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Abstract. In many application domains data are not given in a classical
vector space but occur in form of structural, sequential, relational charac-
teristics or other non-standard formats. These data are often represented
as graphs or by means of proximity matrices. Often these data sets are also
huge and mathematically complicated to treat requesting for new efficient
analysis algorithms which are the focus of this tutorial.

1 Introduction

Computational intelligence methods for the extraction of knowledge from large
structured and non-standard data is becoming more and more important. Mod-
ern measurement systems e.g. in the life sciences and cheap storage devices
facilitate the quick gathering of information at large scale. Considering projects
like the human genome project or next generation sequencing, huge sets of DNA
sequences are recorded which are inherently structural, waiting for analysis and
knowledge extraction [4]. Many and large databases store proteins, phylogenetic
trees, molecular graphs, time series data, hyper-textual and XML documents
from the web all in more or less structured but clearly non-standard form of-
ten omitting a vector space representation. Some typical formats are depicted
in Figure 1. Standard data sets typically consist of N samples in a real D di-

si sj
similarity

Fig. 1: Typical non-standard and structured data formats. Plot a) a graph
representing relations and strength of proximity between objects Plot b) a time
series and various encodings including Symbolic Aggregate approXimation. Plot
c) a similarity matrix obtain from sequence scores.



mensional vector space. Non-standard and structured data as considered in the
following may deviate from this assumption in different ways. Time series data,
for example often consist of vectors with different lengths but in the same D
dimensional vector space. A similar problem is observed with sequential data
where the N sample are typically not given in a vector space but by means of a
symbol sequence of different length on a common alphabet of symbols. Also dif-
ferent life science data like spectral measurements are not completely standard in
the way that the dimensions imply structural information and are not indepen-
dent. While for example for images a vectorial representation is common it may
also be better to keep the natural matrix structure to preserve neighborhood
relations. Similar also video or multivolume data e.g. for functional magnetic
resonance imaging (fMRI) may be better represented in tensor form. Some data
are also naturally represented by means of tree or graph structures also provid-
ing a source of non-standard and structured data sets. These variations form
normal data sets can be approached in different ways most often by means of an
adapted representation and or a specific model and learning algorithm.

Different dedicated algorithms are already proposed for formats like time-
series, structured, sequence or matrix data [1, 2, 3, 4, 5] but still various chal-
lenges remain if it comes e.g. to large scale problems, the integration of auxiliary
information, the handling of missing values or topics like semi-supervision. This
tutorial provides a brief review and introduction to recent challenges and tech-
niques in the field on structured- and non-standard data analysis.

2 Proximity matrix learning

A common strategy to process structured and non-standard data is to find a data
representation such that more classical algorithms become accessible. Available
similarity or dissimilarity measures for the specific formats can be used to encode
the data such that a proximity matrix is obtained [6].

Considering e.g. the case of timeseries data, than such measures could be
dynamic time warping or global alignment kernels [7]. For data like DNA or pro-
tein sequences (see Figure 2) alignment functions based on biological knowledge
like the Smith-Waterman Algorithm or blast could be used [8].

A very generic measure is the Kolmogorov-Complexity which can be approx-
imated by the normalized compression distance [9] often used to analyze textual
documents. Given the obtained measure is metric, standard approaches like a
kernel PCA, kernel k-Means, Support Vector Machine or Laplacian Eigenmap
[5, 10] can be used. For non-metric measures [11] the situation is slightly more
complicated because the obtained non-metric dissimilarities or indefinite ker-
nels are less common and only few methods are available [12, 13, 14, 15, 16] or
transformation methods or embedding methods are needed [6, 17].

The most common approaches to convert a non-metric similarity matrix S,
as obtained e.g. from a sequence alignment, to a positive semi definite matrix
are based on eigenvalue corrections like: flipping, clipping, vector-representation,
shift correction. The underlying idea is to remove negative eigenvalues in the
eigenspectrum of the matrix S . One may also try to learn an alternative psd



Fig. 2: Example of a protein sequence identification task. A new sequence is
compared to a database of known annotated sequences using an alignment algo-
rithm and the meta information of the predicted most similar protein sequences
may provide information about the new unknown sequence.

kernel representation with maximum alignment to the original non-psd kernel
matrix [18, 6, 19] or split the proximities into positive and negative eigenvalues
as discussed in [20, 21], both with high computational costs.

But the appropriate encoding of the data is not the only point to care about
but also the number of points. Obviously for a quadratic proximity matrix
SN×N , with N as the number of samples larger data sets e.g. N > 10000 be-
come very challenging. Given the rank of the matrix is not to large efficient
approximation strategies like the Nyström approximation [22] or random ap-
proximation strategies [23] can be used, which can also be used for indefinite
proximity matrices [24, 25].

Most of the aforementioned approaches rely on symmetric matrices but re-
cently also some strategies for asymmetric analysis of proximity matrices were
proposed [26, 27].

3 Matrix completion and collaborative filtering

Non-standard data are also often given as an incomplete set of (weighted) re-
lations between objects, which could be represented by a very sparse graph.
Common examples are e.g. recommendation systems. The users of such a sys-
tem (continuously) generate training data by ranking items (e.g. bought books)
and other users may rank similar or the same items. The system tries to infer
rules to predict items which are of interest for a user based on this knowledge-
base most often employing meta information, like the fact that a specific set of
items belongs to a common group. Matrix completion, collaborative filtering
and low-rank matrix estimation are concepts used in this line [28, 29, 30] and
are very challenging as standard settings have been shown to be NP-hard [31].

For matrix completion the data matrix Z is typically N ×M with M < N .
The rows can be e.g. customers and the columns refer to votes of articles the
customers may have been bought. In general this matrix is very sparse because
a customer bought only few of the M items. A typical sparsity is in the range of
99% zero entries e.g. for the famous Netflix database. The objective is now to fill



Fig. 3: Example of a tree transduction from a multi resolution image to a struc-
tural semantic representation (taken from [38])

the missing values for an individual customer to predict its potential votes. To
phrase this setting as a learning problem one assumes that Z lies in a much lower
dimensional manifold and can be represented e.g. as Z ≈ VN×k ·Gk×M with k �
min{N,M}. G may be considered to be a grouping matrix with a small number
of groups and glj ∈ G as the relative score of item j in group l. The values
vil ∈ V define the affinity of customer i to the group l. Accordingly the modeled
score for customer i on item j is the

∑k
l=1 Vil×Glj of group affinities times group

scores. This problem can be formulated as a constrained optimization problem
and different variants were proposed to make it feasible e.g. for larger datasets.

Current work in this field tries to provide more specific analysis about mini-
mal requirements to reconstruct a low rank matrix [32] or considers alternative
norms and optimization schemes to obtained better results [33]. A very recent
survey on Bayesian techniques for low rank matrix estimation was provided in
[29].

4 Models for structured and non-standard data

Since already more than a decade learning and mining of structured and non-
standard data has becoming more and more into the focus of the research com-
munity. Starting with early work around recursive neural networks [34], suc-
cessful methods like the Self-Organizing-Map for structured data (SOM-SD) and
variants [35, 36, 37] or very recent approaches for tree-structured data [38, 39, 40]
have successfully tackled different data analysis problems for structured data as
shown in [41]. An example how to generate a structural data representation
model of a complex set of input data is depicted in Figure 3 (details in [38]).
Recent work on representing biological sequence data by means of effective tree
kernels can be found in [44]. An efficient strategy to integrate auxiliary infor-
mation for spectral data in the model process is proposed in [45] whereas an
example of non-trivial metric adaptation for microarray and spectral data is
given in [46].

As another source of non-standard data and models one may also consider
multiway array data as a generalization of matrices [47]. Such data typically
occur in the line of medical fMRI and EEG measurements but also three dimen-
sional video sequences or sensory data in the context of robotics are of this type.
The corresponding tensor based algorithms can often better use the multilinear



structural properties of these datasets.
Time series data, as a specific form of non-standard data, have raised contin-

uous interest in all times [1] but with new measurement systems (e.g. long term
measurements in life sciences) and data sources in the Internet (e.g. click statis-
tics, network logging data, high-frequency trading) [42] not only the amount
of data has raised but also the dimensionality and the properties like varying
sampling rate, sparsity and length have changed. These challenges motivated
new dedicated methods like the Generalized Topographic Model Through Time
(GTM-TT) which can effectively deal with multi-dimensional timeseries [48, 49]
and was also extended by metric adaptation and supervision concepts [50, 51]
and more recent approaches are based on reservoir computing and kernel tech-
niques [52].

One prominent approach for large sets of time series data is Symbolic Aggre-
gate approXimation (SAX) [53] which was generalized in [54] to take specific data
properties into account. Also the approach proposed in [55] considers time series
data but improved the learning of a regression model by employing privileged in-
formation about the data. Another recent approach linking to the former section
was provided in [56] where multi-dimensional time series data are mapped into
a parameter space of a hidden markov model employing a discriminative fisher
kernel. A semi-supervised hidden random field based approach for timeseries
was recently proposed in [57].

5 Conclusions

In this tutorial we briefly reviewed challenges and approaches common in the field
of non-standard and structured data analysis. The more recent proposals in these
domains focus on the analysis of large scale problems and the effective integration
of meta information. The different strategies strongly depend on the chosen or
given data representation. For matrix data the integration of meta information
may be realized by learning an aligned matrix within an optimization problem
[18]. Large scale problems for matrix data are address by matrix approximation
approaches [22, 24, 23] or by learning algorithms which are also effective on
few available proximity data like core set techniques coupled with probabilistic
sampling [58, 59]. More recently also sparse probabilistic models where proposed
which do not rely on metric proximity data [15]. Also for structural and sequence
data large scale datasets remain challenging and approximations approaches like
SAX are very popular [53]. But also here the integration of meta data by learning
appropriate kernel representation [36, 52], also for streaming data [60], or by
explicitly optimizing alignment function during training [61] or other metric
adaptation approaches [46] show promising new directions. Also the explicit
analysis of tensor data by means of dedicated methods [47] gets more interest.
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