of a target e.g. alanine is givercontributing to a line spectrum with non vanishing amplitude for
by its '"H NMR spin system classificaticas A3 X spin system (see one peak position only. We denote such a single positiagy; ; i
e.g. Levitt (2008)), with the associated values for the chemical shiftéo specify peakk caused by group in metabolite;. K is the
of o(Ha) = 1.46 ppm,o(Hx) = 3.76 ppm and an A-X coupling  multiplicity of a component functiog;. The origin of the chemical
constant of/4 x = 7.2 Hz see Figure 3. shift group component®(v) lies in the spin-spin interaction
Using the above spin system classification, we can employ @&haracterized by the scalar coupling constdnty and can be
NMR simulation environment (Smitlet al. (1994)) to simulate deduced from the quantum mechanical calculations for the spin
the alanine spectrum whilst taking the physical properties of oursystem parameters describing the target metabolite. Subsequently
measurement system (such as device frequency) into account.  this line spectrum is foldes by a line shape functiop to mimic
This simulation yields transition tables providing information the line shape of the real measurement. In the following we will use
on the peak positions and heights of each peak for the target. & for G; and K for K ; if the indices are known from the context.
transition table for L-alanine is shown in Table 1. In NMR the position of they; are known as chemical shifts. The
From this line spectrum we can generate a profile spectrumestimates of these shift positions need to be as accurate as possible
similar to a true measurement by folding the line spectrum with areand are the main error-source in the TP approach.
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An accurate peak shape estimate is the key to an appropriamaximum (PWHM) are then calculated for this peak. The PWHM
subtraction of signal components froefr) in order to reveal is used as a rough estimate of the peak width. Due to effects
potentially hidden components. We approach this issue by takinguch as imperfect phasing, shimming or baseline correction, a
the shape of the DSS reference signal added to the sample, asdaect inverse deconvolution af(v) with the CSI reference is not
template forp. This shape is used to estimate the expected peakienerally feasible. Instead, we employ a hill-climbing algorithm and
width present in the signal. look above a predefined threshold (the expected noise level) through

To tackle the shift-uncertainty problem, we estimate values forthe whole signal for local maxima, whose flanks are sufficiently
the disturbancea shown in Eq. (2) and present an initial solution steep and for which the obtained peak has a sufficient width. By
to optimize theg; positions in potential targets using a grid search application of this algorithm we obtain a list of peaks in a spectrum.
strategy. This approach leads to a general improvement in positiofhis list is subtracted from(v) and the algorithm is repeated until
estimates for therue chemical shifts of the sub-patterns of no further peaks are detected. This approach can also resolve peaks
potential targetsf; and hence to more accurate identification andin an overlap, although not in every case. Alternatively, the strategy
guantification estimates as shown below. described in (Kohet al. (2008)) can be used with an underlying

Whereas standard TP identifies signatures in NMR mixtures by.orentzian support, the particular peak picking algorithm is not of
employing known database references of (manually) specified peakuch relevance here as long as it discovers the peaks in the spectrum
patterns the Extended Targeted Profiling approach (ETP) described a sufficient degree of accuracy. The list of peaks is subsequently
here modifies this concept by modeling the targets based on theifenoted a®. These peak lists are compared to those of the potential
theoretical spin-system model (see (Sneitfal.(1994)). This model  targets. If a sufficient number of peaks (€3§%) in a target can be
provides the peak information (transition tables). The physicalmatched within a tolerance 6f01ppm to the peak$ we consider
model easily deals with measurement variables such as differerthe target to be identified and proceed with the analysis steps for this
device frequencies and is known to provide very accurate peakarget. We now have the target as a functional line spectfy(im)
lists. The parameters of the targets are optimized with respect twith p as the fitted line function.
the measurements at hand. Each target descrifftitgenerating a
signal f;(v)) is characterized by a set of spin-system descriptors3 o Genetic algorithm for shift uncertainty estimation
Tq € S. S describes the theoretical aspects of the spin system of
and can be used in combination with a model of the measureme
system (NMR system) to simulate the spectryinfor 7. A
spectrum representation @f can be divided into multiple parts,

Iﬁ major feature of our approach is the shift uncertainty correction
performed by means of a Genetic Algorithm (GA). The genetic
algorithm software was written in-house in Matlab running on an
one for each spin-system descripffy, known as the peak group Intel Xeon multlprgcessor system with 8 3.20 QHz processors and
16 GB memory using the parallel processing, signal processing and

(g9). A peak group may consist of multiple or single peaks and is”~ =~ " " .
potentially overlapping. For each group a potential (limited) shifting pptlmlzatlon_tool_box with Ma_tlap 2008b. We made use of the GA
plementation in the optimization toolbox but replaced some of

uncertaintyA; can be expected. New targets can be added to thé'r:1 hods with develobed imol :
ETP approach very easily by specifying the spin-system modelthe core methods with our own purpose-developed implementations.

outlined above, based either on knowledge available in the Iiteratur§pec'f'c.a”y’ we replaceq the me.thods used FO generate. Fhe_ initial
or by own measurements of the pure target substance under t é)pu]atlon and the mutation functlon.and prqwded a specific fitness
previously defined measurement conditions. In the latter case th nction as described below. The basic algorithm and parameters for

obtained spectrum is analyzed manually to define the spin-syster eF_GA arZ‘ SQQV\;P in Table 2 and tk:e overall vg/orkflfowhls depicted
model. Hereby an NMR expert constructs a spin-system model sucF igure 4. Brieily, we generate a large number of chromosomes

J
that the reconstructed spectrum, based on this model, fits best fo ehach chrg)mosfome has the Sﬁme Ifr@t(:': 25 Gi, %qual h of
the observed data. The three steps of ETP required to obtain t € number of groups over ail analyze targets, an each o
which contains the currently estimated, or randomly determined

timized fit based on thi ding strat detailed below,
optimizediitbased on this new encoding stratedy are cetafle eovghiﬂ values for theA;. TheseA,; are optimized by the GA.

Furthermore the smallest shift is limited by the ppm-axis resolution.

. . We have found that a reduction of the original spectrum G&

3.1 Line representation of a NMR spectrum points corresponding t6®.5 Hz spectral resolution, is possible,
NMR spectra can be described by means of a set of overlappinghilst maintaining structural information of sufficient quality for
peaks, which provides a compact representation of the signal anghe subsequent identification task. In this case upstealid shift

can also reveal quickly whether or not an expected target is likelyhositions are possible for a given shift uncertainty6f 01ppm 2.

to be present ins(v), since all simulated target peaks must also

be present in the peak list 6f»). The peak picking process is 35 1 Fitness function and evaluation measurde fitness
rather complicated, and a number of heuristic approaches hav@nction is the core element of the GA and is evaluated for each
been proposed to improve the situation (iaifal. (2008); Brelstaff  gingle chromosome separately. It consists of three procedures: (1)
et al. (2009)). Here we focus on a simple parametric hill-climbing 1 gpin-system classifications of all identified metabolites are used
approach (Schleiét al. (2008)). We further assume that for each 4 generate the corresponding spectral representation. Thereby, the
measurement a known CSI signal is available, in our case this ighifs given by the chromosome are applied to the corresponding
DSS. This signal has a known position @fppm, which can be EFOUPS% and the reconstructions folded with the prior estimated

used to compensate the global shift offset of the spectrum. We |00k, shape. We denote the matrix of all reconstructighg), given
for a maximum within a window 00.05ppm at the expected CSI

position. From this position we then go down (to lower intensities)

on the left and the right flank of the peak as long as the signal is @ |f we assume a spectral resolution®f = 0.5 Hz, a device frequency
descending monotone. The peak is then truncated at a predefingddF = 700 MHz and an error of PPM-E =£0.01 ppm the number of valid
maximal width. The center position and the peak width at halfpositionsV isV ~ 2 - PPM-E/(SR/F).
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Parameter Description Value

C single chromosome ¢ € R” ¢; € [prmerrug
M set of chromosomes M ={C4,...,Cp}
K Number of generations 200

P Number of chromosomes 900 |

Di permutation probability 0.1

4 Length of the chromosomes > G

PPM-E PPM uncertainty of tha; 0.01

SR Down-sampling rate 4

d distance measure {0,1}

Table 2. Basic parameters of the genetic algorithm. The distance neesur

either euclidean - 0, or a functional distance - 1.

Downsample the signal by a factor SR: This will reduce the complexity of the
problem such that only a limited number of shift positions are valid e.g. for 65k
points and a tolerance of 0.01 ppm only ~25 shift positions [-0.01ppm:0.01ppm]
are valid per peak group

Create initial population: Each individual solution is generated from the grid of
valid shifts in acc to a gaussian with the 0 mean shifted by 50% to the positiv
shift values (prefering positiv shifts)

Evalutate Fitness of the Population: we access the goodness of fit for each
signal reconstruction based on the shifts of this very chromosome using the
fitness functions — in this case the non negative linear least squares
optimization and a distance measure on the reconstruction and the test
spectrum. The obtained distance is the fitness
Generate the new population:
« Tournament selection, cross over and child generation — in

acc to the standard GA implementation
* Mutation — for each point in the chromosome with a

probability p, apply a mutation. Thereby we replace the

value by one of the shift positions in acc to the same

distribution as for the initial population

7

Fig. 4: Workflow of the genetic algorithm used to obtain optimal
A;. The first (outer) folded corner is repeated uttilgenerations

g3
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(a) Two functions: Euc Z.P-norm  (b) Two functions: EuegZ LP-norm

Fig. 5: lllustration of theL”-norm. Plot (a) indicates the case
in which the distance between two functions is equal, both for
Euclidean or LP-norm. In plot (b) parts of the functions are
interchanging (crossing). The distance using Euc is still the same
as in plot (a) but for thd.”-norm the distance is changed, giving a
more realistic measure of the distance of the two functions.

3.3 Non negative least squares fitting

The targetsf; () are now given in the functional description of
(2) with optimized A;, using the known9; and our functional
shape estimation for all peak groups. The function to fit is our
reduced spectruns’(><). We add constraints for non negative
«; and allow for user definition ofy; fixed on a targetf; by
employing standard optimization modeling techniques. Solving the
optimization problem by use of a standard constrained linear least
squares algorithm we obtain tlke in a column vectory, which

can subsequently be used to calculate the concentration estimates.
To this end, the area under thescaled target is calculated and
associated to the area of thescaled reference signal (here DSS).
A scaling step is then performed, based on the number of protons
H present in the reference, nine for DSS, compared to the number
of protons present in the metabolite e.g. four for Ala. This leads to
the following equation for the concentratienin mol: ¢(Ala) =

% with areaas an appropriate estimation function

are analyzed or one of the alternative standard stopping criteria itor the area under the curve. One can also calculate estimates of the
met. The inner folded corner is repeated until a new population ofower concentration limits by scaling the target intensitieg/ofo

the same size as before is generated.

as row vectors, as the matrix
i) fr ()
R= .. R = ..
i) fi ()

the noise level and repeating the procedure. The reconstruction
is obtained as:

s =R« (5)

To judge the fitness of this solution we may now either use
the quality of fit provided by the LSQO algorithm or evaluate
the reconstructed spectrumf(v) with respect tos(v) using a
problem specific distance measure. Here we use either the standard
Euclidean distance (EUC) or a functional distance measure as

(2) These reconstructions are reduced to a range representation sug, extension of thel,? norm proposed in (Lee and Verleysen

that a compact form ofz denoted ag’ is obtained. In®’ not all (5005)) (FUNC). The functional distance measure has the advantage
values fon- are used but only a limited setoiin form of potentially ot taking the functional nature of the spectra into account. The
overlapping range vectorsi= [, — (2- PPM — E) : 1 +(2- gtandard Euclidean distance considers the individual features of

PPM — E)] with [ as an index of a peak positionsTh the NMR spectrum to be independent, so that a change in the
We collect all peak center positions of the metabolites denoted agyqer of the ppm positions does not affect the calculated distance.

T = {Tu,...., Ty with Ty = {w;x},7; " andy, € T. Here  yowever, the features or measurement points in NMR spectra are

we also incorporate the; and take the peak positions from the 4t independent, so that a distance taking this aspect into account

transition tables extended to a range of twice the assumed ppmyn be considered to be more appropriate for this type of data. Lee

uncertainty PPM-E for each peak. A reduced test spectlim)  hroposed a distance measure taking the functional structure into

is constructed, _acc/ordlngly. ) account by involving the previous and next values of a signal

_ (3) The matrix k" and the vector’ () are subsequently used i the;-th term of the sum, instead of alone. Assuming a constant

in the LSQO, as the third step, to calculate thefor all targets. sampling period, the proposed norm (FUNC) is:

The reduction to a range based representation is useful to avoid very

large and extremely sparse matrices, which would complicate the o 1
subsequent: estimations. This step has no detrimental effects on r£fe (v) = A B P 6
the a—estimates. r (V) kz:;( & (V) + Br (v)) (©)
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1 lle 1 Leu 1 Val 1 Glu | Meth

| EXP | TP | ETP | EXP | TP | ETP | EXP | TP | ETP | EXP | TP | ETP | EXP | TP | ETP
M-DS; 113.23| 31.07| 62.32 32.35| 17.29| 23.53 36.27| l7.88| 18.59 52.37| 26.29| 63.40| 79.61 | 56.52| 49.50
M-DS;-C 72.64 37.77 21.85 38.65 57.57 |
M-DS, 36.32 | 26.00] 73.98| 62.96] 15.00] 21.43| 32.78] 15.98] 2852| 30.92] 22.30] 35.07| 71.97 | 47.94] 5241
M-DS,-C 60.54 50.37 43.71 30.92 43.18 |
M-DS; 51.92 | 19.62] 27.10| 60.30] 1352 21.44| 51.45] 16.29] 32.00| 37.68] 21.59] 33.95| 94.22 | 4850] 7511
M-DS3-C 36.32 62.96 32.78 30.92 71.97
M-DS, 57.98 | 21.27| 36.01 58.85| 16.55| 25.94 34.33| l4.50| 11.46 31.58| 30.73| 50.48 115.01| 61.03| 84.51
M-DS,-C 48.43 62.96 21.85 23.14 86.36
® [ 063 046 [ 074 0.60 [ 055 043 [ 035] 017 [ 040 027

Table 3. Concentrations of metabolites in the synthetic wet-lab ystdthe weighted sample concentration is given in tierows each. The estimate
of the expert EXP, TP and ETP are given in the columns. All cotreéions are given in. mol. Considering the median relative errap)(of the
concentration estimates the ETP approach is best in all céses case by case comparison ETP is almost always the best,thwéh exceptions
{(Speca, Val), (Speca, Glu), (Speci, Ile)}.

with which are much closer to the expert analysis, for 16 of the 21 targets.
. . Eth, Cit, His, Myo and Mal were noted as being absent by the expert
A (v) = {2|Uk| - if 0 < vpvk—1 ) but by ETP and TP with very low concentrations.
%m if 0> vpvp_1
B (v) 3 |k . if 0 < wrvet1 @® Test spectrun] Error TP| Error ETP ) | Error ETP fuc)
§ %#’;’km if 0> vgvp1 Speg 49.65 31.95 (97) 32.05 (121)
Spee 68.68 45.89 (106) 68.71 (122)
representing the triangles on the left and right sides;cfnd D Speg 30.92 28.40 (112) 29.87 (147)
being the data dimensionality. For the data considered in this papespeq 87.53 55.70 (118) 56.01 (132)
v takes the position af. As for L,, the value of is assumed to be  gpeg 64.04 47.30 (97) 46.39 (121)
a positive integer. At the left and right extremes of the sequence, Speg 111.09 87.60 (81) 93.77 (137).

andvp are assumed to be equal to zero. The concept dftheorm ] )
is shown in Figure 5. The calculation of this norm is slightly more Table 4. Mean errors inu-mol of TP and ETP with respect to the expert
complex than that of the standard Euclidean but, as is shown belo\goncentratlon estimates. The expert concentration is asktoriee optimal

o . o 0 error), the values for TP and ETP are then compared withxipereusing
significantly mgroves the fitting results as well as the convergenc he mean square error, normalized by the number of metabolitean lbe
speed of the G i

seen that the new approach clearly improves the concemtegionates. The
number of generations until convergence is shown in brackets

4 RESULTS AND DISCUSSION

4.1 Identification and quantification

We have tested our approach using measurements of metabolitest19uré 9 shows a reconstruction of a signal part with respect to
in lysates of cultured cells as well as a small test set with knowri€ Original signal to illustrate the effect of the shift correction.

concentrations of defined metabolites. Rather than focusing on a From Table 4 we observe that the EUC measure in the fitness
specific biochemical question we aim to compare the range anfpinction is indeed less effective then the FUNC measure, consistent

concentrations of metabolites detected using TP and ETP with tho<#ith our expectation that the FUNC norm is more appropriate to
obtained by manual expert profiling. data which are themselves functiofis We subsequently restrict

our analysis to the FUNC norm and the standard TP approach. In
411 Wet lab metabolite mixture experimerfthe wet-lab Figure 7 we show Box-Whisker Plots of the relative concentration

mixture data sets (M-DS) can be considered to be an artificial dat§0'S with respect to the expert of the metabolite concentrations
set with known concentrations. In Table 3 the known concentration&Sind the standard TP and the ETP (FUNC) approaches. It can be
(weighted sample) and the concentration estimates as obtained [§¢€" that the relative error of ETP is much smaller than that of TP
the expert, TP and ETP using the functional distance measure af8 the large majority of the metabolites. Also the variance of the

given. We observe that the ETP approach is closer to the expep[asults is smaller. Median errors of TP vs ETP are shown in Table 5.

estimation than is TP. The DSS concentration was given Withs Significance _Of an improvement Is indicated by aising a t-test on
1 mol for all spectra. a5% level, with significances gb < 0.03. We observe that 25%

of the differences are significant and all of these are positive.

4.1.2 Cell culture experimentDetails of the analyzed cell extract

data are shown in Figure 6. The optimized approach provides results

4 Using the median in Figure 6 gives similar results with resgectP
3 The additional effort in the calculations is almost negligibthe time to but comparing FUNC and EUC the results are less pronouncedodiie
calculate a generation is changing only minor, by a few sexond dominance of the (many) small metabolites
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Fig. 6: Concentration estimates for some of the different metabolites &JiRgin comparison to TP and an expert analysis (Spéithe
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Fig. 7: Relative error estimates for different metabolites using TP @)EArP (b). The y-axis encodes the relative error and is limited to
[0,4]. The x-axis lists the different metabolites.
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Fig. 8: (a): Concentrations (normalized) for metabolites over time (wit@&1) for Speg. (b): parameter changes over time foy ... Aqp
using the median over 10 generations.

4.2 Shift uncertainty properties and influence example for Specis shown in Figure 11. Taking this statistic into
The shift uncertainty estimates change over time with respect to account the expert can be assisted by an indicator that highlights
the GA evolution and the underlying constraints. The GA can onlyP€ak group shifts, that are likely to be incorrect. Considering the
determine a local optimal solution, which is expected to correspond@lues of the shift uncertainties for the analyzed spectra we found
to the global optimum in only a very few cases. An analysis of the@round3 — 4% of the A; to be0 after convergence. Analyzing the
number of updates per shift uncertainty estimate reveals paramete?8ift updates also provides information about potentially unreliable
which are likely to be incorrect either because they have not beef’odeled regions, indicated by either very few or very maky
updated at all or because they have been updated very frequently. Afpdates, as shown in Figure 10. There the relative numbex of
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Ala  Asn Asp Cys Glu Gln Gly lle

a basis for the focused and guided manual interaction avoiding

-'E-1P_P 8'22 122 i i 8‘?8 i'gg 066?? g'gé the inspection of all metabolites. In the example shown, the
; X ‘ : : : optimizations appear to have been reasonably effective and correct

Imp 1 1 0 0 1 1 1 1 . )

Sig + o o o o o + + for those metabolites for which the number of updates for the

[ac  Leu Meth Phe Pro Byr Ser  Succ correspondingA lies within a range o0 — 40%. The plots in
TP 034 027 049 056 064 1 064 024 Figure 8 show the effect of the genetic evolution with respect to the
ETP 032 031 121 058 05 196 026 009 concentration of the metabolites and the parameter modifications.

Imp 1 1 2 2 1 2 1 1 One can see that most of the optimization of GA parameters and

Sig o) ) 0 0 0 ) ) 0 hence of concentration changes occurs in the first 10-20 generations
Thr  Trp Tyr Val  Fum Mean The plot also shows that even relatively small errors inhemay

TP 097 085 044 071 1 0.81 have large impact on the concentration estimates, with very high

ETP 014 042 007 0.06 021 0.66 values at the beginning of the optimization and comparatively small

Imp 1 1 1 1 1 - values at the end for some metabolites.

Sig + o] o] + o] 0

Median relative error estimates of single metabolites using TP and
by Imp: 1 (improvement/optimal)2 (worse estimate)) (no improvement). ETP (.FUNF) laredShOW?] n tge :‘D’OX_WhISke: plpt 7. The relative d
The rows labeled witlsigindicate if the change was significant by use of a error is calculated as the absolute CO“C?” ration error c_ompare
I—test. to the expert value.In terms of the median errors, we find that
ETP provides a clear improvement over TP but has still problems
with some metabolites such as Leu, Meth, Phe and Pyr. In these
changes by the GA with respect to the total number of generation§ases, however, we note that even the manual fit by the expert is
until convergence is shown over all spectra. The various metaboliteghallenging. On average the median error improved fon8 to
are indicated by different symbol shapes and shadings. 0.64 with 0 as the perfect agreement. These findings show that ETP
One can clearly see that for maat (indicated by the symbols) is superior to TP in providing reasonable estimates for metabolites
around40% of the GA generations are sufficient to obtain a stableOn & magnitude level. However, the accuracy attainable from single
solution. Even if this solution may not be a global optimum, it can measurements is still low. This highlights the need both for the use
still be considered as a stable local optimum. For some ofthe Of experimental replicates and for the analysis of multiple spectra of
(e.g. those for pyruvate and aspartate) a (much) larger number éhe same sample.
updates is necessary and it can be expected that these shifts are
not well optimized, but that no better solution could be found by <8

Table 5. Relative median metabolite error. Change judged in the roeléab

* Ala

the GA. For some of the other metabolites one can also see that§ . b
only a single group is optimized very frequently as is the case for g N N oo
the group of Val (valine) around 0.98 ppm or Ser (serine) around ‘f £ " * X Gy
3.83 ppm. The concentration estimates for these two amino acids§ B o f -+ ‘e
compare quite well with the expert estimates. Very few updates 5%4 . | ¥ ver »¥ o o
can be observed e.g. for Succ (succinate) around 2.39 ppm, Glyg | *, v ", .o
(glycine) around 3.55 ppm or Glu (glutamate) around 2ppm and 50,2, .o"‘, % > oo
3.75ppm. Interestingly Succ, Gly and Glu are optimized very well ¢ oo e pe
and the estimated concentrations correspond reasonably to thos& T, ¢ S
obtained by the expert. However it should be borne in mind that = % 7 6 5 4 ppm 3 2 1 0+ Fom

the concentration estimate is not equally split over the groups.

Fig. 10: Relative A updates in % (y) with respect to the ppm
position (X).

5 CONCLUSION

In summary, this work has shown that an approach combining
GAs with LSQO leads to highly effective error estimates for the
shift uncertainties ifH NMR measurements. The simultaneous fit
outperforms the standard TP approach with respect to identification
Fig. 9: Spectrum in the region of valine and iso-leucine. The two sukand quantification accuracy and compares favorably to the expert
figures on the top show the fit with ETP, left for iso-leucine (filled), analysis. We have further shown that the usage of a data specific
right for valine (filled). Below the same but in the original TP fit. ~ (functional) distance measure to calculate the fitness values is
preferable to a standard Euclidean measure. It also significantly
improved the convergence rate of the GA. The interpretation of the
obtained shifts over time with the best model allows an in depth
The plot in Figure 10 provides an initial indication of which analysis of the optimization, revealing potentially unreliable fits.
metabolites are most likely to have been poorly optimized andThis provides initial guidance for the expert to focus further manual
should therefore be manually corrected by the expert. This provideenprovement of the obtained fit where necessary, reducing the
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