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ABSTRACT
Motivation: The analysis of metabolic processes is becoming
increasingly important to our understanding of complex biological
systems and disease states. Nuclear magnetic resonance
spectroscopy (NMR) is a particularly relevant technology in this
respect, since the NMR signals provide a quantitative measure of
metabolite concentrations. However, due to the complexity of the
spectra typical of biological samples, the demands of clinical and
high throughput analysis will only be fully met by a system capable
of reliable, automatic processing of the spectra. An initial step in this
direction has been taken by Targeted Profiling (TP), employing a
set of known and predicted metabolite signatures fitted against the
signal. However, an accurate fitting procedure for 1H NMR data is
complicated by shift uncertainties in the peak systems caused by
measurement imperfections. These uncertainties have a large impact
on the accuracy of identification and quantification and currently
require compensation by very time consuming manual interactions.
Here, we present an approach, termed Extended Targeted Profiling
(ETP), that estimates shift uncertainties based on a genetic algorithm
(GA) combined with a least squares optimization (LSQO). The
estimated shifts are used to correct the known metabolite signatures
leading to significantly improved identification and quantification. In
this way, use of the automated system significantly reduces the effort
normally associated with manual processing and paves the way for
reliable, high throughput analysis of complex NMR spectra.
Results: The results indicate that using simultaneous shift
uncertainty correction and least squares fitting significantly improves
the identification and quantification results for 1H NMR data
in comparison to the standard targeted profiling approach and
compares favorably with the results obtained by manual expert
analysis. Preservation of the functional structure of the NMR spectra
makes this approach more realistic than simple binning strategies.
Availability: The simulation descriptions and scripts employed are
available under: http://139.18.218.40/̃metastemwww
/bioinf/bioinf suppl nmr ga opt schleif et al.tgz
Contact: schleif@informatik.uni-leipzig.de

1 INTRODUCTION
The quantitative profiling of metabolites and the mathematical
modeling of metabolic networks is set to make a major contribution
to our understanding of complex biological systems, including
the processes underlying development and tissue homeostasis
(Weckwerth (2003)). The most commonly used methods for

metabolite detection are mass spectrometry (MS) and nuclear
magnetic resonance spectroscopy (NMR). While each has its
specific advantages, the inherently quantitative nature of NMR
makes it most attractive for providing data for the development
of mathematical models. However, the current challenge is to
extract reliably quantitative data from experimental spectra which
are often complex and subject to background variability. Here we
focus on the exact extraction of metabolite information from1H
NMR measurements. The general strategy involves pre-processing
steps such as phase- and baseline correction, smoothing and data
reduction (Xi and Rocke (2008); Changet al. (2007)), followed
by the identification of distinct metabolite signatures in the signal
and the estimation of metabolite concentrations with respect to
the original biological samples. Details of the basic pre-processing
used in this work are provided in (Schleif (2007); Schleifet al.
(2008)). A number of approaches have been reported to help
in the subsequent identification and quantification of individual
metabolites from preprocessed data (Böckeret al. (2009); Xiaet al.
(2008); Zhaoet al. (2006); Weljieet al. (2006)). However, none
of the methods currently available can be applied in the reliable,
automated fashion necessary for the high-throughput processing of
complex biological samples (Mocoet al. (2007); Mendes (2006)).
As an initial step towards automatic processing,targeted profiling
(TP) (Weljie et al. (2006)), employs a set of known and predicted
metabolite signatures (targets) fitted against the signal. However,
an accurate fitting procedure for1H NMR data is complicated by
small but significant shift uncertainties in the peak systems, caused
by even minor variations in parameters such as temperature and pH
(Defernez and Colquhoun (2003)).

These uncertainties have a large impact on the accuracy
of identification and quantification and currently need to be
compensated by very time consuming manual interactions.
Independent correction of the shift followed by fitting of the
corrected target descriptions against the signals is not generally
feasible because of the strong overlaps typical of1H NMR spectra.

Generic methods for the compensation of peak shifts are typically
based on a specific or average reference signal taken from the data
(Forshedet al. (2005)). If such a reference is available, then the
NMR spectra are locally aligned to it such that the final set of
spectra is reasonable aligned and corresponding peaks match. The
used optimization techniques commonly employed include partial
least squares approaches (Vogelset al. (1996)), genetic algorithms
(Forshed et al. (2003)) and procedures based on the fourier
transformation (Savoraniet al. (2010)). This type of alignment
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Fig. 1: Overlapping effect in a1H NMR spectrum of multiple metabolites. It can clearly be seen, that the assumption of the Lorentzian fails
to provide an accurate approximation in some regions. This can lead to incorrect estimates of target heights and hence wrong concentration
estimates.

problem is relevant not only to NMR but also to other data, including
mass spectrometry (Pierceet al. (2007); Schleif (2006)). While
the proposed approaches are promising and reasonable fast, they
assume the availability of a reference spectrum to be used as the
objective goal. Sometimes it is merely assumed that a set of common
reference peaks is available so that an alignment function can be
estimated based on these data (Schleif (2006)). However, this is
often not realistic and in the setting considered here we do not
assume the existence of a (global) reference spectrum. Furthermore,
even for the aligned spectra one can not ensure that the peaks
are aligned to theirtrue position, only they are aligned to one
another. If the chosen reference is not an undisturbed signal then
there is no guarantee that the aligned spectra show correct ppm or
mass positions for the peaks. In the case of metabolic profiling,
this leaves the problem of correct identification and quantification
of the metabolites in a spectrum with potential peak shifts. Our
approach focuses on this special problem. The prior mentioned
alignment methods can be used as a potential preprocessing only
if the analyzed spectra are reasonable similar, as it should be the
case for replicates. In this case it is possible to align the spectra first
before using the approach, presented below.

The targets consist of a set of parametrized peak models showing
uncertainties in their positions with respect to a true measurement,
as described in more detail below. A typical NMR signal from a
biological sample containing a variety of targets contains around
100 erroneous shift parameters. Local shift uncertainties need to
be corrected within a given tolerance for all these parameters and
often within the context of overlapping targets. Furthermore, NMR
data show very spiked peaks so that both the correct peak positions
and accurate target height estimates are decisive to the accuracy
of metabolite concentration estimates. This makes a complete
evaluation of all possible solutions unfeasible and the problem is
ill posed.

We present here an approach designed to improve this situation by
semi-automatic analysis of the spectra such that only minor, simple
interaction steps are necessary to allow the processing of large data
sets. We developed an approach estimating shift uncertainties based
on a genetic algorithm (GA) (Goldberg (1989); Mitchell (1995))
combined with a least squares optimization (LSQO) (Fletcher
(2000)). Genetic algorithms are known to be very effective in
finding local optimal solutions for ill-posed problems and have

already been applied to spectroscopic data (Jarvis and Goodacre
(2005); Hastieet al.(2001)). The estimated shifts are used to correct
the known metabolite signatures, leading to significantly improved
identification and quantification results. The shift uncertainties
are generally corrected with sufficient accuracy that little or no
subsequent manual interaction is necessary to generate the final
quantifications. The method has been tested on a range of NMR
spectra obtained from cell culture experiments. We have evaluated
the models obtained in comparison to a standard targeted profiling
approach as well as to the defacto standard of a careful manual
analysis. We have also studied the observed shift uncertainties with
respect to their influence on the concentration estimates during the
multiple steps of the GA.

2 APPROACH AND METHODS
2.1 NMR Spectroscopy
All 1H NMR-spectra were acquired on an AVANCE700 MHz
NMR-spectrometer (Bruker, Rheinstetten, D) equipped with a5
mm cryo-probe. A pulse acquire sequence was used with512
accumulations,65536 complex points,8389.2 Hz sweep width
corresponding to11.982 ppm on the chemical shift axis (0.002
ppm , 0.13 Hz nominal spectral resolution, respectively) and a
repetition time of20 seconds (> five times the T1 of the reference
and metabolites) ensuring fully relaxed, quantifiable signals.
NMR samples were prepared by re-suspending lyophilised cell
extracts in500µl D2O (99.9 atom %, Sigma Aldrich, Steinheim,
D) potassium phosphate-buffer (0.05M, pH 7.4) containing a
known concentration (60 − 120µM) of 2, 2’dimethylsilapentane-
5-sulfonate (DSS,99.0%, Fluka, Taufkirchen, Germany) as a
reference for chemical shift and quantification. Each extract was
then mixed vigorously by vortexing and centrifuged for4 min at
10.000g. The supernatants (approx.500µl) were transferred to5
mm NMR-tubes (Wilmad, Vineland NJ USA). All samples were
subject to NMR analysis at298 K within 12 h.

2.2 Data pre-processing
We focus on the analysis of1H liquid NMR spectra obtained
from extracts of cultured stem/progenitor cells, detailed
subsequently. Each spectrum was preprocessed using in-house
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Matlab (Mathworks Inc (2008)) routines. Spectra were phased,
baseline corrected and referenced using DSS as a chemical shift
and shape indicator (CSI)1. Furthermore, the region around
(4.5 − 5.9ppm) was set to zero for each spectrum to remove
the water resonance contributions. Further details on the basic
pre-processing are given in (Schleif (2007); Schleifet al. (2008)).

2.3 Data set description
We employed a set of6 NMR spectra from cells cultured under
a range of conditions to provide biologically realistic degrees of
sample complexity and variation. The expected metabolites in the
signal (subsequently referenced as targets) were:Alanine - (Ala),
Asparagine - (Asn), Aspartate - (Asp), Citric Acid - (Cit), Cysteine - (Cys),
Glutamate - (Glu), Glutamine - (Gln), Glycine - (Gly), Histidine - (His), Iso-
Leucine - (Ile), Lactate - (Lac), Leucine - (Leu), Malate - (Mal), Methionine
- (Meth), Myo-Inositol - (Myo), Phenyl-Alanine - (Phe), Proline - (Pro),
Pyruvate - (Pyr), Serine - (Ser), Succinate - (Succ), Threonine - (Thr),
Tryptophan - (Trp), Tyrosine - (Tyr), Valine - (Val), Fumarate - (Fum) and
DSSas the standard reference. The signal is also expected to contain
some unspecified metabolites.

The murine multipotent hematopoietic progenitor cell line
FDCPmix (Factor Dependent Cells Paterson mixed potential) was
grown in IMDM supplemented with5 mM D-glucose,2 mM L-
glutamine,1 mM sodium pyruvate,20% horse serum and10 u/ml
IL-3. Six independent cultures were analysed, generated separately
over a period of18 months under the same culture conditions.
The cells were maintained at37 ◦C in 5% CO2 in air at densities
between6 × 104 and 5 × 105 cells per ml by passaging every
2 − 3 days. At the final passage, the cells were transferred to fresh
medium and cultured for3 days. Between1 × 108 and2 × 108

cells from each experiment were harvested by centrifugation and
washed four times with ice cold phosphate buffered saline (PBS) to
remove medium constituents. The cell pellets were shock frozen in
liquid nitrogen and extracts prepared by addition of800µl ice cold
methanol:acetonitrile:water1 : 1 : 1 mixture. To ensure efficient
cell disruption the cells were subjected to2 × 1 minute bursts of
ultrasound in an ice cold ultrasonic bath. The samples were then
transferred to a70 ◦C water bath for10 minutes to denature the
proteins before being diluted1 : 7 with water and lyophilized.

Additionally we analyzed a set of4 spectra of wet-lab mixtures
of the5 metabolites (Ile,Leu,Glu,Val,Meth) and DSS as a standard
with known concentrations.

2.4 Manual NMR expert analysis
The metabolites of interest were first measured individually by
NMR to provide reference-spectra. A known concentration of the
metabolite (1 - 20 mM) together with DSS (0.1 − 2 mM) was
prepared in500µl bufferedD2O solute (see 2.1) and measured
under the same conditions as those used for the cell extracts. This
allowed the determination of all chemical shifts(σ) and coupling
constants (J) of each signal-generating metabolite proton as a
basis for the reliable identification of metabolites in subsequent
experiments.

Metabolite identification and quantification was achieved using
purpose-developed NMR software (NMRj,Schlumm and Riemer
(2001)) allowing for the interactive subtraction of a simulated from
a measured NMR- spectrum. The chemical shifts and coupling

1 Other choices for the CSI e.g. trimethylsilyl propionate (TSP) are also
possible. The ideal CSI is only one peak with no overlap to other peaks.

constants from the simulation were carefully adjusted within a range
of < 0.01 ppm to enable stringent fitting of the frequency pattern of
the individual spin systems to the cell extract-spectrum. The criteria
for an acceptable fit were firstly that all of the simulated peaks be
present in the measured NMR-spectrum (i.e. identification of the
metabolite) and secondly that the difference spectrum resulting from
subtraction of the simulation from the measurement exhibited a
smooth baseline at the position of metabolite frequencies. The latter
step requires that the simulated signal is folded by a line broadening
function that is as close as possible to that of the measured spectrum.
This was achieved by using up to three exponential broadening
functions, independent in amplitude, damping and frequency
offset, for folding the simulated spectral time signal. Metabolite
concentrations were calculated from the identified metabolite’s
NMR time-signal amplitude relative to the time signal amplitude
of the known DSS reference concentration taking into account the
relative number of contributing protons.

2.5 NMR and targeted profiling
High resolution1H NMR spectra consist of a large number of
relevant signals. Metabolite signatures are represented in general by
multiple narrow peaks located on top of a wide underlying complex
baseline. The NMR signals(ν) can be approximated as a super
composition of Lorentzians (Kohet al. (2008)), Gaussian functions
or mixtures thereof. However, such assumptions are highly
idealized. In practical measurements the line shape of the peaks
is much more complex and inhomogeneous due to measurement
imperfections. This poses multiple challenges in the analysis
because almost all relevant signals in the NMR measurement show
strong overlapping components. Without an appropriate model of
the signal structure and line shape a deconvolution is extremely
complicated. This is especially true for signal components at low
concentrations which may otherwise be easily overlooked.

The TP approach (Weljieet al. (2006)) analyses metabolites by
referencing to a set of known signatures. Taking some relatively
strong assumptions concerning the line shape and knowledge about
the structure of the targets, TP tries to identify and quantify these
target metabolites in the complex NMR spectrum.

The TP approach assumes an almost perfect knowledge of the
peak or line shape, which is typically modeled as a Lorentzian
or a Gaussian function. It is also assumed, that the number of
candidate signatures in the mixtures(ν) is small and restricted to
a specific subset of known metabolites, the targets. Furthermore, it
is assumed that for all targets, their peak sequence, i.e. the signal
signature defined by the position and height of the peaks, is known
perfectly beforehand. In practice it is often very difficult to provide
such a description analytically for complex mixtures with extensive
overlaps. For this reason the peak system is constructed (manually)
by adding appropriate peaks at the correct ppm position and height.
The targets are subsequently fitted against the measurement.

TP is being adopted as a standard technique in metabolite analysis
and has already been employed in a number of studies see e.g.
(Tiziani et al. (2009); Swireet al. (2009); Sonet al. (2009)). While
TP has been found to be very effective in a range of applications
it remains suboptimal in many cases: (1) Due to variations in the
measurement conditions (e.g. temperature, pH) the position of the
gi in a target (groups of peaks) may shift in a non-linear manner.
(2) A specific line shape has to be chosen for the fitting of the
candidate targets against the signal. Since the actual line shape may
deviate from the chosen forms, this assumption can lead to further
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problems especially for strongly overlapping signals as depicted
in Figure 1. (3) The simple fit of individual targets against the
signals(ν) may fail for strongly overlapping structures, while the
use of lower constraints on the fitting commonly leads to incorrect
identifications of targets. In the later case it can happen that lines are
fitted into regions without signal.

The TP approach also lacks the formal and mathematical
derivation and modeling basis which would simplify adaptations,
for instance to accommodate moderate changes in the device
settings such as alternative measurement frequencies, or to
incorporate alternative peak shape models.

In the following section we formalize targeted profiling and detail
our extension thereof. We provide an appropriate mathematical
modeling for the fitting and parameter estimation approach, taking
the functional characteristic of the measurements into account.

3 EXTENDED TARGETED PROFILING
An arbitrary metabolite may formally be given by afunctional
descriptionf(ν) for a target signal asf(ν) =

∑G

j
gj(ν) with

gj(ν) as a peak pattern or a function of delta functions with non-
zero entries only on the appropriate peak positions as detailed below
andG as the number of such peak patterns. Using the TP approach
f(ν) may be folded with an appropriate line shape e.g. a Gaussian.
A reconstruction of alanine using the functional description is given
in Figure 2.
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Fig. 2: Reconstruction of L-alanine using the functional description.
The x-axis is given in ppm and the y-axis shows the intensities. (a):
the quartet generated by theHx proton with a shift parameterσ(Hx)
and (b): the doublet caused by the three magnetically equivalentHA

protons with shift parameterσ(HA).

An alternative compact description of a target e.g. alanine is given
by its 1H NMR spin system classificationasA3X spin system (see
e.g. Levitt (2008)), with the associated values for the chemical shifts
of σ(HA) = 1.46 ppm,σ(HX) = 3.76 ppm and an A-X coupling
constant ofJAX = 7.2 Hz see Figure 3.

Using the above spin system classification, we can employ a
NMR simulation environment (Smithet al. (1994)) to simulate
the alanine spectrum whilst taking the physical properties of our
measurement system (such as device frequency) into account.

This simulation yields transition tables providing information
on the peak positions and heights of each peak for the target. A
transition table for L-alanine is shown in Table 1.

From this line spectrum we can generate a profile spectrum,
similar to a true measurement by folding the line spectrum with an

Fig. 3: Structure of L-alanine (left) and inA3X notation (right).

Index PPM Intensity Group index A3X

1 1.4596 11.2246 1 A3

2 1.4700 11.2752 1 A3

3 3.7499 0.9438 2 X
4 3.7603 2.8187 2 X
5 3.7706 2.8061 2 X
6 3.7809 0.9311 2 X
Table 1. Transition table providing the information for a line spectrum
reconstruction of L-alanine. The table was generated usingstandard settings
for a 700.153 MHz NMR system1H channel as specified before.

assumed line shape, leading to our functional descriptionf(ν) of a
given target (see Figure 2). Taking this approach we can model the,
phased and baseline corrected signals(ν) as

s(ν) = (
J
∑

j

αjfj(ν − o)) + ǫ (1)

fj(ν) =

Gj
∑

i

gi(ν −∆i) (2)

gi(ν) =

Kj,i
∑

k

Θk(ν)⊗ ℘(ν) (3)

℘ = e.g.exp(. . .) line shape (4)

We employ a non-negative Least Squares Fit over allJ identified
targetsfj(ν) using the functional description and the subsequently
generated peak information. Therebyo represents a global shift
which can be compensated by a reference shift correction andǫ

represents noise. The targetfj can be approximated as a super
composition of its component functions or peak groupsgi defined
by the numberGj of chemical shifts in the molecule’s spin system.

A small local shift−γ ≤ ∆i ≤ +γ typically within a range
of |γ| ≤ 0.005 ppm can be expected for each peak group. Each
componentΘk(ν) of gi(ν) can be considered as a delta function,
contributing to a line spectrum with non vanishing amplitude for
one peak position only. We denote such a single positionν asνj,i,k
to specify peakk caused by groupi in metabolitej. K is the
multiplicity of a component functiongi. The origin of the chemical
shift group componentsΘk(ν) lies in the spin-spin interaction
characterized by the scalar coupling constantJAX and can be
deduced from the quantum mechanical calculations for the spin
system parameters describing the target metabolite. Subsequently
this line spectrum is folded⊗ by a line shape function℘ to mimic
the line shape of the real measurement. In the following we will use
G for Gj and K forKj,i if the indices are known from the context.
In NMR the position of thegi are known as chemical shifts. The
estimates of these shift positions need to be as accurate as possible
and are the main error-source in the TP approach.
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An accurate peak shape estimate is the key to an appropriate
subtraction of signal components froms(ν) in order to reveal
potentially hidden components. We approach this issue by taking
the shape of the DSS reference signal added to the sample, as a
template for℘. This shape is used to estimate the expected peak
width present in the signal.

To tackle the shift-uncertainty problem, we estimate values for
the disturbances∆ shown in Eq. (2) and present an initial solution
to optimize thegi positions in potential targets using a grid search
strategy. This approach leads to a general improvement in position
estimates for thetrue chemical shifts of the sub-patternsgi of
potential targetsfi and hence to more accurate identification and
quantification estimates as shown below.

Whereas standard TP identifies signatures in NMR mixtures by
employing known database references of (manually) specified peak
patterns the Extended Targeted Profiling approach (ETP) described
here modifies this concept by modeling the targets based on their
theoretical spin-system model (see (Smithet al.(1994)). This model
provides the peak information (transition tables). The physical
model easily deals with measurement variables such as different
device frequencies and is known to provide very accurate peak
lists. The parameters of the targets are optimized with respect to
the measurements at hand. Each target descriptionT (generating a
signal fj(ν)) is characterized by a set of spin-system descriptors
Td ∈ S. S describes the theoretical aspects of the spin system ofT

and can be used in combination with a model of the measurement
system (NMR system) to simulate the spectrumfj for T . A
spectrum representation ofT can be divided into multiple parts,
one for each spin-system descriptorTd, known as the peak group
(g). A peak group may consist of multiple or single peaks and is
potentially overlapping. For each group a potential (limited) shifting
uncertainty∆i can be expected. New targets can be added to the
ETP approach very easily by specifying the spin-system model,
outlined above, based either on knowledge available in the literature
or by own measurements of the pure target substance under the
previously defined measurement conditions. In the latter case the
obtained spectrum is analyzed manually to define the spin-system
model. Hereby an NMR expert constructs a spin-system model such
that the reconstructed spectrum, based on this model, fits best to
the observed data. The three steps of ETP required to obtain an
optimized fit based on this new encoding strategy are detailed below.

3.1 Line representation of a NMR spectrum
NMR spectra can be described by means of a set of overlapping
peaks, which provides a compact representation of the signal and
can also reveal quickly whether or not an expected target is likely
to be present ins(ν), since all simulated target peaks must also
be present in the peak list ofs(ν). The peak picking process is
rather complicated, and a number of heuristic approaches have
been proposed to improve the situation (Kohet al. (2008); Brelstaff
et al. (2009)). Here we focus on a simple parametric hill-climbing
approach (Schleifet al. (2008)). We further assume that for each
measurement a known CSI signal is available, in our case this is
DSS. This signal has a known position of0 ppm, which can be
used to compensate the global shift offset of the spectrum. We look
for a maximum within a window of0.05ppm at the expected CSI
position. From this position we then go down (to lower intensities)
on the left and the right flank of the peak as long as the signal is a
descending monotone. The peak is then truncated at a predefined
maximal width. The center position and the peak width at half

maximum (PWHM) are then calculated for this peak. The PWHM
is used as a rough estimate of the peak width. Due to effects
such as imperfect phasing, shimming or baseline correction, a
direct inverse deconvolution ofs(ν) with the CSI reference is not
generally feasible. Instead, we employ a hill-climbing algorithm and
look above a predefined threshold (the expected noise level) through
the whole signal for local maxima, whose flanks are sufficiently
steep and for which the obtained peak has a sufficient width. By
application of this algorithm we obtain a list of peaks in a spectrum.
This list is subtracted froms(ν) and the algorithm is repeated until
no further peaks are detected. This approach can also resolve peaks
in an overlap, although not in every case. Alternatively, the strategy
described in (Kohet al. (2008)) can be used with an underlying
Lorentzian support, the particular peak picking algorithm is not of
much relevance here as long as it discovers the peaks in the spectrum
to a sufficient degree of accuracy. The list of peaks is subsequently
denoted asP. These peak lists are compared to those of the potential
targets. If a sufficient number of peaks (e.g.30%) in a target can be
matched within a tolerance of0.01ppm to the peaksP we consider
the target to be identified and proceed with the analysis steps for this
target. We now have the target as a functional line spectrumfj(ν)
with ℘ as the fitted line function.

3.2 Genetic algorithm for shift uncertainty estimation
A major feature of our approach is the shift uncertainty correction
performed by means of a Genetic Algorithm (GA). The genetic
algorithm software was written in-house in Matlab running on an
Intel Xeon multiprocessor system with 8 3.20 GHz processors and
16 GB memory using the parallel processing, signal processing and
optimization toolbox with Matlab 2008b. We made use of the GA
implementation in the optimization toolbox but replaced some of
the core methods with our own purpose-developed implementations.
Specifically, we replaced the methods used to generate the initial
population and the mutation function and provided a specific fitness
function as described below. The basic algorithm and parameters for
the GA are shown in Table 2 and the overall workflow is depicted
in Figure 4. Briefly, we generate a large number of chromosomes
P, each chromosome has the same lengthZ =

∑J

j Gj , equal
to the number of groups over all analyzed targets, and each of
which contains the currently estimated, or randomly determined
shift values for the∆i. These∆i are optimized by the GA.
Furthermore the smallest shift is limited by the ppm-axis resolution.
We have found that a reduction of the original spectrum to16k
points corresponding to0.5 Hz spectral resolution, is possible,
whilst maintaining structural information of sufficient quality for
the subsequent identification task. In this case up to25 valid shift
positions are possible for a given shift uncertainty of±0.01ppm 2.

3.2.1 Fitness function and evaluation measuresThe fitness
function is the core element of the GA and is evaluated for each
single chromosome separately. It consists of three procedures: (1)
The spin-system classifications of all identified metabolites are used
to generate the corresponding spectral representation. Thereby, the
shifts given by the chromosome are applied to the corresponding
groupsgi, and the reconstructions folded with the prior estimated
line shape. We denote the matrix of all reconstructionsf∗

j (ν), given

2 If we assume a spectral resolution ofSR = 0.5 Hz, a device frequency
of F = 700 MHz and an error of PPM-E= ±0.01 ppm the number of valid
positionsV is V ≈ 2 · PPM-E/(SR/F ).
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Parameter Description Value
C single chromosome c ∈ R

Z ci ∈ [-PPM-E,PPM-E]
M set of chromosomes M = {C1, . . . , CP }
K Number of generations 200
P Number of chromosomes 900;|M |
pi permutation probability 0.1
Z Length of the chromosomes

∑

Gj

PPM-E PPM uncertainty of the∆i 0.01
SR Down-sampling rate 4
d distance measure {0,1}
Table 2. Basic parameters of the genetic algorithm. The distance measure is
either euclidean - 0, or a functional distance - 1.

Fig. 4: Workflow of the genetic algorithm used to obtain optimal
∆i. The first (outer) folded corner is repeated untilK generations
are analyzed or one of the alternative standard stopping criteria is
met. The inner folded corner is repeated until a new population of
the same size as before is generated.

as row vectors, as the matrixR

R =





f∗
1 (ν)
. . .

f∗
J (ν)



 R
′ =





f∗
1 (⊲⊳)
. . .

f∗
J (⊲⊳)



 .

(2) These reconstructions are reduced to a range representation such
that a compact form ofR denoted asR′ is obtained. InR′ not all
values forν are used but only a limited set ofν in form of potentially
overlapping range vectors⊲⊳l= [νl − (2 · PPM − E) : νl + (2 ·
PPM − E)] with l as an index of a peak positions inΥ.

We collect all peak center positions of the metabolites denoted as
Υ = {Υ1, . . . ,ΥJ} with Υj = {νj,i,k}

G×K
i,k andνl ∈ Υ. Here

we also incorporate the∆i and take the peak positions from the
transition tables extended to a range of twice the assumed ppm-
uncertainty PPM-E for each peak. A reduced test spectrums′(⊲⊳)
is constructed, accordingly.

(3) The matrixR′ and the vectors′(⊲⊳) are subsequently used
in the LSQO, as the third step, to calculate theαi for all targets.
The reduction to a range based representation is useful to avoid very
large and extremely sparse matrices, which would complicate the
subsequentα estimations. This step has no detrimental effects on
theα−estimates.

(a) Two functions: Euc =Lp-norm (b) Two functions: Euc6= Lp-norm

Fig. 5: Illustration of theLp-norm. Plot (a) indicates the case
in which the distance between two functions is equal, both for
Euclidean orLp-norm. In plot (b) parts of the functions are
interchanging (crossing). The distance using Euc is still the same
as in plot (a) but for theLp-norm the distance is changed, giving a
more realistic measure of the distance of the two functions.

3.3 Non negative least squares fitting
The targetsf ′

j(⊲⊳) are now given in the functional description of
(2) with optimized∆i, using the knownΘk and our functional
shape estimation for all peak groups. The function to fit is our
reduced spectrums′(⊲⊳). We add constraints for non negative
αi and allow for user definition ofαj fixed on a targetfj by
employing standard optimization modeling techniques. Solving the
optimization problem by use of a standard constrained linear least
squares algorithm we obtain theαj in a column vectorα, which
can subsequently be used to calculate the concentration estimates.
To this end, the area under theα-scaled target is calculated and
associated to the area of theα-scaled reference signal (here DSS).
A scaling step is then performed, based on the number of protons
1H present in the reference, nine for DSS, compared to the number
of protons present in the metabolite e.g. four for Ala. This leads to
the following equation for the concentrationc in mol: c(Ala) =
area(Ala)·c(DSS)·9

area(DSS)·4
with areaas an appropriate estimation function

for the area under the curve. One can also calculate estimates of the
lower concentration limits by scaling the target intensities off ′

j to
the noise level and repeating the procedure. The reconstructions∗

is obtained as:

s
∗ = R

⊤ · α (5)

To judge the fitness of this solution we may now either use
the quality of fit provided by the LSQO algorithm or evaluate
the reconstructed spectrums∗(ν) with respect tos(ν) using a
problem specific distance measure. Here we use either the standard
Euclidean distance (EUC) or a functional distance measure as
an extension of theLp norm proposed in (Lee and Verleysen
(2005)) (FUNC). The functional distance measure has the advantage
of taking the functional nature of the spectra into account. The
standard Euclidean distance considers the individual features of
the NMR spectrum to be independent, so that a change in the
order of the ppm positions does not affect the calculated distance.
However, the features or measurement points in NMR spectra are
not independent, so that a distance taking this aspect into account
can be considered to be more appropriate for this type of data. Lee
proposed a distance measure taking the functional structure into
account by involving the previous and next values of a signalvi
in thei-th term of the sum, instead ofvi alone. Assuming a constant
sampling periodτ , the proposed norm (FUNC) is:

Lfc
p (v) =

(

D
∑

k=1

(Ak (v) +Bk (v))
p

)
1
p

(6)
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Ile Leu Val Glu Meth

EXP TP ETP EXP TP ETP EXP TP ETP EXP TP ETP EXP TP ETP

M-DS1 113.23 31.07 62.32 32.35 17.29 23.53 36.27 17.88 18.59 52.37 26.29 63.40 79.61 56.52 49.50
M-DS1-C 72.64 37.77 21.85 38.65 57.57
M-DS2 36.32 26.00 73.98 62.96 15.00 21.43 32.78 15.98 28.52 30.92 22.30 35.07 71.97 47.94 52.41
M-DS2-C 60.54 50.37 43.71 30.92 43.18
M-DS3 51.92 19.62 27.10 60.30 13.52 21.44 51.45 16.29 32.00 37.68 21.59 33.95 94.22 48.50 75.11
M-DS3-C 36.32 62.96 32.78 30.92 71.97
M-DS4 57.98 21.27 36.01 58.85 16.55 25.94 34.33 14.50 11.46 31.58 30.73 50.48 115.01 61.03 84.51
M-DS4-C 48.43 62.96 21.85 23.14 86.36
⊗ 0.63 0.46 0.74 0.60 0.55 0.43 0.35 0.17 0.40 0.27

Table 3. Concentrations of metabolites in the synthetic wet-lab study. The weighted sample concentration is given in the-C rows each. The estimate
of the expert EXP, TP and ETP are given in the columns. All concentrations are given inµ mol. Considering the median relative error (⊗) of the
concentration estimates the ETP approach is best in all cases. In a case by case comparison ETP is almost always the best, withthree exceptions
{(Spec2, V al), (Spec4, Glu), (Spec1, Ile)}.

with

Ak (v) =

{

τ
2
|vk| if 0 ≤ vkvk−1

τ
2

v2
k

|vk|+|vk−1|
if 0 > vkvk−1

(7)

Bk (v) =

{

τ
2
|vk| if 0 ≤ vkvk+1

τ
2

v2
k

|vk|+|vk+1|
if 0 > vkvk+1

(8)

representing the triangles on the left and right sides ofvi andD

being the data dimensionality. For the data considered in this paper
v takes the position ofν. As forLp, the value ofp is assumed to be
a positive integer. At the left and right extremes of the sequence,v0
andvD are assumed to be equal to zero. The concept of theLp-norm
is shown in Figure 5. The calculation of this norm is slightly more
complex than that of the standard Euclidean but, as is shown below,
significantly improves the fitting results as well as the convergence
speed of the GA3.

4 RESULTS AND DISCUSSION
4.1 Identification and quantification
We have tested our approach using measurements of metabolites
in lysates of cultured cells as well as a small test set with known
concentrations of defined metabolites. Rather than focusing on a
specific biochemical question we aim to compare the range and
concentrations of metabolites detected using TP and ETP with those
obtained by manual expert profiling.

4.1.1 Wet lab metabolite mixture experimentThe wet-lab
mixture data sets (M-DS) can be considered to be an artificial data
set with known concentrations. In Table 3 the known concentrations
(weighted sample) and the concentration estimates as obtained by
the expert, TP and ETP using the functional distance measure are
given. We observe that the ETP approach is closer to the expert
estimation than is TP. The DSS concentration was given with77.05
µ mol for all spectra.

4.1.2 Cell culture experimentDetails of the analyzed cell extract
data are shown in Figure 6. The optimized approach provides results

3 The additional effort in the calculations is almost negligible - the time to
calculate a generation is changing only minor, by a few seconds.

which are much closer to the expert analysis, for 16 of the 21 targets.
Eth, Cit, His, Myo and Mal were noted as being absent by the expert
but by ETP and TP with very low concentrations.

Test spectrum Error TP Error ETP (FUNC) Error ETP (EUC)

Spec1 49.65 31.95 (97) 32.05 (121)
Spec2 68.68 45.89 (106) 68.71 (122)
Spec3 30.92 28.40 (112) 29.87 (147)
Spec4 87.53 55.70 (118) 56.01 (132)
Spec5 64.04 47.30 (97) 46.39 (121)
Spec6 111.09 87.60 (81) 93.77 (137).

Table 4. Mean errors inµ-mol of TP and ETP with respect to the expert
concentration estimates. The expert concentration is assumed to be optimal
(0 error), the values for TP and ETP are then compared with the expert using
the mean square error, normalized by the number of metabolites. It can be
seen that the new approach clearly improves the concentration estimates. The
number of generations until convergence is shown in brackets.

Figure 9 shows a reconstruction of a signal part with respect to
the original signal to illustrate the effect of the shift correction.

From Table 4 we observe that the EUC measure in the fitness
function is indeed less effective then the FUNC measure, consistent
with our expectation that the FUNC norm is more appropriate to
data which are themselves functions4. We subsequently restrict
our analysis to the FUNC norm and the standard TP approach. In
Figure 7 we show Box-Whisker Plots of the relative concentration
errors with respect to the expert of the metabolite concentrations
using the standard TP and the ETP (FUNC) approaches. It can be
seen that the relative error of ETP is much smaller than that of TP
in the large majority of the metabolites. Also the variance of the
results is smaller. Median errors of TP vs ETP are shown in Table 5.
Significance of an improvement is indicated by a+ using a t-test on
a5% level, with significances ofp ≤ 0.03. We observe that≈ 25%
of the differences are significant and all of these are positive.

4 Using the median in Figure 6 gives similar results with respectto TP
but comparing FUNC and EUC the results are less pronounced dueto the
dominance of the (many) small metabolites
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xx x

Fig. 6: Concentration estimates for some of the different metabolites usingETP in comparison to TP and an expert analysis (Spec1). The
x-axis denotes the metabolites and the y-axis the intensities inµ-mol.
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Fig. 7: Relative error estimates for different metabolites using TP (a) and ETP (b). The y-axis encodes the relative error and is limited to
[0,4]. The x-axis lists the different metabolites.

(a) (b)

Fig. 8: (a): Concentrations (normalized) for metabolites over time (without CSI) for Spec1. (b): parameter changes over time for∆1 . . .∆10

using the median over 10 generations.

4.2 Shift uncertainty properties and influence
The shift uncertainty estimates∆ change over time with respect to
the GA evolution and the underlying constraints. The GA can only
determine a local optimal solution, which is expected to correspond
to the global optimum in only a very few cases. An analysis of the
number of updates per shift uncertainty estimate reveals parameters
which are likely to be incorrect either because they have not been
updated at all or because they have been updated very frequently. An

example for Spec1 is shown in Figure 11. Taking this statistic into
account the expert can be assisted by an indicator that highlights
peak group shifts, that are likely to be incorrect. Considering the
values of the shift uncertainties for the analyzed spectra we found
around3 − 4% of the∆i to be0 after convergence. Analyzing the
shift updates also provides information about potentially unreliable
modeled regions, indicated by either very few or very many∆
updates, as shown in Figure 10. There the relative number of∆
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Ala Asn Asp Cys Glu Gln Gly Ile
TP 0.66 1.77 1 1 0.26 1.83 0.69 0.61
ETP 0.28 1.56 1 1 0.19 1.78 0.3 0.08
Imp 1 1 0 0 1 1 1 1
Sig + o o o o o + +

Lac Leu Meth Phe Pro Pyr Ser Succ
TP 0.34 0.27 0.49 0.56 0.64 1 0.64 0.44
ETP 0.32 0.31 1.21 0.58 0.5 1.96 0.26 0.09
Imp 1 1 2 2 1 2 1 1
Sig o o o o o o o o

Thr Trp Tyr Val Fum Mean
TP 0.97 0.85 0.44 0.71 1 0.81
ETP 0.14 0.42 0.07 0.06 0.21 0.66
Imp 1 1 1 1 1 -
Sig + o o + o 0
Table 5. Relative median metabolite error. Change judged in the row labeled
by Imp: 1 (improvement/optimal),2 (worse estimate),0 (no improvement).
The rows labeled withSig indicate if the change was significant by use of a
t−test.

changes by the GA with respect to the total number of generations
until convergence is shown over all spectra. The various metabolites
are indicated by different symbol shapes and shadings.

One can clearly see that for most∆ (indicated by the symbols)
around40% of the GA generations are sufficient to obtain a stable
solution. Even if this solution may not be a global optimum, it can
still be considered as a stable local optimum. For some of the∆
(e.g. those for pyruvate and aspartate) a (much) larger number of
updates is necessary and it can be expected that these shifts are
not well optimized, but that no better solution could be found by
the GA. For some of the other metabolites one can also see that
only a single group is optimized very frequently as is the case for
the group of Val (valine) around 0.98 ppm or Ser (serine) around
3.83 ppm. The concentration estimates for these two amino acids
compare quite well with the expert estimates. Very few updates
can be observed e.g. for Succ (succinate) around 2.39 ppm, Gly
(glycine) around 3.55 ppm or Glu (glutamate) around 2ppm and
3.75ppm. Interestingly Succ, Gly and Glu are optimized very well
and the estimated concentrations correspond reasonably to those
obtained by the expert. However it should be borne in mind that
the concentration estimate is not equally split over the groups.

Fig. 9: Spectrum in the region of valine and iso-leucine. The two sub
figures on the top show the fit with ETP, left for iso-leucine (filled),
right for valine (filled). Below the same but in the original TP fit.

The plot in Figure 10 provides an initial indication of which
metabolites are most likely to have been poorly optimized and
should therefore be manually corrected by the expert. This provides

a basis for the focused and guided manual interaction avoiding
the inspection of all metabolites. In the example shown, the
optimizations appear to have been reasonably effective and correct
for those metabolites for which the number of updates for the
corresponding∆ lies within a range of20 − 40%. The plots in
Figure 8 show the effect of the genetic evolution with respect to the
concentration of the metabolites and the parameter modifications.
One can see that most of the optimization of GA parameters and
hence of concentration changes occurs in the first 10-20 generations.
The plot also shows that even relatively small errors in the∆i may
have large impact on the concentration estimates, with very high
values at the beginning of the optimization and comparatively small
values at the end for some metabolites.

Median relative error estimates of single metabolites using TP and
ETP (FUNC) are shown in the Box-Whisker plot 7. The relative
error is calculated as the absolute concentration error compared
to the expert value.In terms of the median errors, we find that
ETP provides a clear improvement over TP but has still problems
with some metabolites such as Leu, Meth, Phe and Pyr. In these
cases, however, we note that even the manual fit by the expert is
challenging. On average the median error improved from0.78 to
0.64 with 0 as the perfect agreement. These findings show that ETP
is superior to TP in providing reasonable estimates for metabolites
on a magnitude level. However, the accuracy attainable from single
measurements is still low. This highlights the need both for the use
of experimental replicates and for the analysis of multiple spectra of
the same sample.

Fig. 10: Relative #∆ updates in % (y) with respect to the ppm
position (x).

5 CONCLUSION
In summary, this work has shown that an approach combining
GAs with LSQO leads to highly effective error estimates for the
shift uncertainties in1H NMR measurements. The simultaneous fit
outperforms the standard TP approach with respect to identification
and quantification accuracy and compares favorably to the expert
analysis. We have further shown that the usage of a data specific
(functional) distance measure to calculate the fitness values is
preferable to a standard Euclidean measure. It also significantly
improved the convergence rate of the GA. The interpretation of the
obtained shifts over time with the best model allows an in depth
analysis of the optimization, revealing potentially unreliable fits.
This provides initial guidance for the expert to focus further manual
improvement of the obtained fit where necessary, reducing the
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Fig. 11: A typical evolution of the∆ (columns) over time (rows) for
97 generations. The gray levels indicate the shift values. Some∆
converge early to stable values, some (few) need more updates.

demand for extensive shift corrections in order to generate correct
uncertainty estimates. Furthermore, the approach also allows the
manual, specification of concentration values in the fit for known
concentrations, by additional constraints. Overall the combined
approach can improve the identification and quantification accuracy
of NMR based targeted profiling to allow a semi-automatic high
throughput analysis. Further improvements are to be expected from
improved preprocessing of the spectra. Variations in the baseline and
slightly incorrect lineshapes being the main sources of error in the
automatic identification and quantification of metabolites in NMR
measurements.

ACKNOWLEDGMENT
We thank Prof. Thomas Villmann (Univ. of Appl. Sc. Mittweida)
for discussions about functional signal processing, the METASTEM
team and Peter Tino, Univ. of Birmingham for a very effective
research stay during the preparation of this manuscript.

Funding: This work was supported by the Fed. Ministry of Edu. and
Res.:FZ:0313833 A, (NMR Metabolic Profiling of the Stem CellNiche,
METASTEM), the German Res. Fund. (DFG), HA2719/4-1 (Relevance
Learning for Temporal Neural Maps) and by the Cluster of Excellence 277
Cognitive Interaction Technology funded in the framework ofthe German
Excellence Initiative.

REFERENCES
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