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Abstract. The analysis of spectral data constitutes new challenges for machine
learning algorithms due to the functional nature of the data. Special attention is
given to the used metric in such analysis. Recently a prototype based algorithm has
been proposed which allows the integration of a full adaptive matrix in the metric.
In this contribution we analyse this approach with respect to band matrices and its
usage for the analysis of functional spectral data. The approach is tested on satellite
data and data taken from food chemistry.
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1 Introduction

The analysis of high dimensional functional data is a common task in different fields
of natural sciences like medicine and chemistry. The initial results of an experimental
setting are typically given as functional spectral data. Prominent examples are mass
spectrometric data (MS) in the field of clinical proteomics, nuclear magnetic resonance
spectra (NMR) in the field of chemistry and metabolomics or satellite remote sensing
spectroscopy in astronomy to name just a few. Focusing on classification, prototype
based classification approaches such as Learning Vector Quantization (LVQ) as pro-
posed by Kohonen [4] or multiple extensions [2, 1] have already proven to be valuable
for the analysis of high dimensional data (see [10, 11]). Due to the complexity of the
data the use of an appropriate distance measure is of special importance [5] to get an
adequate representation of the data. In Generalized Relevance LVQ (GRLVQ) [3], the
euclidean metric is replaced by a more powerful alternative, which introduces weights
for the different features (scaled euclidean metric). This allows to scale the axes of the
coordinate system of the data space in order to obtain better adaptation towards clusters
with axes-parallel ellipsoidal shapes. In the previously published approaches to anal-
yse such data, correlative effects between different features are ignored in general. For
functional data correlative effects between neighbored data points are frequent and the
order of the features is not any longer arbitrary.

The recently introduced Generalized Matrix LVQ (GMLVQ) [6, 7] adapts a full ma-
trix of relevance factors in the distance measure and allows to take correlations between
different features into account. Yet, full adaptive GMLVQ may suffer from to many
adjustable parameters which is quadratic with the number of input dimensions. This
can lead to instabilities and overfitting. In spectral data usually local correlations occur,
such that GMLVQ can be restricted to band-limited matrices without significant loss of
information.

In this paper we analyze this modifications for two different data sets from satellite
remote sensing and food chemistry studies.
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Fig. 1: Left: Plot of multiple spectra taken from the tecator data set. Spectra from class
0 (low fat) are plotted with straight lines and spectra of class 1 (high fat) are plotted
with dashed lines. One clearly observes a visual separation of the spectra at a frequency
around index 41, but it can also be seen that the single dimension 41 is not separating
well between the two classes. Right: Average spectra for all classes of the satellite data
set. The class labels are indicated by different point symbols.

2 Dataset

The first data set is a multispectral data set in 10 classes, obtained from [8] with 12
bands measured by a M-7 airborn-scanner. It contains a significant number of vege-
tative species or ground cover classes. The spectral bands cover from the visible to
the near infrared: 0.40µm − 1.00µm. The visible range mainly judges leaf pigments
(chlorophyll) and the infrared range is most responsible for cell structures (spongy-
mesophyll cells). Figure 1 (right) visualizes the mean spectra of the different classes.
A detailed description is available in [8].

The second data set, publicly available at http://lib.stat.cmu.edu/datasets/tecator,
contains 215 samples of 100-dimensional infrared absorbance spectra. The classifi-
cation task consists in the predict of the binary fat content (low/high), of meat.

Figure 1 (left), shows example spectra of both classes. Apart from a tendency to-
wards dints around channel 41 for high fat content, a substantial visual data overlap can
be stated.

3 Generalized Matrix LVQ
LVQ aims at approximating a clustering by prototypes. Assume training data (ξi, yi) ∈
RN × {1, . . . , C} are given, N denoting the data dimensionality and C the number
of different classes. A LVQ network consists of a number of prototypes which are
characterized by their location in the weight space wi ∈ RN and their class label
c(wi) ∈ {1, . . . , C}. Classification takes place by a winner takes all scheme. For this
purpose, a (possibly parameterized) similarity measure dλ is fixed for RN . Often, the
standard euclidean metric is chosen. A data point ξ ∈ RN is mapped to the class label
c(ξ) = c(wi) of the prototype i for which dλ(wi, ξ) ≤ dλ(wj , ξ) holds for every j 6= i
(breaking ties arbitrarily).

Learning aims at determining weight locations for the prototypes such that the given
training data are mapped to their corresponding class labels. A very flexible learning
approach has been introduced in [12]. It is derived as a minimization of the cost function
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where Φ is a monotonic function, e.g. the identity or the logistic function, dλ
J =

dλ(wJ , ξi) is the distance of data point ξi from the closest prototype wJ with the same
class label yi, and dλ

K = dλ(wK , ξi) is the distance from the closest prototype wK with
a different class label than yi. Taking the derivatives with respect to the prototypes and
metric parameters yields the adaptation rules.

The choice of the similarity measure as standard euclidean metric yields GLVQ.
The squared weighted euclidean metric dλ(w, ξ) =

∑
i λi(wi − ξi)2 where λi ≥ 0

and
∑

i λi = 1 constitutes a powerful alternative, GRLVQ, particularly suited for high
dimensional data with a different (but priorly not known) relevance of the input dimen-
sions.

In GMLVQ, a full matrix, which can account for arbitrary correlations of the di-
mensions, is used. The metric has the form

dΛ(w, ξ) = (ξ −w)T Λ (ξ −w)

where Λ is a full matrix. Arbitrary euclidean metrics can be achieved by an appropriate
choice of the parameters. The above similarity measure only leads to a squared distance
if Λ is positive (semi-) definite. We can achieve this by substituting Λ = Ω ΩT . As
Λ is symmetric, we can assume that Ω itself is symmetric: Ω = ΩT . To obtain the
adaptation formulas we need to compute the derivatives of (1) with respect to w and Λ.
We get the updates

∆wJ = + ε · φ′(µ(ξ)) · µ+(ξ) · ΩΩ · (ξ −wJ)
∆wK = − ε · φ′(µ(ξ)) · µ−(ξ) · ΩΩ · (ξ −wK)
∆Ωlm = − ε · φ′(µ(ξ)) ·(

µ+(ξ) ·
(
[Ω(ξ −wJ)]m(ξl − wJ,l) + [Ω(ξ −wJ)]l(ξm − wJ,m)

)
−µ−(ξ) ·

(
[Ω(ξ −wK)]m(ξl − wK,l) + [Ω(ξ −wK)]l(ξm − wK,m)

))

for the prototypes and matrix elements Ωlm with µ(ξ) = (dΛ
J − dΛ

K)/(dΛ
J + dΛ

K),
µ+(ξ) = 2 · dΛ

K/(dΛ
J + dΛ

K)2, and µ−(ξ) = 2 · dΛ
J /(dΛ

J + dΛ
K)2. (See [6] for the

derivation of these formulas.) Thereby, the learning rate for the metric can be chosen
independently of the learning rate for the prototypes. Note that Ω is symmetric be-
cause these updates are symmetric. After each update, Λ is normalized to prevent the
algorithm from degeneration. We set

∑
i Λii =

∑
i,j Ω2

ij = 1 which fixes the sum
of diagonal elements and, here, the sum of eigenvalues. Band limited GMLVQ can be
achieved by symmetric limiting the off-diagonals of Ω or Λ, respectively. This restric-
tion leads to a focus on locally correlated frequency bands in spectral data. The width
should be in correspondence to the correlation range in the spectra, which is problem
specific. If k off-diagonals on both sides of the main diagonal are considered in Ω the
respective band-width including the main diagonal is given as n = 2 · k + 1 in Ω. We
refer to this as GMLVQ-n.



4 Experiments and Results

We applied GMLVQ on both spectral data sets using different bandwidth settings and
compared the classification performance with known results taken from [9, 8]. In the
calculations for the tecator data, the spectra have been portioned randomly into 4/5 for
training and 1/5 for test patterns averaged in a 5-fold crossvalidation. The satellite data
where given in a predefined splitting into training and test.

For the satellite data set we determined the optimum bandwidth by optimizing the
problem using 1 prototype for each class. An initial phase of 10 cycles of pure prototype
training was mandatory before the adaptation of metric parameters. The learning was
continued up to converges with an upper limit of 100 cycles.

We found a significantly increased accuracy for a bandwidth of 5 compared to a
diagonal matrix (bandwidth 1). Whereas larger bandwidth does not achieve a significant
improvement anymore. Hence, it is possible to reduce the number of free parameters
without a degradation of classification performance. The relevant results are collected
in Table 4 and Figure 2. These results are in good agreement with priorly findings
published in [8]. This is based on incorporation of additional expert knowledge about
relevant spectral frequencies for vegetation discrimination. In particular both visible
and infrared frequencies contribute to the identification. A band width of 5 in our
data set comprise at least parts of the visible and near-infrared spectrum. Therefore
the respective correlations are taken into account. Smaller bandwidths lead to a loss
of this correlation information, whereas larger ones, larger than 5, give no significant
information gain.

For this optimum 5-band case the experiment was repeated using 5 prototypes per
class. We achieved a prediction of 86.4% which is comparable to the result given in [8]
with 91% using only 4 features. This selection was done such that the features were
almost independent, but covering visible and infrared frequencies.

The main diagonal elements of matrix Λ (relevance profile), reflect that red and
infra-red frequencies are especially relevant for the classification. This underlies the
above mentioned features of chloro- and mesophyll level for vegetation discrimination.

For the tecator data set pretraining the prototypes using 1 prototype per class and
with the euclidean metric was done for 20 cycles. The learning was continued up to
converges with an upper limit of 200 cycles. In our experiments we found a bandwidth
of 21 to be critical to achieve the classification performance of the full matrix compare
Table 4 and Figure 2.

In Figure 3 the relevance profile for this case is depicted. We see that a region
around index 41 is ranked most whereby a detailed analysis of the relevance matrix
also shows that correlated dimensions are highly ranked as well. In comparison to the
visual impression given in Figure 1 this is a plausible result which has not been found
by simple GRLVQ using a scaled euclidean metric. This can be related to the fact that
the discrimination power is not due to a single dimension but rather to a neighborhood
effect.

5 Conclusion

In this article band-limited GMLVQ has been investigated for classification of spectral
data. For both considered data sets one observed an overall improvement in predic-
tion, compared to simple GRLVQ as it is also observed for full GMLVQ. However
band-limitation can successfully be applied without significant information loss. The



Satellite Tecator
Algorithm Prediction Algorithm Prediction
GMLVQ-1 78.5% GMLVQ-1 59.5%
GMLVQ-3 82.9% GMLVQ-3 59.5%
GMLVQ-5 86.2% GMLVQ-11 78.6%
GMLVQ-7 86.3% GMLVQ-21 92.9%
GMLVQ-9 86.6% GMLVQ-31 92.9%
GMLVQ-11 86.4% GMLVQ-41 90.5%
GMLVQ-F 86.6% GMLVQF 95.2%
SVM-RBF 70.7% SVM-RBF 68.9%
SVM-Lin 85.3% SVM-Lin 73.3%
C-GRLVQ n.a. C-GRLVQ 97%

Table 1: Classification accuracies for the satellite and the tecator data set using differ-
ent band width settings for GMLVQ (0 to F-full) in comparison to correlation based
GRLVQ (C-GRLVQ) with 25 prototypes [9] and two types of a SVM (Lin-linear, RBF-
radial basis function kernel) obtained using Yale (http://yale.cs.uni-dortmund.de)

obtained optimum bandwidths can be discussed in the light of spectra properties of
the underlying problems. Thus band-limiting can be used to reduce the number of ad-
justable parameters of standard GMLVQ to improve the stability. These findings rise
hope that this results may hold also for other kinds of spectral data such as mass spectra
(MS) or Ion Mobility Spectroscopy (IMS) which is an important analysis technique in
chemistry and the field of security.

References
[1] A. Sato and K. Yamada. Generalized learning vector quantization. In D. S. Touretzky, M. C. Mozer, and

M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8. Proceedings of the 1995
Conference, pages 423-9. MIT Press, Cambridge, MA, USA, 1996.

[2] B. Hammer, M. Strickert, and T. Villmann. Supervised neural gas with general similarity measure. Neural
Processing Letters, 21(1):21-44, February 2005.

[3] B. Hammer and T. Villmann. Generalized relevance learning vector quantization. Neural Networks, 15(8-
9):1059-1068, 2002.

[4] T. Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Information Sciences. Springer,
Berlin, Heidelberg, 1995. (2nd Ext. Ed. 1997).

[5] T. Villmann, F.-M. Schleif, and B. Hammer. Comparison of Relevance Learning Vector Quantization
with other Metric Adaptive Classification Methods. Neural Networks, 19:610–622, 2006.

[6] P. Schneider, M. Biehl, and B. Hammer. Relevance Matrices in LVQ. In Proc. of ESANN 2007, pages
37–42, Bruges, Belgium, April 2007.

[7] M. Biehl, B. Hammer, and P. Schneider. Matrix Learning in Learning Vector Quantization, Technical
Report, Insitute of Informatics, Clausthal University of Technology, 2006.

[8] D. Landgrebe. Signal Theory Methods in Multispectral remote sensing. Wiley, New Jersey, 2003.

[9] M. Strickert, N. Sreenivasulu, W. Weschke, T. Villmann and B. Hammer. eneralized Relevance LVQ
(GRLVQ) with Correlation measures for Gene Expression analysis. Neurocomputing, 69(7-9):651-659,
2006.



10 20 30 40 50 60 70 80 90 100
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

epoch

te
st

 a
cc

ur
ac

y

0 50 100 150 200

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

epoch

m
ea

n 
te

st
 e

rr
or

Fig. 2: The figure shows the process of the prediction accuracies for the different data
sets using matrices of different bandwidth settings. Left: Satellite data set, Right: Teca-
tor data set. Curves generated by GMLVQ with very small bandwidth show worse
prediction accuracies. A clear gap between the prediction using no-bands (GRLVQ -
curves with �) and few bands can be found. The final predictions depicted in the curves
are collect in Table 4. Its also observable that a full matrix gives only a slight additional
effect on the classifier performance.
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Fig. 3: Relevance profile for GMLVQ using 21 bands for the tecator data set. The x-axis
shows the frequency index and the y-axis the relevance. For the tecator data the most
relevant region is found around feature 41. In the right plot the off-diagonal elements
of the corresponding Λ matrix are depicted with zero diagonal elements.
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