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Chapter 1

Introduction

Interpretable models

The current decades in the field of computer science and machine learning are dominated by
an increasing amount of electronically available data also known as the big data challenge
[75L [38].

With projects like the genome sequencing initiative, huge amounts of sequence data are
available, social media generate continuously large amounts of data in different formats,
and many other sources provide data and challenging data analysis and interpretation tasks
[36, 82 [43] [68, [6, [79].

The interpretation of these data and its structuring in form of compact models is widely
considered as important to access these data in an efficient manner.

To get access to these sources, efficient data analysis algorithms and models are necessary.
One can consider an algorithm to be efficient, if it successfully tackles the problem and
provides a model at acceptable costs with accurate results and good generalization ability
on new data. The costs can be defined by means of the necessary training time, by the
amount of memory necessary to obtain and store the model, but also by evaluating the time
a model needs to give a prediction on a new item.

The problem of large scale data analysis has been addressed already by different approx-
imation or sparsity strategies, heuristics or by novel mathematical concepts exploring e.g.
geometric properties of the data space, or by incorporating additional domain knowledge
simplifying the original problem [59] [47, A11 121, 12]. Also the extraction of simplifying
rules from more complex models has been discussed [42], 56]. Here multiple disciplines and
research fields often have to work together in an interdisciplinary way to define appropriate
solutions. While the domain expert, may be e.g. a biologist or clinician, the measurement
system is best understood by a physicist and all have to work together with mathematicians
or computer scientists to define an efficient algorithm for the analysis of the data.

This collaboration and communication can only be efficiently achieved by the use of
interpretable models. As recently discussed in [11] there are three major requirements for
those models: (1) they have to map onto the domain knowledge, (2) should ensure safe
operations across the full operational range of model inputs and (3) should accurately model
non-linear effects.

These requirements provide the domain expert with some guarantees to make the model
valuable but also permit to communicate the modeling behavior and the decisions of the
model to the expert in an accessible way. Multiple traditional and state of the art algorithms
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behave like black box approaches. Prominent examples are classical neural networks [60] [45]
but also kernel machines like the Support Vector Machine (SVM) [122] 108]. Although these
methods are very effective and successfully applied in many fields it is often complicated
to adapt these algorithms to new problems and their behavior is often hard to predict,
especially in the case of errors and unexpected input data. In the field of kernel machines
the choice of the kernel and its parameters is widely open and addressed either by ad-hoc
decisions or by meta-evaluation schemes. Often the domain expert is not even aware about
additional constraints of the model, like positive semi-definiteness.

Principal component analysis (PCA) [67] constitutes one very simple example of a widely
interpretable model. In general it used as a tool to reduce the dimensionality of the input
data. Dimensionality reduction is often a useful step to simplify the given problem, to ease
the subsequent data analysis and to make the results easier to interpret. However it is also
a critical step which may reduce the expressive power of the data. It is extremely popular in
the field of life sciences, but often used a bit careless. The model outputs of a PCA are quite
accessible because the principle components are linear combinations of the original points
as reflected in the loadings. In this way the PCA is an interpretable model with respect to
point (1). The expert knows the meaning of the original input features and may also be
able to draw conclusions about the combination of features or their omission. However, it
is much more complicated to explain how these components, or precisely the loadings, are
obtained and which limitations are behind the model generating algorithm. Inherently the
PCA covers linear effects, so fails to address point (3) and for non-linearities in the data
more complex approaches like kernel-PCA [105], the Self-Organizing-Map (SOM) [74] or
other types of non-linear projection methods [78] are available. Also the effect of outliers,
addressing the priorly mentioned point (2) of a rather uncommon range of model inputs is
not easy to communicate and may invalidate the results.

The mapping of the model into the domain knowledge (1) can be addressed in very
different ways. Considering e.g. decision trees [58], the model, given as a tree, often reflects
the decision process of the domain expert and additionally can be visualized with annotations
to communicate the decision of the model. An even more complex model of this type
can be found by Bayes networks [19] which try to cover the probabilistic dependencies
between different objects and are also often visualized for a better communication with the
domain expert. Obviously the internal representation of the data by the model generating
algorithm is a key element of each learning approach and a anchor to incorporate domain
knowledge. Recently the concept of relevance learning or matrix learning [57, [104] has
been proposed to incorporate domain knowledge or auxiliary information. Both strategies
are metric adaptation schemes and are still sufficiently simple to be communicated to the
expert and to provide sufficient information to link the model output with the original data
651 ).

In the following we will consider different questions regarding the modeling of prototype-
based learning algorithms and how these models can be extended to support domain knowl-
edge integration and to provide interfaces for model and data interpretation. Prototype
based models form a specific family of algorithms and can be considered as another primal
example for interpretable models.

Their main characteristic is a typically simple and sparse model, constructed from a
subset of the original data points. Accordingly all these models take the necessary prerequi-
sites of interpretable models into account by: (1) representing the data by prototypes which
itself look like data, (2) building their functionality on the distances of data points and
prototypes, whereby prototypes are located in safe regions of the data space, (3) allowing
non-linear effects due to the tessellation of the space and the corresponding function in terms
of prototypes.



As outlined in the following, multiple extensions of this principle can be provided, ap-
proaching different data analysis challenges. Due to the inherent connection to the original
data space these models are traditional candidates for interpretable models, often accompa-
nied by a rigid mathematical framework and theoretical guarantees [55} [I7), 10T, [16].

As will be outlined in the following more advanced prototype approaches provide not
only good interpretability but are also sufficiently robust and flexible to address the three
major points of interpretable models. We will also discuss strategies to improve the efficiency
of these algorithms.

We will now first shortly introduce the standard prototype models and motivate algorith-
mic questions arising in the context of these models which are to be answered to justify their
use as interpretable data analysis approaches. Then we give a short overview of important
or recent results in the literature. Finally, nine articles are included which each constitute
a major contribution to a different question within this context.

Prototype based learning

Prototype based learning is an interesting strategy to define efficient data analysis algo-
rithms. It has been successfully used e.g. in the field of clustering [59], (semi-) supervised-
learning [100, 23] and data embedding [511 [48].

A common principle of these algorithms is the definition of the models by means of
few, so called, prototypes or representatives of the original or some derived data space as
formalized in the subsequent articles. Basically we consider a vector space with vectors
x € RP providing a dataset V C R, with D the number of input dimensions or features
and N = |V| as the number of samples. The general objective is to identify prototypes
w € RP representing V.

The details about the corresponding training procedures and recent extensions of classical
concepts are discussed in more detail in Chapter [4 here we will simply assume that some
training procedure exists to provide a prototype representation for V. The learning of these
models can be done unsupervised, supervised or semi-supervised.

Classical techniques for the unsupervised setting are k-means, or for supervised problems
learning vector quantization (LVQ) [74]. In the later case each vector x has an additional
label | € £L € N with L = |£] as the number of labels. In Chapter [2] this concept is
generalized to vectorial label representations such that [ € R” with the general constraint
Zf l; = 1. This setting is also called fuzzy-labeling and can be applied to the data, the
prototypes or both.

The identified prototypes introduce a tessellation of the underlying data-space into dif-
ferent regions. In most cases this tessellation is disjoint such that a data-point x belongs
only to a single prototype w according to some mapping rule. In general the winner takes
all rule is used:

x — w; where d(x,w;) is minimum (1.1)

with some distance measure, e.g. the squared Euclidean distance d(x,w;) = [x — w;||?,
breaking ties arbitrarily. While this is very common, more general cases using e.g. the
softmax mapping criterion can be used leading to soft learning vector quantization schemes
as shown e.g. in [I01] [I06] or more recently in a full probabilistic setting [102] [22].

Prototype based learning typically occurs in one of two principles, namely online learning,
processing the data in an incremental manner, or using batch-learning where it is assumed
that all data are available and used in common for an optimization step. More recently
also streaming data have been considered within prototype-based learning schemes [2] the
different concepts are used and explained in the subsequent chapters.
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1 Unsafe label representation Chapter |2
2 Insufficient supervised prediction Chapter 3
3 Detection of novel inputs Chapter [3
4 Insufficient model representation Chapter [3
5 Prototypes from mixed data Chapter 3]
6 Limited interpretability of proximity models Chapter 1]
7 Limited scalability of proximity models Chapter 1]

Table 1.1: Challenges for prototype learning algorithms

For prototype learning techniques or especially LVQ techniques the solutions are rep-
resented by a small number of representative prototypes which constitute members of the
input space. As a consequence the model, given by means of the prototypes can be inspected
in the same way as the individual training data. Since the dimensionality of the points x is
typically high, this inspection is often problem dependent: images, for example, lend itself to
a direct visualization, oscillations can be addressed via sonification, spectra can be inspected
as a graph which displays frequency versus intensity. Moreover, a low-dimensional projec-
tion of the data and prototypes by means of a nonlinear dimensionality reduction technique
offers the possibility to inspect the overall shape of the data set and classifier, independent
of the application domain see e.g [27] [9F].

Prototype based learning algorithm define predictive models, which represent the data
V by few examples and the decision function is often very simple. As mentioned before and
detailed in the following, prototype learners are very flexible. Some standard approaches are
however not fully interpretable models by means of the prior criteria and show limitations
in the integration of domain knowledge or are less interpretable or accurate regarding the
model output. Some more recent extensions of prototype approaches e.g. to address non-
linearity in the data, become quite complex and are also less interpretable. In this thesis
multiple concepts are presented to overcome some of these problems and to bring prototype
learning approaches closer to interpretable models in these settings.

In Table some major problems of prototype learning algorithms and where they are
address in this thesis are summarized:

e Problem 1 refers to a supervised learning problem and the special case where the given
data are not labeled by a unique class assignment but are associated to multiple classes
to some degree. This problem occurs also for the prototype, because their receptive
field may not map to a single class.

e Problem 2 deals with the decision rule of the prototype classifier for supervised prob-
lems. Most often the winner takes all rule is used and the predicted label is the one of
the closest prototype. This is a very coarse view on the tessellation of the data space
by the prototypes, ignoring the proximity of the test item to the prototype and even
more important the similarity of the new test item to the points of the receptive field
or those which are nearby. The method of conformal prediction [107] offers interest-
ing strategies to provide calibrated p-values and to enhance the label prediction by a
measure of confidence and credibility. It is shown how this concept can be integrated
also to prototype based learning approaches.

e Problem 3 tackles the problem of novel data given to a prototype model and is linked
to problem 2. If a test item shows a data characteristic which was never seen by the



model it would be appropriate to report this point as an outlier or novel concept. It
is shown that strategies from problem 2 can be used to approach this scenario.

e Problem 4 considers a specific problem in unsupervised learning but may also be
of wider interest. A known prototype method for tree generation is formalized and
concepts for domain knowledge integration and improved interpretation of the tree
representation are provided.

e Problem 5 considers the special case where the prototype, as the model output, have
to be identified from mixed data. In a specific scenario the usage of domain driven
metric adaptation is discussed to identify the prototypes.

e Problem 6 occurs for prototype models generated on proximity data. Here the pro-
totypes are generated as an indirect linear combination of the original data. These
models are often quite dense and hard to interpret. Different strategies to simplify
these models by sparsity and approximation methods are discussed. The final model
becomes interpretable again.

e Problem 7 is again a major problem for prototype approaches of proximity data.
The underlying data representation scales quadratic in the number of points which
becomes prohibitive for larger data sets. Approximation strategies are discussed to
keep prototype models applicable for larger scale problems.

Interpretability in prototype based models

As already mentioned prototype based learning often provides properties which permit inter-
pretability or open ways to obtain models which are closer to generic interpretable models.
Subsequently different concepts are discussed which are used to enable interpretable proto-
type based models.

Interpretability is interesting in virtually every domain and of special interest in problems
where human inspection of the models or the model predictions is necessary [87]. The life
science domain is an immediate application field often requesting for interpretable models,
probably most pronounced in medicine [65] 4] [T] [80], but interpretable models are of very
wide interest [25] [115] [8] [O1].

Prototype learning not only permits the integration of domain knowledge, but also sim-
plifies this step by providing direct access to the model parameters, especially the prototypes
and also the metric parameters. This eases the design stage of a new algorithm since the
intermediate approach and models are easier to communicate to the domain expert.

To make it a bit less abstracts lets consider a brief example illustrated in Figure
Here the objective was to learn a discriminative model for a large set of bacteria mass spec-
tra fingerprints. Different bacteria cultures were measured by mass spectrometry, leading
to finger-print spectra. They have been collected in a database and traditionally a new,
unknown spectrum is compared to the whole database using a domain specific similarity
measure. The prototype model provides a simplified representation of this database by
few examples, leading to faster identification results. Additionally, and even more impor-
tant in the practical application the model has to be interpretable to identify matching /
non-matching regions in the test spectrum with respect to the model as shown in Figure
Imil

A prototype model provides much more insight into the identification process and the
model is more appreciated by the domain expert than standard black box approaches. A
hierarchical approach focusing on the same problem is discussed in Chapter
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Figure 1.1: The prototype (straight line) represents the class of the test spectrum (dashed
line). The prototype is labeled as Vibrio Anguillarum. Tt shows high symmetry to the test
spectrum and the similarity of matched peaks (zoom in) highlights good agreement by bright
gray shades, indicating the local error of the match. This is only meaningful if the identified
prototype mimics the data characteristics of the represented class and the signal shape of
the prototype is biochemically plausible. It allows to judge the identification accuracy using
a domain specific bioinformatic score of the test spectrum. The score of > 2 indicates a
good match. The prototype model allows direct identification and scoring of matched and
unmatched peaks, which can be assigned to its mass to charge (m/c) positions, for further
biochemical analysis.

The wide success of prototype approaches is reflected by a huge amount of publications
and applications of prototype approaches in different domains see e.g. [74]. More recent work
has shown the efficiency of prototype based learning also by theoretical results [I3] 55, 101]
providing e.g. generalization bounds for supervised learning.

Interpretability of data analysis models is also relevant in times of big data. While we
may assume that fully automatic procedures are needed to deal with the data flood, a valid
model often requests deep knowledge of the domain problems and this knowledge has to be
transferred into the data analysis algorithm, accordingly interpretable models appear to be
a good choice. Prototype approaches have been found to be flexible enough to integrate
domain knowledge in different ways:

o flexibility regarding the used metric
e learning the parameters of the metric
e a specific optimization strategy e.g. taking class relations into account

e representing the prototypes or the model in an appropriate data structure or data
format

e to learn representative features from the data

e enforcing sparse models

As discussed before the concept of relevance learning or metric adaptation was derived
for supervised prototype learning to adapt the data representation such that domain specific
or auxiliary information, like class information is effectively used [57]. Beside the priorly



mentioned aspects, metric adaptation is also a great strategy to improve not only the model
but also to obtain better interpretability.

Metric learning has been used for global, local and class-wise metrics and to adapt the
parameters of diagonal or mahalanobis-type metrics [104]. The analysis of the correspond-
ing relevance profiles either locally, focusing on e.g. discriminating aspect of subgroups of
the data or globally, explaining relevant input dimensions of the whole data set are very
interesting for the typical domain expert. They can be plotted easily and can also be used
for post analysis and processing steps like feature filtering strategies or even rule induction
by considering individual relevance parameters as branching indicators [56].

Also very different types of metrics have been integrated as already discussed and some
of them are very domain specific like for functional or taxonomic data [I09] more details can
be found in Chapter

The dependency between classes, e.g. by an ordinal ordering was approached in [44]
for prototype based learning, showing how to integrate domain knowledge by adapting the
optimization scheme. The batch variant of the soft competitive learning (SCL) algorithm
[83] effectively optimized the encoding of video streams [I30], employing domain knowledge
about the manifold of meshes.

Also domain specific data formats like complex-valued data [31], functional data [69],
structured data and graphs [54} [8T], 53], 39, 24] or similarity [89, 04 35 [70] and dissimilarity
data [37,[52] can be analyzed by prototype based models as shown in Chapter|3|and Chapter
4

Learning of appropriate features or encodings from the data has also been approached
using prototype learners with a good overview given in [63, [T7] where also sparsity concepts
are discussed [76]. Sparsity is one of the natural strategies to improve interpretability.
Affinity propagation [49, [46] is a sparse prototype based model where the prototypes are
exemplars from the original data set, leading to natural sparse models.

Sparsity concepts were also explored for prototype learners dedicated to similarity or
dissimilarity data as shown in more detail in Chapter [d] For those methods the prototypes
are represented as linear combinations of the original data and a sparse linear model is of
interest using classical sparsity constraints.

We now briefly review major areas of prototype learning in relation to the priorly ad-
dressed problem fields. While the specific subsequent articles, approaching the mentioned
problems, are widely self contained the following introduction will give a broader overview.

Unsupervised models

For unsupervised prototype-based learning the most prominent techniques can be distin-
guished into approaches with topological constraints or without such restrictions.

Approaches without topological constraints are the well known k-means clustering or
soft-competitive learning, referred to as (SCL or NG) [83]. As already discussed before the
idea is to cluster a large set of N data points by a small number of prototypes. Some
unsupervised learning concepts are discussed in Chapter 4] and in a context of fuzzy labels
in Chapter Clustering is an extremely active field of research and has been addressed
from different theoretical and practical perspectives [66]. Recently the focus has shifted to
large scale issues and non-standard as well as structured data problems [35] 66]. In this
work clustering is mainly considered for the clustering of similarity and dissimilarity data,
without topological constraints, and a focus is given to large scale problems for this type of
data.

The best known unsupervised prototype-learners with topological constraints are prob-
ably generative topographic mapping [20] (GTM) or the self-organizing-map (SOM) e.g.
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Figure 1.2: Schematic view of a topographic mapping e.g. by SOM or GTM. A defines the
low dimensional (here 2D) grid space and V the high-dimensional (here 3D) data space.
Prototypes are shown as circles/cylinders and two related prototypes are exemplarily con-
nected.

in the variant of Heskes equipped with an appropriate cost-function [62]. The basic idea
for this type of methods is to constrain the clustering model leading to a low-dimensional
representation of the data on a grid. The representation is often chosen 2D or 3D on a
rectangular grid. This grid provides a low-dimensional latent space which is fixed and the
prototypes spanning the grid are non-linearly mapped into the high dimensional data space.
The general problem is illustrated in Figure [1.2] This type of constrained clustering shows
interesting properties given that the mapping from the latent space A to the data space V
has been done in a topology preserving way. If the data are intrinsically low dimensional,
neighborhood relations in the obtained low-dimensional map transfer to the high-dimensional
data as well. The otherwise inaccessible high-dimensional data become interpretable in this
way. This is obviously only valid in case of topology preservation; mathematical measures
are provided in the literature to test the validity of the mapping [127]. Interestingly many
real life problems can be approached in this way and are intrinsically low dimensional. This
property is also used in Chapter [2|for a fuzzy variant of the SOM and in Chapter [3to map a
hierarchical (non-rectangular) map into a high dimensional data space. Unsupervised learn-
ing by prototype based approaches is still an very active field of research and, more recently,
also low-dimensional embedding techniques, providing an unconstrained mapping to 2D or
3D have been proposed using prototype concepts see e.g. [26, [30].

Supervised models

In the field of prototype-based supervised learning large efforts have been made to obtain
efficient models which are not only competitive to alternative strategies like SVM but also
keep interpretability and sparsity. Two major cost functions dominate, namely the General-
ized Learning Vector Quantizer (GLVQ) [95] and the Robust Soft Learning Vector Quantizer
(RSLVQ) [106]. The latter can be interpreted as a probabilistic mixture model. For both
approaches it has been shown that they are large margin optimizers with competitive per-
formance to different alternative techniques [55].

Recent extensions of supervised prototype learners have focused widely on the topic



of metric adaptation [100]. Prototype approaches typically permit an easy replacement
of the used dissimilarity measure by a general metric, with the typical constraint to be
differentiable, for a recent summary see e.g. [I4]. Basically the distance measure is replaced
by a parametric distance. In general the Euclidean distance is used and replaced by a
parametric form:

dx,w;) = |x—w;[°

d(x,wy) = (x—w;) Alx—w;)

with the parameter matrix A € RP*P and entries \; ; € A, with appropriate constraints
to provide a quadratic form. If A is a diagonal matrix with only ones at the diagonal we
get back to the standard Euclidean distance. If we allow diagonal values A;; € [0,1] we get
the weighted Euclidean distance, first used in prototype based learning in [2I] and known
as relevance learning. The A-weights are typically also refereed to as a relevance profile,
indicating the discrimination power of individual feature dimensions. Thereby a large A; ;
indicates a feature which is relevant for the learning task, low A-values may indicate that
a feature is unimportant, encoding noise, or is not necessary to improve the model perfor-
mance, e.g. it may be redundant with respect to some other feature. More generic matrices
A with different regularizations are discussed in [I01] and typically referred to as matrix
relevance learning. More recently also differently structured metrics have been considered
typically based on domain specific considerations and are discussed in the Chapters 2 [3
The author and colleagues have also considered functional distance measures, which were
found to be very promising in the life-science domain [97), [103] [126] [84]. Nowadays many
different metrics have been analyzed for prototype based learning and even more flexibility
is obtained by the similarity and dissimilarity learners as discussed in Chapter [

Semi-Supervised techniques in the field of prototype-based learning typically combine
techniques from supervised or unsupervised learning and employ classical semi-supervised
learning concepts, for recent work see e.g. [99]. Some methods discussed in Chapter [2| can
be directly transferred to semi-supervised learning but have been initially defined for fully
labeled data with fuzzy or unsafe label information.

Besides of GTM and SOM also some new techniques for prototype based data embedding,
employing label information, have been published by the author and colleagues recently, like
Limited Rank Matrix Learning [27] or a visualization technique by learning a projection
function with auxiliary information [51].

Proximity learning and approximation strategies

In case of metric similarities, kernel machines have been widely used to define algorithms
and models [I08] [122] for this type of data. With the work of Platt [88] these methods
are now also reasonably efficient for larger data sets and the concept of core-set machines
[7, 119, [120] opened the door also for very large scale problems. Also prototype base learning
methods can be extended to similarity and dissimilarity learners.

In general, prototypes are considered as vectors, as defined before, but for similarity or
dissimilarity approaches see e.g. Chapter [] the data may also be given only in form of a
similarity matrix (e.g. a kernel), denoted as S or K or a dissimilarity matrix D with no
explicit vector space and S € RV*N and D € RV*V | with some moderate assumptions like
symmetry. In these cases the prototypes are represented by means of linear combinations of
points from the original data-space, or implicitly by considering similarities or dissimilarities

like:
W, = Zajlxl (1.2)
l
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The coefficients «j; € [0,1] are in general assumed to be normalized Z;w aj; = 1. Most
often it is assumed that the linear combination can be based on all data points so M = N
but this is not necessary and in particular for large sample sets some sampling strategies
can be used. Additionally it is possible to define sparsity constraints on the underlying
optimization problem to get most c. close to zero as detailed in Chapter [

Prototypes in relational or kernel settings correspond to positions in pseudo-Euclidean
or Hilbert space which are representative for the classes if measured according to the given
similarity /dissimilarity measure. Thus, prototype inspection faces two problems: (i) the
representation or embedding space is usually only implicit, (ii) it is not clear whether di-
mensions in this embedding carry any semantic information. Thus, albeit prototypes are
represented as linear combinations of data also in the pseudo-Euclidean or kernel space
setting, it is not clear whether these linear combinations correspond to a semantic meaning.

One approach which is taken in this context is to approximate a prototype by one or sev-
eral exemplars, i.e. members of the data set, which are close by, also called k-approximation
[52]. Thereby, the approximation can be improved if sparsity constraints for the prototypes
are integrated during training [98§].

This way, every prototype is represented by only a small number of exemplars which can
be inspected like regular data. Again it is possible to visualize data and prototypes using
some nonlinear dimensionality reduction technique. Naturally, both techniques, a represen-
tation of prototypes by few exemplars as well as a projection to low dimensions incorporate
errors depending on the dimensionality of the pseudo-Euclidean or kernel space and its devi-
ation from the Euclidean norm. Appropriate mapping approaches are not discussed in this
work but can be found e.g. in [28§].

For many data like text documents a vectorial representation is not available or compli-
cated to obtain and often implicit representation by means of similarities or dissimilarities
are used. Also many domain specific measures of relatedness of different object can lead
to such data. Accordingly, these data are often given as large matrices of (dis-)similarity
values.

Different strategies are necessary to enable prototype models for similarities and dis-
similarities also at large scale. To keep learning tractable, the concept of the Nystrom
approximation is presented in Chapter [4] One strategy to obtain prototype models on (dis-
)similarity data is to represent the prototypes implicitly by means of a linear combination
of the original data points. This leads to a coefficient matrix which can be very dense, a
phenomenon which, in a slightly different way, is also a problem for many kernel machines.
Learning (dis-)similarity data by prototype approaches is addressed in the Chapter |4| and
Nystrom- as well as sparsity concepts are provided to derive interpretable, sparse models.

Organization

A variety of my current and former work is focused on domain specific extensions of proto-
type based learning which also often improves the interpretability of the model results. In
this contribution, I summarized multiple of my articles, published at high-ranked journals,
related to interpretable models with a special focus on prototype based learning strategies,
addressing some of the priorly mentioned problems.

Following the identified problem fields, the individual contributions are grouped around
three major topics:

o Classification with uncertainty,

e Improved evaluation, interpretation and domain knowledge integration
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e Large scale models

Classification with uncertainty

The chapter [2 addresses the problem of uncertainty or fuzziness in classification problems.
For many supervised data analysis tasks a label, given to a data-point, is subject of un-
certainty and dedicated methods are desirable. The specific problem of uncertainty in the
labels instead of the measured features, was addressed in different ways before using e.g.
probabilistic models or fuzzy set concepts [19] 96] but not in the context of prototype based
learning. Another methodology closely related to this topic is the field of semi-supervised
learning (SSL) [135, 50]. The most recent SSL algorithms also consider the case of unsafe
label information and the priorly mentioned conformal prediction is closely linked.

Also the interpretability of fuzzy models got some attention recently [3] but again few
work has been done in the prototype field in this line. In the Chapter Classification with
uncertainty different strategies are analyzed which have been the basis on further work by
the author and colleagues about this topic as listed in the additional references. Especially
techniques for unsupervised prototype based learning have been extended to incorporate
label information but also supervised cost functions where adapted to met the new require-
ments and to incorporate so called fuzzy labels. Thereby the focus is given to vectorial
data but the methods can be transferred to proximity data, as discussed in Chapter [4] in a
straight forward manner. More recent work in this line was provided in [71] discussing al-
ternative strategies to incorporate label information in unsupervised prototype approaches.
The corresponding models discussed in Chapter |2| permit easy interpretation and can still
be inspected by human experts.

Improved evaluation, interpretation and domain knowledge integra-
tion

The incorporation of domain knowledge, or constraints often helps to solve data modeling
problems and is also useful to improve the interpretability of the algorithms and the models.
As reflected by a multitude of recent publications [87] [11] 124} 93] 911 B}, 25| [115], appropriate
models are of wide interest and have been approached by different researches and in various
communities.

The chapter [3]is dedicated to papers and methods of this type. As already outline before
interpretable models have to fulfill multiple properties, additionally interpretability can be
achieved in the models in different ways and at different levels of abstraction. Accordingly
there is no one single way, but multiple strategies, often specific to the underlying algorithm
in the backbone can be considered.

The concept of conformal prediction (CP) [128] provides interesting strategies to ex-
tend known algorithms in different ways, often leading to improved interpretability. In this
chapter different ways are shown how CP can be integrated and used in prototype based
learning. This concept is especially relevant to add measures of confidence to predictive
models without direct probabilistic outputs. The underlying non-conformity measure, the
key parameter of this concept, permits easy integration of domain knowledge in the learning
process as shown in Chapter[3] This strategies also permits the identification of novel objects
or outliers which are in parts covered in one of the contributions see [3.2] However the topic
of outlier or novelty detection has been addressed from different fields, with contribution
from classical statistics [41] to dedicated one class classifiers [113] [112] in the field of machine
learning.
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Humans are used to simplify problems and favor representations which are simple and
easy to communicate e.g. by visualizations [123]. These visualizations can be enhanced
by additional information to communicate the model decision and to indicate the intended
interpretation as provided by the underlying mathematical model. Prominent examples can
be found in the field of visual analytics [(2] but it is also often argued that the underlying
models may lead to misleading conclusions and again the limitations of these approaches,
e.g. explaining non-linear effects, are not sufficiently communicated.

An alternative view is to identify the intrinsic representation of a given dataset [78], [I§].
Also low dimensional embeddings or manifold learning got much attention in the last time
[117, 129, 132, 10] and also for prototype based learning different new strategies where
provided recently [92] 26l 29| [30] [133].

A model taking domain knowledge about the expected intrinsic data structure into ac-
count is shown in a contribution about hierarchical prototype based learning Another
topic of integrated domain knowledge, is metric learning [15] [5] also addressed in multiple
ways in this chapter. In the approach provided in the prototypes are actually simulated
entities based on a lot of domain knowledge as a result of an optimization process. Here, the
prototypes are involved in a mixture model and do not directly quantize the given data space
as in the methods before. Also, recent approaches in sparse coding [77, [114], non-negative
matrix factorization [64] and the calculation of independent components [85, 03] show links
to this problem.

Large scale models

The scalability of modern data analysis algorithm to large data sets is still often limited
by the inherent complexity of these approaches. Often these algorithms scale by O(N?)
to O(N?), or even worse, limiting not only the applicability but also the interpretability.
This problem is especially prominent for non-linear methods, like kernel algorithms [108] or
Gaussian process approaches [90].

An example is the Support Vector Machine, which in its original formulation does not
scale to large data sets. Strategies like decomposition [86] have been effectively used and
more recently geometrical properties of core-sets [32] were used to derive specific algorithms
for this type of algorithms [IT9] [121] to improve the runtime and often also memory com-
plexity with guarantee bounds. Further prominent approximation strategies are e.g. in
the line of Nystrom approximation [I34] or more recently quad-tree concepts [9] 131]. Of-
ten these concepts are derived from other disciplines [34] and most of these approximation
strategies make specific assumptions about the intrinsic dimension of the data, the number
of non-vanishing eigenvalues, the distribution of the data or other properties of the data
set. Also the memory complexity is often an issue and typical sparsity concepts are used
to approach the problem. Sparsity of a model can be achieved in very different ways, by
appropriate probabilistic models, including sparse priors [118] [33] by modifications of the
underlying cost function, using e.g. lasso techniques [58, [I10] 116, [73] or other sparsity
measures and constraints [I14]. Often, especially in the context of visualization not only
the model generation, but also the out of sample extension can become very costly and very
recent work provides approximated projection functions [5Il [I3T]. If the analysis task can
be effectively split into multiple independent sub-problems also parallelization schemes have
been proposed [40].

While strategies to approach large scale problems are of wide interest for many paradigms,
they did not got much attention in the field of prototype based learning. Most prototype
technique are online approaches and standard strategies like sub-sampling have been often
used. With the advent of many batch approaches in prototype based learning, and larger
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datasets large scale analysis became an issue, with early work shown in [2]. As discussed
before, the coefficient matrix used to represent the prototype model can become very large
but also the proximity matrix, encoding the data, can get huge for larger data sets. In
Chapter [4 some novel strategies are shown, based on Nystrom approximation and sparse
approximations with a focus on clustering and classification problems.

The work presented in this thesis has evolved over almost six years and was published at
different high-ranked journals and conferences. These contributions cover a variety of dif-
ferent computational and mathematical aspects of prototype based learning algorithms.

The articles constitute a representative overview of my work and are accompanied by a
number of contributions to international conferences, book chapters and additional jour-
nal papers. Many of the papers discuss not only theoretical extensions and proposals of
algorithms but contain also applications of these methods in different domains. A major
application domain is in the life science with data obtained from mass spectrometry, nu-
clear magnetic resonance spectroscopy, remote sensing, electrophysiological measurements
or other types of (bio-)chemical measurements.

The methods are however not limited to these application fields but parametrizations are
possible, such that also applications in the context of e.g. image processing are considered.
The more theoretically proposals are supported by convergence and generalization analyses,
extensive parameter studies and complexity analyses. I also discuss topics like topology
preservation, statistical learning theory and generalization ability.

The following contributions have been selected because

e each article constitutes a major contribution to a specific area within the topic Learning
with interpretable models

e the articles are non-redundant and cover different computational aspects or models;
they contain work which is not contained in my PhD thesis

e at least 25% of the text of the following articles where I am a coauthor and which are
based on joint work and discussions with colleagues is written by myself. I provide
additional comments in the preface of each article to clearly state the contribution of
the individual authors

Since the final layout of the articles is partially not yet available or not available in electronic
form for the public, I compiled the following pages directly from the final versions accepted
for publication, thereby substituting the layout of the journal by a uniform style, such that
the following articles differ with respect to the layout from the published version or version
to be published, respectively. No scientific content, formulation, or figure has been altered
compared to the accepted versions.
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CHAPTER 1.

INTRODUCTION



Chapter 2

Classification with uncertainty

2.1 Fuzzy Classification by Fuzzy Labeled Neural Gas

The article Fuzzy Classification by Fuzzy Labeled Neural Gas, by T. Villmann, B. Hammer,
F.Schleif, T. Geweniger and W. Herrmann was accepted by Neural Networks 19 (6-7), p.
772-779, in 2006. In the article a new semi-supervised learning algorithm was proposed. The
theoretical derivation of the algorithm was done by T. Villmann, B. Hammer and myself. I
implemented the algorithm and did the experiments for the simulated data. The clinical data
and expertise was provided by W. Herrmann and with experiments using FLNG done by T.
Geweniger. T. Villmann and I wrote the main parts of the article. The clinical discussion was
written by T. Villmann and W. Herrmann. All authors discussed the general article. This
article describes the basic concepts of the corresponding US patent 7,991, 223 B2 (Villmann,
Schleif, Hammer).

15
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Additional publications using or based on this method I am co-author of include:

1. F.-M. Schleif, T. Villmann, B. Hammer, M. v.d. Werff, A. Deelder and R. Tollenaar,
Analysis of spectral data in clinical proteomics by use of learning vector quantizers, In
Studies in Computational Intelligence, Volume 151, 2008, Pages 141-167, ISBN: 978-
354070776-9, 2008 (Content: The concept of Fuzzy Labeled Neural Gas is transfered
to self-organized maps and used to process clinical mass spectrometry data)

2. T. Villmann, F.-M. Schleif and B. Hammer, Prototype based fuzzy classification with
local relevance for proteomics, Neurocomputing 69 (16-18), Pages 2425-2428 (Content:
A fuzzified, local version of the Soft Nearest Prototype Classifier is introduced and
applied to the analysis of mass spectrometry data)

3. T. Villmann, F.-M. Schleif, M. v.d.Werff, A. Deelder, R. Tollenaar Association learn-
ing i SOMs for fuzzy-classification, In Proceedings of 6th International Conference
on Machine Learning and Applications, ICMLA 2007 2007, Article number 4457292,
Pages 581-586, ISBN: 0769530699;978-076953069-7 (Content: Short article introducing
the basic concepts of the Fuzzy-Labeled-Self-Organizing-Map)

4. T. Villmann, U. Seiffert, F.-M. Schleif, C. Briiss, T. Geweniger, B. Hammer Fuzzy
labeled self-organizing map with label-adjusted prototypes, 2nd TAPR Workshop on Ar-
tificial Neural Networks in Pattern Recognition, ANNPR 2006, Volume 4087 LNAI,
2006, Pages 46-56, ISBN: 3540379517;978-354037951-5 (Content: Fuzzy labeled self-
organizing map are applied to plant biology data)

5. B. Hammer, A. Hasenfuss, F.-M. Schleif, T. Villmann 2nd TAPR Workshop on Artifi-
cial Neural Networks in Pattern Recognition, ANNPR 2006, Volume 4087 LNAIT, 2006,
Pages 33-45, ISBN: 3540379517;978-354037951-5 (Content: a semi-supervised variant
of batch neural gas is proposed taking ideas of FLNG)
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Abstract

We extend neural gas for supervised fuzzy classification. In this way we are able
to learn crisp as well as fuzzy clustering, given labeled data. Based on the neural
gas cost function, we propose three different ways to incorporate the additional class
information into the learning algorithm. We demonstrate the effect on the location of
the prototypes and the classification accuracy. Further, we show that relevance learning
can be easily included.

Keywords: learning vector quantization, relevance learning, metric adap-
tation, classification

1 Introduction

Clustering is an important data processing task relevant for pattern recognition, sequence
and image processing, data compression, etc. One appropriate tool is offered by prototype
based vector quantization including effective concrete algorithms such as the Self-Organizing
Map (SOM) and the Neural Gas network (NG) [11],[14]. These algorithms distribute the
prototypes in a way that the data density is estimated by minimizing some description error
aiming at unsupervised data clustering. Prototype based classification as a supervised vector
quantization scheme is dedicated to distribute prototypes in a manner that data classes can
be detected, which naturally is also influenced by the data density. Important approaches
are the family LVQ [11] and the recent developments like Generalized LVQ (GLVQ) [18] or
Supervised NG (SNG) [3]. Thereby, general parameterized distance measures can be applied
and their parameters may also may be subject of the optimization. This paradigm is called
relevance learning giving the respective algorithms GRLVQ and SRNG [4],[3].

One major assumption of these classification approaches is that both (training) data and
prototype assignments to classes have to be crisp, i.e. a unique assignment of the data to the
classes as well as for the prototypes is required. The latter restriction can be smoothed by

*corresponding author, University Leipzig, Clinic for Psychotherapy, Karl-Tauchnitz-Str. 25, 04107
Leipzig, Germany, email: villmann@informatik.uni-leipzig.de



a subsequent post-labeling of the prototypes after learning according to their responsibility
to the training data yielding fuzzy assignments [20]. However, there do not exist supervised
prototype based approaches to work with fuzzy labels in data during training so far, although
they would be desirable. In real world applications for classification like in medicine, a clear
(crisp) classification of training data may be difficult or impossible: Assignments of a patient
to a certain disorder frequently can be done only in a probabilistic (fuzzy) manner. Hence,
it is of great interest to have a classifier which is able to manage this type data.

In this contribution we provide modifications of the usual NG for solving fuzzy classi-
fication tasks. For this purpose we extend the cost function of the NG to incorporate the
assessment of the fuzzy label accuracy. We obtain new learning schemes for the prototypes
and additionally an adaptation rule for the update of the prototype fuzzy labels. We describe
the effect of the learning schemes on the prototype locations and classification. Further we
are able to integrate the relevance learning ideas for metric adaptation into this approach.

2 The neural gas network

Neural gas is an unsupervised prototype based vector quantization algorithm. It maps data
vectors v from a (possibly high-dimensional) data manifold D CR? onto a set A of neurons
i formally written as Wp_, 4 : D — A. Each neuron i is associated with a pointer w; €R?
also called weight vector. All weight vectors establish the set W = {w;},. ,. The mapping
description is a winner take all rule, i.e. a stimulus vector v € D is mapped onto the neuron
s € A the pointer w, of which is closest to the actually presented stimulus vector v (winner),

Up_4:vi>s(v)=argming (v,w,). (2.1)
€A
whereby ¢ (v, w) is usually the Euclidean norm ¢ (v,w) = ||[v — w| = (v — w)>. Here we

only suppose that it is a differentiable symmetric similarity measure.

During the adaptation process a sequence of data points v € D is presented to the map
with respect to the data distribution P (D). Each time the currently most proximate neuron
s according to (2.1) is determined, and the pointer w, as well as all pointers w; of neurons
in the neighborhood of w are shifted towards v, according to

a€ (Vv Wz’)

Aw,; = —eh, (v, W, 1) S

. (2.2)

The property of “being in the neighborhood of w,” is captured by the neighborhood function

ki (V’W)>’

g

he (v, W,i) = exp <— (2.3)

with the rank function
ki (V7W) = Ze(f (V,Wz-) _£<Vawj)) (24)
J
counting the number of pointers w; for which the relation ||v —w;|| < ||v —w;]| is valid
[14]. 6 (x) is the Heaviside-function. We remark that the neighborhood function is evaluated

in the input space. The adaptation rule for the weight vectors follows in average a potential
dynamic according to the potential function [14]:

Ene = 55755 > [ P e (v W)€ (v v (2:5)



with C (o) being a constant. It will be dropped in the following. It was shown in many
applications that the NG shows a robust behavior together with a high precision of learning

[5],[11],[15],22],[23].

3 Fuzzy Labeled NG

We now switch from the unsupervised scheme to a supervised scenario, i.e. each data vector
is now accompanied by a label. According to the aim of the paper, the label is fuzzy: for
each class k we have the possibilistic assignment x; € [0, 1] collected in the label vector
x =(x1,...,2nN,). N¢ is the number of possible classes. Further, we introduce fuzzy labels
for each prototype w;: y;= (y{, cee yfvc>. Now, we adapt the original unsupervised NG so
that it is able to learn the fuzzy labels of the prototypes according to a supervised learning
scheme. Thereby, the behavior of the original NG should be integrated as much as possible
to transfer the excellent learning properties. We denote this new algorithm Fuzzy Labeled
Neural Gas (FLNG). To include the fuzzy label accuracy into the cost function of FLNG
we add a term to the usual NG cost function, which judges the deviations of the prototype
fuzzy labels from the fuzzy label of the data vectors:

Erpng = (1= B) Enc + BEFL (3.1)

The factor § is a balance factor which could be under control or simply chosen as 5 = 0.5.
Hence, we try a balancing between statistical properties of prototypes (nearest mean) and
best classification accuracy, as it was also proposed in [21]. For precise definition of the new
term E we have to differentiate between discrete and continuous data, which becomes clear
during the derivation. We begin with the discrete case.

3.1 FLNG for discrete data

In the discrete case we have data v* with labels x*. We define the additional term of the
cost function as

Epp = ;sz:ha (v*, W ) (xk—yj)z (3.2)

To obtain the update rules for the weights and their labels, we take the derivative of Erpng
with respect to w; and y;. The latter one is simply obtained as

OEriNe  OFEFrL
Jyi y;

- Z he (vk,W,i) (xk—yi) (3.4)
%

which is a weighted average of all fuzzy labels of data.
For the weight vector update one takes the gradient ‘E’EgiLm. The first term agg < s
known from usual NG, eq. (2.2). Considering the second term Ep; we get

Tt = X R ) @3

awi

i (vF, .
- e W )t )
j k



We introduce

A(vaiawl) :E(V7Wi) —§<V,Wl) (37)
and consider
Ok; (vk,W) K 193 (vk,w ) K o0& (Vk,Wi)
B =0 - ;6 (A (V ,Wj,wl)) ow 25 (A (v ,wj7wi)) ~ow
(3.8)
with 0 («) being the Dirac-distribution and J; ; the Kronecker-symbol. So we obtain in (3.6)

o () EE ) o

194 (vk, wi)

Tog 2D (6 (& (vF wy,wi)) 8W> ho (VF, W) (x*~y,)3.10)

which contributes only for vanishing A-function, i.e. on the borders of the receptive fields
of the neurons. However, in case of discrete data the probability for this is zero. Thus, the
weight vector learning in the discrete scenario based on this cost function is (almost surely)
independent of the label adaptation.

3.2 FLNG for continuous data

In case of continuous data the above argument is not valid: We cannot ignore the borders of
the receptive fields. Therefore, it is impossible to treat the problem in the same way. As the
consequence we redefine the term Epp in (3.1) to avoid these difficulties. In the following
we denote (continuous) data by v and its labels by x.

3.2.1 Gaussian kernel

As the first method, we weight the label error by a Gaussian kernel depending on the distance
between data point and considered prototype. Thus, we choose the second term Epj as

Epp = %Z/P(v) 9y (v, w;) (x—yj)2dv (3.11)

where g, (v,wj) is a Gaussian kernel describing a neighborhood range in the data space

using the distance measure & (v7 wj):

gy (v, W) = exp (—W> (3.12)

Note that g, (V,wj) depends on the prototype locations, such that Ery is influenced by
both w and y. Investigating this cost function, again, the first term 8§ng of the full gradient

6%’% is known from usual NG. The new second term now contributes according to

855; - ;Z/P(V)W(X—yjfdv (3.13)
o0& (v, w; 9

= _T;Z/P(V)gv (v, w;) g(awzj) (x—y;) dv (3.14)

= 74%2 P (v) gy (v,w;) 85(8‘;;:"1) (x—y;)2dv (3.15)



which takes the accuracy of fuzzy labeling into account for the weight update. Both terms
define the learning rule for the weights.

For the fuzzy label we simply obtain ‘{”Eg% = 8EF L where
OFEry
5; = —/P(V) gy (v, wy) (x —y;) dv (3.16)

which is, in fact, a weighted average of the data fuzzy labels of those data belonging to
the receptive field of the associated prototypes. However, in comparison to usual NG the
receptive fields are different because of the modified learning rule for the prototypes and
their resulting different locations. The resulting learning rule is

Ay, =efgy (v, w;) (x—y;) (3.17)

3.2.2 Approximation of the rank function

As a second approach, we approximate the original neighborhood function h,. In (2.4) we
replace the Heaviside-function by a sigmoid function

¢ () = !

_ 3.18
T+ o (—522) 19

and obtain an approximation of the rank:

:Z((A (v, w;,wp)) (3.19)
!
using the A-notation (3.7). Then the additional term of the cost function is defined as
- 1 5 . 2
Erpr = 3 Z/P(v) he (v, W 5) (X — yj) dv (3.20)
J

with hy (v, W j) = exp (—w) To obtain the update rules we take the derivative of
Erpng with respect to w; and y;. The latter one is simply obtained as

OErriNG OEpy,
= 3.21
Jyi y; ( )

= —/P(v) he (v, W) (x —y,)dv (3.22)
which is a weighted average of all fuzzy labels of the data.
For the weight vector update one takes the gradient 8E§+NG. The first term 85%15
known from usual NG, eq. (2.2). Considering the second term Er; we get

OEpr, _ 72/ VWJ)( —yj)zdv (3.23)

aWi BWI

= Z/ aw v W) (W) (x—y,) dv (3:20)

We derive
a];}j (V,W) o / 85 (Vawj) / 85 (Vawi)
Twi =0, (ZZ:C (A (v, wi,wy)) Twz — (A (v, wy,wy) TWZ
(3.25)



with ¢’ (z) = 53¢ (z) (1 — { (z)). So we obtain in (3.24)

T L <Z<’<A(v,wi,wl>>w)ﬁa<v,w,z'><x—yi>2¢&26>

1 8W2

Bwi

+% XJ:/P (v) (CI (A (v, wj,w;)) 65(‘0“’1)) ho (v, W) (x— yj)2(3x27)

Hence, the full update becomes

Aw; = — ((1 — B) eho (v, Wi) — %e/ﬁa (v, Wi) (x—y)* Y (A (v,wi,wl))) (3.28)
1
08 (v, w;) Be' 9 (v, w;) Z

ow; o ow;

2
V Wa] (A (Vv Wj7wi)) ! (X - y]) (329)
J
The respective label update rule is obtained in complete analogy to (3.17) as

Ay; = €18hy (v, W,i) (x—y;) (3.30)

4 Relevance Learning in FLNG

In the theoretical derivation of the algorithm we have used a general distance measure,
which can, in principle, be chosen arbitrarily. Now we consider the case of a parametrized,
quadratic distance measure &) (w;, w,) with parameters A = (A1,..., A). It has recently
been demonstrated for both, supervised and unsupervised prototype based learning that
an adaptation of the metric during training can greatly increase the accuracy without de-
creasing the usually excellent generalization ability [3],[2],[10]. Because of the mathematical
derivation of FLNG by means of a cost function, the principle of learning metrics can be
easily transferred to our approach. Here we demonstrate this fact by deriving the learning
rules for the metric parameters . For this purpose we investigate the derivative

GEFLNG - 8ENG aEFL
PV G s el W

of the cost function. First we consider the continuous cases: The first term ag gives

O&x (v, w;
9Eng _ 1 > S P (V) he (v, W,5) %}V)dv (4.2)
P 2@\ 435, P& (vow,) Zegzilldy
with 2o S’AW’J) —he (V W.j) . Ok Egv W) We take into account that the definition (2.4) of

k; (v, W) with the derlvatlve of the Heav151de—funct10n 6 (z) is the delta distribution § ().
In this way we get

8I<ij (V,W) o . 8&,\ (V,Wj,Wl)
o ZZ:(S(A,\ (v, wj, w;)) — o (4.3)

with Ay (v, w;,w;) = & (v, w;) — & (v, w;) using the notation (3.7). Hence, the second
term in (4.2) vanishes because ¢ is symmetric and non-vanishing only for &, (V,Wj) =



&x (v, w;). Thus

& (v, W,
aggf - 201(0) ; / P(v)ho (v, W, j) g/\({(»\k])dv (4.4)

In the discrete case we simply replace the integration over the input data by the respective
summation in (4.2).

We now pay attention to the second summand BEF L. For the discrete case, we can apply
the same arguments as above. Thus we get (almost surely)

96 (vi, w,
A =—a(1-8)Y Wh (v, W, j) (4.5)
J

For the choice of Erj, according to the kernel approach (3.11) we have

OFrr, 89 V,W; ) 9
o Z/P 76)\’6 d (x—y,) dv (4.6)

08 (v, w; 9
T2 Z/ v) gy (v WJ) 75 E?)\k ) (x—yj) dv (4.7)

Putting all together we obtain for the relevance adaptation of the distance parameter in the
first continuous case:

OF 35,\ (v.w;) ((1-5) ; B ?
B v Z/ By (20( y e (VW) = 159y (vowy) (x = 9;) >dv

(4.8)
The second continuous case with the sigmoid approximation (3.19) gives
OEpL 1 - L Ok (v, W) 2
Y ;/P(v) he (v, W.,j) )V (x—y,) dv (4.9)
with B
Ok; (v, W OB\ (v, wj, wy)

Tk = ;C (A/\ (Vaijwl)) T,

which together with (4.1) and (4.4) gives the learning rule.

5 Experiments and Applications

In the following we give some experimental results. The data sets are an artificial one of
overlapping Gaussian distributions whereas the second one is a medical application.

5.1 Artificial data set of overlapping Gaussians

First we apply the FLNG to an artificial data set of two overlapping Gaussian distribu-
tions with the same prior probability. Thereby, we used in the first experiments the usual
Euclidean metric as distance measure & (v,w) = £(v,w) = ||[v — w||. The classification
results of the different FLNG versions in comparison to an usual post-labeled NG using 10
prototypes for balancing parameter 8 = 0.5 are depicted in Fig.1.
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Figure 1: Comparison of the prototype distributions for the different FLNG approaches
with § = 0.5. The influence of the Ery, is obviously. The prototypes symbols are according
to the maximum component of their fuzzy labels: discrete FLNG (upper center), Gaussian
FLNG (bottom left), sigmoid variant (bottom right).



B | NG (post) | discr. FLNG | Gaussian FLNG | sigmoid FLNG
0.3 82.0% 82.0% 82.2% 84.1%
0.5 83.7% 84.3%
0.7 85.3% 85.1%
0.9 82.0% 82.1%

Table 1: Classification accuracy for the artificial data set of overlapping Gaussians obtained
by the several approaches for different $ balancing parameter values.

One can clearly observe the influence of the label oriented part of the cost function by the
additional prototype learning term aaE -EL. As expected for this simple data set, the accuracy
is only slightly improved by the proposed methods, see Tab.1. However, the distributions
of the prototypes differ significantly: Thereby, the discrete variant yields similar results
compared to post labeled NG, which can be expected from the learning rules, because the
labels do not influence the prototype updates for the discrete version. Similarly, the results
of the two continuous variants do not differ much from each other, which is due to the fact
that the two data classes are unimodal. However, the continuous approaches place more
prototypes nearby the class border. Thus, the class labels clearly influence the prototype
location for these versions.

Obviously, g controls the influence of the label learning. Therefore we varied this parame-
ter to demonstrate the effects. The respective prototype distribution are depicted exemplary
for the Gaussian variant of FLNG in Fig.2.

One can observe the varying strength of influence with respect to the balancing parameter
B, looking at the prototype distributions. The effect is also emphasized by the obtained
classification accuracy, given in Tab.l. In particular, for high [S-values the accuracy is
decreased which can be addressed to the weak force for weight vector update according to
the usual NG.

5.2 Classification of electrophysiological impairment profiles in case
of Wilson’s disease

In a more challenging application we consider the classification of patients suffering from
Wilson’s disease and volunteers according to their electrophysiological abilities. Wilson’s
disease is a rare autosomal-recessive disorder of copper metabolism. Patients suffering from
Wilson’s disease especially show disturbances in liver function and basal ganglia which lead
to hepatic and extra-pyramidal motoric symptoms [1],[17]. The symptoms usually occur in
an age range from 5 to 40 years with clinical heterogeneity and different severity [13],[16].
One distinguishes the neurological and the non-neurological type of disease depending on
the severity of clinical symptoms. Thereby, the more disturbed type is the neurological
case. Besides these clinical symptoms, Wilson’s disease patients also exhibit subclinical
disorders of other central nervous pathways which may be observed as latency prolongations
in electrophysiological tests [8]. Yet, the severity of nervous pathway disorder also depends
on the severity of Wilson’s disease. In particular, electrophysiological impairments have
increased severity for the neurological state of illness.

In our consideration we collected electrophysiological data from a standardized test set
generating a so-called electrophysiological profile containing the test result of 7 different tests
covering the typical features (EAEP, MSEP, TSEP, T-VEP, MEP, EEG, heart frequency
variability) [8]. These profiles are taken as 7-dimensional data vectors. Overall the data set
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Figure 2: Comparison of the prototype distributions for the Gaussian variant of FLNG for
different values 3: discrete FLNG (upper-left), 8 = 0.3 (upper right), 3 = 0.5 (bottom left),
8 =0.9 (bottom right).
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discr. FLNG | Gaussian FLNG | Gaussian FLNG w. relevance
train 81.8% 83.6% 85.3%
test 82.0% 83.3% 84.9%

Table 2: Classification accuracy for the Wilson data set obtained by the several approaches.
The balancing parametr was 8 = 0.5.
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Figure 3: Comparison of the prototype distributions for the Gaussian variant of FLNG for
different values 3: discrete FLNG (upper-left), 8 = 0.3 (upper right), 5 = 0.5 (bottom left),
B = 0.9 (bottom right).

consists of 37 patient data vectors of several severity stages and 24 volunteers data, whereby
the patients group contains 8 non-neurological cases which should have no electrophysiolog-
ical disturbances. From these data set we take 27 and 15 for training, respectively. Testing
was performed using all data. Beside the classification of the electrophysiological profiles it
is also of medical interest, which tests are most significantly separating electrophysiologi-
cally disturbed persons from the other. This is a typical problem for relevance learning in
fuzzy classification using the scaled Euclidean distance &y (v,w) = >, A\; (v — w)?, A > 0,
D=1

We applied the discrete FLNG as well as the Gaussian variant using 6 prototypes. Ad-
ditionally we included relevance learning. The balance parameter was chosen as § = 0.75.
The results are depicted in Tab. 2. From relevance learning a weighting of the input di-
mensions respective tests is obtained. From this we can conclude that the EEG-test is most
important for class decision, whereas EAEP, MSEP and heart rate frequency variability are
less significant, see Fig.3.

The last result is in agreement with other clinical findings [7]. Thus, the determined

11



relevance profile reflects the characteristic of the data set well.

6 Discussion and Conclusion

We extended the usual unsupervised NG to a supervised fuzzy classification approach by
means of an extension of the cost function. In this way we are able to give risk estimations
of the classification accuracy. This is of particular interest e.g. in domains such as medical
applications since, on the one hand data might come with fuzzy labeling; on the other hand,
a judgment of the classification security is highly desirably. As demonstrated, there are
different ways to model fuzzy labeling, ranging from a simple post labeling to cost functions
where the labeling influences the location of the prototypes. We proposed three approaches
based on a gradient descent of an extended NG cost function, explicitly including the class
information of data. Thereby, the neighborhood cooperativeness of prototype learning is
integrated into the label adaptation. Yet, the range of influence should be in agreement
with the neighborhood influence of the usual NG. Hence, the parameters v in (3.12) should
be chosen such that the influence of the Gaussian kernel covers the same range as the
neighborhood cooperativeness in aaEN ¢, For the sigmoid FLNG the neighborhood range of
the label learning is influenced by the choice of the smoothness parameter ¢ of the sigmoid
function (3.18). A good choice should be ¢ equal to the average of the pairwise distances of
the data.

Comparing FLNG with the usual LVQ the following observation can be made: the
new additional term 8EF L for prototype update only contributes significantly if the label

difference (x — y]) of an 1nput (v,x) is high but the distance to the prototype & (v W, ) is
3EFL

small. This can be interpreted that the term pushes the prototype away in this case,
as it is known from LVQ for the best matching but wrong classifying prototype adaptation.

Experiments for artificial and real world data demonstrate the effect of these learning
rules on the classification accuracy and location of prototypes. They show that the new
approach is able to classify with high accuracy, reflecting the data structure well. Relevance
learning can improve the result and gives further informations.

Obviously, the FLNG approach can be transferred to other vector quantization schemes,
too, if a cost function for the method exists. Thus, usual SOM is not extendible to fuzzy
labeling in this way, but its variant introduced by HESKES [9] would be another proper
framework, which would be an alternative to the SOM based on auxiliary spaces introduced
by KaskI [10],[19]. Last but not least information theoretic vector quantization methods as
described in [6],[12] also would be an interesting field of fuzzy labeling extension.
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2.2. SPECTRAL DATA ANALYSIS BY FUZZY SELF ORGANIZING MAPS 31

2.2 Analysis of Spectral Data in Clinical Proteomics by
use of Learning Vector Quantizers

In the article Classification of Mass-Spectrometric Data in Clinical Proteomics Using Learn-
ing Vector Quantization Methods a novel semi-supervised topographic mapping was pro-
posed by T. Villmann, F.-M.Schleif, M. Kostrzewa, A. Walch and B. Hammer. It appeared
in 2008 in the Journal Briefings in Bioinformatics 9 (2), p. 129-143. The first two authors
derived and implemented the algorithm. The tissue samples and imaging measurements
where provided by A. Walch, who also provided the clinical discussion. The bacterial data
and corresponding protein spectra where provided by M. Kostrzewa. B. Hammer and T.
Villmann supervised the project. All authors discussed the paper.



Classification of Mass-Spectrometric Data in Clinical
Proteomics Using Learning Vector Quantization Methods
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Abstract

In the present contribution we present two recently developed classification algo-
rithms for analysis of mass-spectrometric data - the supervised neural gas and the fuzzy
labeled self-organizing map. The algorithms are inherently regularizing, which is rec-
ommended, for these spectral data because of its high dimensionality and the sparseness
for specific problems. The algorithms are both prototype based such that the principle
of characteristic representants is realized. This leads to an easy interpretation of the
generated classifcation model. Further, the fuzzy labeled self-organizing map, is able
to process uncertainty in data, and classification results can be obtained as fuzzy de-
cisions. Moreover, this fuzzy classifcation together with the property of topographic
mapping offers the possibility of class similarity detection, which can be used for class
visualization. We demonstrate the power of both methods for two exemplary exam-
ples: the classification of bacteria (listeria types) and neoplastic and non-neoplastic cell
populations in breast cancer tissue sections.

1 Introduction

Exploration and analysis of mass spectrometric data in the field of clinical proteomics have
become one of the key problems in computational proteomics. Thereby, the complexity of
the mass spectrometric data is one difficult problem. Frequently, the data are given as huge-
dimensional functional vectors with several thousands dimensions according to the resolution
on the mass axis. Further, usually the number of samples is limited to a few data sets due
to clinical restrictions. From am athematical point of view, the data space to be explored is
sparsely filled. Thereby, the spectra may be overlaid by noise such that the contained signal
is difficult to extract. A further problem arises for data analysis methods as consequence of
the high dimensionality: the data can always be separated more or less independent of the
separation criteria [32]. Thus, any method is confronted with the problem of the detection
of the underlying regularities. Usually, this problem is overcome by cross-validation. Yet,
the certainty of such an evaluation is diminished here, because of the humble number of
data. Therefore, advanced methods for data analysis in mass spectrometry are required to
be regularizing inherently, robust and to be able to deal with high-dimensional, sparse and
noisy data.

In the following we will restrict us to classification problems. Thereby, we will concentrate
to the following aspects: How we can achieve a good classification accuracy and how we can
visualize classification results in an adequate manner. The latter problem is related to the



problem of class similarity detection. Moreover, each classification result depends on the
underlying similarity/dissimilarity measure for data.

Classification in traditional statistics is frequently realized by Fisher’s discriminant anal-
ysis (FDA) or linear/quadratic discriminant analysis (LDA/QDA) [24]. FDA optimizes the
inter-intra-class correlation ratio by weighting the data dimensions to obtain a good separa-
tion plane, i.e. it is based on a weighted Euclidean distance for data similarity. LDA/QDA
tries to optimize the Bayes error of the classification by utilization of the (class depen-
dent, QDA) covariance, i.e. the Mahalanobis distance between data is used inherently [10].
These classical statistic approaches are more and more supplemented by machine learning
tools, which provide adaptive and robust methods for pattern recognition in complex data
[1],[26],]27]. Thereby, machine learning algorithms comprise approaches like artificial neu-
ral networks (ANNs), evolutionary algorithms (EAs), decision trees (DTSs), clustering, and
other [4].

Beside the pure classification accuracy of a generated classification model, its inter-
pretability plays an important role. Standard methods use (linear) principal component
analysis (PCA) and Fisher’s discriminant analysis or classical hierarchical clustering [8],[9].
Additionally, advanced preprocessing procedures, like denoising using wavelets or ’intelli-
gent’ peak picking heuristics including problem specific expert knowledge, are applied to
improve the accuracy. Here, the flexibility of machine learning methods offers new ways
which may result in better results [23]. For example, multilayer perceptron neural networks
(MLPs) as universal function approximators offer, on the one hand side, greatest flexibility
in learning and adaptation to achieve good classification results [5]. On the other hand, how-
ever, their decision scheme is more or less a 'black box’, because all the information for the
decision is distributed over the whole network. In contrast, prototype based classifiers realize
the principle of *characteristic representatives’ for data subsets or decision regions between
them . Thus, the interpretation becomes easy. Examples for such tools are Support Vec-
tor Machines (SVM) [28], Kohonen’s Learning Vector Quantization (LVQ), Self-Organizing
Maps (SOMs) [18] and respective variants. New developments include the utilization of non-
standard metrics (functional norms, scaled Euclidean metric) and task-dependent automatic
metric adaptation (feature selection), fuzzy classification, and similarity based visualization
of data. These properties offers new possibilities for analysis also of mass spectrometric
data.

In the present paper we will give insights to two recently developed prototype based
classifiers which fulfill the above requirements. The Supervised Neural Gas (SRNG) and
the Fuzzy labeled SOM (FLSOM) are robust prototype based neural classifiers, which are
inherently regularizing by neighborhood cooperativeness between prototypes and which are
easy to interpret. Moreover, as we will explain FLSOM is able to detect class similarities
and offers the possibility of fuzzy classification. Both algorithms share the flexibility of
utilization of arbitrary data metrics, which may be adapted during the training process as
well in dependence on the classification task to be learned [15].

The article is structured as follows. First, we shortly review both methods, classification
based on LVQ and FLSOM, pointing out their different properties and abilities. Thereby,
we will emphasize the ability of the usage of general, task adequate, similarity measures
in both methods. Further, we will highlight the class similarity detection probability of
the semi-supervised FLSOM, which can be used for adequate class visualization or clini-
cal interpretation. The theoretic part is followed by two clinical example investigations.
The first one is an investigation of mass spectrometric bacteria data to find an adequate
classification. In the second application a classification of neoplastic and non-neoplatic cell
populations in histological sections of breast cancer tissue is considered. For both applica-
tions we demonstrate the advanced abilities of the methods. Concluding remarks complete



the paper.

2 Prototype based classifiers

Usually, spectrometric data in proteomic analysis are given as vectors v € V C RP. D is
the data dimension which may be huge in this field. It depends on the spectral range and
sampling resolution. Because the data represent spectra, or more general functions, they
are called some times functional data. We remark that for functional data, the sequence of
data dimensions is not independent.

In our consideration we assume, that there exist an underlying (unknown) data proba-
bility density P in V. Further, we assume for the training data that to each data vector v
a unique class label ¢ (v) exist. Prototype based classifiers distributes prototypes w, € R,
r € A, as representations for classes in the data space V', whereby A is a given index set.
The prototypes should represent class distributions in the data space and borders between
different classes. For this purpose, each prototype has a class label y,.

Several approaches exist: the well-known LVQ family introduced by KOHONEN tries to
minimize the Bayes classification error, but the adaptation dynamic is only a heuristic Heb-
bian like and does not perform a gradient descent on the misclassification error [18]. SVMs
are based on structural risk optimization using a separation margin maximization approach
[7]. Both methods are very powerful. In particular, SVMs frequently show superior results
[28]. However, if new data become available for training a complete new learning has to be
applied for SVM. Both methods have in common that they are not able to handle uncer-
tainty in classification for training data (fuzzy class memberships). Further, the obtained
classification model is crisp.

We now review two recently developed classification schemes, which both are inher-
ently regularizing to address the above mentioned problem of noisy and sparse data in
huge-dimensional data spaces. The first one is a generalization of Kohonen’s LVQ scheme
providing a gradient descent on a cost function. The second one extend the unsupervised
SOM, such that a semi-supervised fuzzy classifier is obtained with excellent visualization
abilities and the feature of class similarity detection. Both methods share the ability to pro-
ceed arbitrary (differentiable) may be parametrized data similarity measures, which itself
can be in parallel subject of optimization with respect to the classification task.

2.1 Classification by Supervised Neural Gas

As mentioned above, LVQ does not minimize the classification error by gradient descent
prototype adaptation. Therefore SATO& YAMADA introduced a cost function based on a
classification function p such that the respective gradient descent is similar to the heuristic
LVQ learning scheme preserving the Hebbian characteristic [22]. For a given data point v
with class label ¢ (v) the two best matching prototypes with respect to the data metric d,
usually the quadratic Euclidian, are determined: w,+ has minimum distance d* = d (v, w,+)
and the class labels are identically: y,+ = ¢(v). The other best prototype w,- has has
minimum distance d~ = d (v, w,— ) but the class labels are different: y,- = ¢ (v). Then the
classification function p (v) is defined as

.
p) = G )



The value d* — d~ yields the hypothesis margin of the classifier [6]. Then the generalized
LVQ (GLVQ) is derived as gradient descent of the cost function

Carve =Y f(u(v)) (2)

with respect to the prototypes. f is the sigmoid function

1

f )= 1+ exp(—x)

(3)

In one learning step for a given data point, both w.+ and w,- are adapted in parallel.
Taking the derivative yields the updates
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where €T and €~ € (0,1) are the learning rates. The logistic function f (z) is evaluated at
position u(v), and we get
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Yet, so far no inherently regularization is involved in the classification model. This
feature can be included by combination of GLVQ with an unsupervised neural prototype
vector quantizer - the neural gas (NG) [21]. NG realizes a Hebbian learning of prototypes
together with regularization by neighborhood cooperativeness between prototypes. The level
of cooperativeness is determined in dependence on the similarity of the prototypes to a given
data vector: Let W be the set of prototypes and L (v, W) be the ordered list of prototype
indices such that for each pair r;,ry € L with ¢ < k the relation d (var,;) <d (v,wrk)
holds. Then the position ¢ (r) denotes the rank of the competition of the prototypes to be
the best matching for v. The degree of cooperativeness is defined by

KNG (r,v, W) = exp (_i (r)>

202

with neighborhood range o determining the regularization strength. High values o lead to
strong regularization whereas low values relax this restriction [21].

Including this regularization scheme into GLVQ the supervised neural gas (SNG) is
obtained [13]. For this purpose, we modify the GLVQ cost function (2) to

o
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whereby, W (y) is the subset of all prototypes w, the class labels y, of which are equal

to the class label ¢ (v) of the data point. C (U, ch(v)) is a constant depending on the

cardinality Nw,,, of the subset W¢(y) and the regularization level o. Derivation of this cost



function leads to a similar adaptation scheme as for GLVQ. However, now a neighborhood
cooperativeness is included between all prototypes of the correct class:

The update formulas for the prototypes can be obtained taking the derivative. For each
v, all prototypes w, € W(,) are adapted by

N sgd’|r(v) - & - R (r,v,Wc(v)) 9ld (v, w,)]

Aw, =
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and the closest wrong prototype is adapted by
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whereby €™ and ¢~ € (0,1) are learning rates and the logistic function is evaluated at
position
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Note that the updates of GLVQ are recovered for vanishing regularization o — 0. We remark
that SNG also optimizes the hypothesis margin because the cost function contains the term
dy — dy—.

The final classification of unknown data points v is then realized by a winner take all
mapping for both GLVQ and SNG:

v = ¢(v) =y, such that d(v, w,) is minimum. (4)

It was been demonstrated that SNG/GLVQ achieve excellent classification results [13],
[35].

2.2 Semi-supervised fuzzy classification by fuzzy labeled SOM and
class similarity detection

2.2.1 The fuzzy labeled SOM - FLSOM

We now turn to the more general task of fuzzy classification and classification visualization.
For this purpose we assume that the number N, of potential classes is known in advance.
Then the class label ¢ (v) is taken as a class membership vector ¢ (v) € R¥e the elements
¢; (v) € [0, 1] of which describe the fuzzy degree of class membership of the data vector v and
sum up to ) . ¢; = 1. Analogously, the prototype labels are taken as vectors y, € RNe. In
the following we will extend the unsupervised SOM model to deal with classification tasks.

SOMs are powerful models for unsupervised vector quantization [18]. In SOMs the
index set A is a regular grid, usually a rectangular or hexagonal two-dimensional lattice.



The indices r of the prototypes now indicate a location in the grid and, therefore, a natural
metric ||-|| , between them is induced. The mapping is like in SNG/GLVQ again a winner
take all rule, which reads in the HESKES’ variant of SOMs as

v — s(v) = argmin Z ho(r,r')-d(v,w,) (5)
red r'eA

with
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he(r,r') = exp (—”r_rf‘) (6)

as neighborhood function [16]. It performs a topographic mapping of data under certain
conditions [34], i.e. similar data points are mapped onto the same or onto neighbored grid
locations®. The degree of topology preservation can be estimated by the topographic product
TP [2]. T P-values nearby zero indicate adequate topographic mapping. For optimum results
the lattice size and dimension can be dynamically adapted during learning [3]. This growing
SOM (GSOM) generates a non-linear PCA of the data [33].

The learning in the Heskes-SOM follows a gradient descent on a cost function:

Esom = %W) / P(v) 255(") Z ho (v, 0" )E( v, Wy )dv (7)

where C (o) is a constant, which we will drop in the following, and 6% is the usual Kronecker
symbol checking the identity of r and r’. All prototypes are adapted according to

98 (v, wy)

Awy = —€h, (r,8(V)) Sw

(8)
with learning rate € > 0.

Now we extend the cost function of the SOM as defined in (7) to a cost function for
semi-supervised fuzzy classification by

Erisom = (1 = B) Esom + BErL 9)

where Epp, measures the classification accuracy . The factor 8 € [0, 1] is a factor balancing
unsupervised and supervised learning. One can simply choose 5 = 0.5, for example. We
choose

1
B3 [ P(¥) 5 (v (=) b (10)
where g, (v, w,) is a Gaussian kernel describing a neighborhood range in the data space:

d(v,w,)
o (o) = exp (550, (1)
This choice is based on the assumption that data points close to the prototype determine
the corresponding label if the underlying classification is sufficiently smooth. Note that
g (v, w,) depends on the prototype locations, such that Epy, is influenced by both w, and

yr. Hence, prototype adaptation is now influenced by the classification task via the labels:
OFrLsom  OFEsom | OFFL

owy - Oowy + Owy (12)

LFor a detailed discussion of topographic mapping and more general lattice structures we refer to [3],[34].



which yields

Awe = el = ) hy (r,s(v)) 2L ) (13)
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The label adaptation is only influenced by the second part Egr. The derivative %E%

yields
Ayr = €lﬁ * Gy (Va Wr) (X - yr) (14)

with learning rate ¢, > 0. This label learning performs to a weighted average of the data
fuzzy labels of those data close to the associated prototypes.

Classification of unknown data is again obtained by the mapping rule (4), but now giving
a fuzzy class membership vector response. Usually, the classification accuracy of FLSOM is
slightly less then the accuracy of a pure (good) classifier, because the balancing parameter
B cannot be set to the unit due to numerical stability reasons [37]. Hence, a remaining
unsupervised ammount of data information may lead to reduced accuracy. However, this
disadvantage is compensated by the feature of inherent class similarity detection and the
visualization abilities of FLSOM [38].

2.2.2 Class visualization and class similarity detection

As mentioned above, unsupervised SOMs generate a topographic mapping from the data
space onto the prototype grid A under specific conditions. If the classes are consistently
determined with respect to the varying data in a classification problem, one can expect for
the semi-supervised topographic FLSOM that the class labels y, become ordered within
the distribution over the grid structure of the lattice A. In this case the topological order
of the prototypes should be transferred to the topological order of prototype labels, such
that we have a smooth change between the fuzzy class label vectors within the neighbored
of the considered grid locations. This is the consequence of the following fact: the neigh-
borhood function h, (r,s) of the usual SOM learning (8) forces the topological ordering of
the prototypes. In FLSOM, this ordering is further influenced by the weighted classification
error

ce (V, I‘) =9y (Va Wr) (X - Yr)2 ’ (15)

which contains the data space neighborhood g, (v,w,), eq. (11). Hence, the prototype
ordering contains information of both data density and class distribution, whereby for high
balancing value [ the latter term becomes dominant. Otherwise, the data space neighbor-
hood g, (v, w,) also triggers the label learning (14), which, of course, also dependents on
the underlying learned prototype distribution and ordering. Thus, a consistent ordering of
the labels is obtained in FLSOM [36].

As a consequence, the evaluation of the similarities between the prototype label vectors
yields suggestions for the similarity of classes, i.e. similar classes are represented by proto-
types in a local spatial area of the FLSOM lattice A. In case of overlapping class distributions
the topographic processing leads to prototypes with unclear decision (labels), located be-
tween prototypes with clear vote. Further, if classes are not distinguish-able, there will exist
prototypes responsive to those data, which have class label vectors containing approximately
the same degree of fuzzy class membership for the respective classes.

The fuzzy class membership vectors allow an easy visualization of the classification using
their similarity property. For this purpose, all label vectors y,, r €A are embedded into a



color space preserving their similarities. This can be realized by multi-dimensional scaling
(MDS), for example. Doing so, similar classes are coded by similar colors, which may be
used for class visualization [38].

2.3 Classification task dependent metric adaptation

The dissimilarity measure d (v, w,) for the data space V is usually chosen as squared Eu-
clidean metric in GLVQ, SNG and FLSOM. Thus the derivative % simply becomes
—2(v —w). Depending on the classification task, this choice could be not optimum. There-
fore, more appropriate (differentiable) similarity measures can be plugged into these algo-
rithms instead, reflecting the nature of data or structure of classification. For example,
LEE& VERLEYSEN proposed a functional metric derived from the general Minkowski-metric
for functional data paying attention to the spatial correlation between the components of
functional vectors [19]. Other example, frequently used in biological and biochemical prob-
lems, are the Pearson correlation [29] and the Tanimoto kernel [30]. Due to the general
formulation of the methods above, these metrics can easily plugged into the algorithms.

Yet, more flexibility can be obtained if d (v, w,) is a parametrized similarity measure.
Then, the respective parameters may be also subject of optimization according to the given
classification task [14],[13].

Generally, we consider a parametrized distance measure d* (v, w) with a parameter vector
A=(A,..., A\y) with A; > 0 and normalization Zi\il A; = 1. Then, a classification task
depending parameter optimization is achieved again by a gradient descent of the above cost
functions but here with respect to these metric parameters.

One important example of a parametrized metric is the scaled squared Euclidean metric

dMv,w) = Z i (v; — w;)? (16)

(with \; > 0 and ), A; = 1). The derivative 0 (vow) ooomes = —2- A - (v—w) with A is

ow
. . o . . ad* (v,
a diagonal matrix and its i-th diagonal entry is A; and # = (v; — w;)?.

The parameter optimization of the scaled squared Euclidean metric allows a useful inter-
pretation. The parameter \; weight the dimensions of the data space. Hence, optimization
of these parameters in dependence on the classification problem leads to a ranking of the
input dimensions according to their classification decision relevance. Therefore, metric pa-
rameter adaptation of the scaled Euclidean metric is called relevance learning [14]. This
weighting is structurally similar to the weighting in FDA. In case of zero-valued \; relevance
learning can also be seen as feature selection. The vector A is called relevance profile. It can
be used for advanced data investigation as it is shown in the applications.

3 Application of GRLVQ and FLSOM for clinical data
sets

In this section we demonstrate the application of both, SNG and FLSOM, to classifica-
tion of two spectrometric data sets in bioinformatics. The problems are characteristic for
bioinformatic tasks and therefore exemplary:

1. identification of bacteria

2. breast cancer tissue slice classification



For both problems, the data metric for FLSOM was chosen as the squared scaled Eu-
clidian metric (16).

3.1 Description of data and preprocessing

The data for both problems are based on mass-spectrometric profiles measured by linear
MALDI-TOF MS devices from Bruker Daltonik, Bremen, Germany.

3.1.1 The bacteria data set

The bacteria samples are obtained from extracts from listeria cell cultures (original culture
stems from the German Resource Center for Biological Material — DSMZ). The extracts,
covered by a HCCA matrix, have been applied onto the MSP 96 target ground steel [20].
Profiling spectra were generated on a linear Autoflex MALDI-TOF MS. Details can be found
in [17].

Listeria is a bacterial genus containing six species. This species consist of listeria mono-
cytogenes, listeria innocua, listeria iwanovii, listeria seeligeri, listeria welshimeri and listeria
grayi. Listeria occur very common in nature environments and are also present in water,
plants, food and the bowel of humans. The identification of listeria is therefore an important
problem in biology. Listeria are known to be the bacteria responsible for listeriosis, a rare
but lethal food-borne infection that has a devastating mortality rate of 25% [31]. Listeria,
also has a particularly high occurrence rate in newborns because of its ability to infect the
fetus by penetrating the endothelial layer of the placenta [31]. Thereby Listeria monocy-
togenes is considered to be pathogenic for humans. Listeria in food are relatively rare but
due to the increasing industrial production of food with many processing steps, the risk of
a listerial contamination is increasing, which rises the needs for improved product safety
and quality control. The diagnosis of listeria at an early stage is important for therapeutic
approaches on humans. The expression of a infection caused by listeria may delay upto 8
weeks. To identify whether a listeria infection is present, the blood or matter is taken from
the patient and a cultivation is tried. This, however, fails in part and, hence, the disease
can not be diagnosed in time.

In the available data set all six listeria types are present. Thereby, for the listeria grayi
a subgroup of listeria grayi murrei can be identified and for listeria ivanovii a distinction
into the subgroups listeria iwanovii ssp iwanovii and listeria 1wanovii ssp londoniensis can be
made. Thus, the data set consists of 109 profile spectra in 8 classes with at least 6 samples
for each class. The spectral range is between 2kDa and 20kDa. The obtained spectra have
been smoothed, baseline corrected and, aligned following the standardized preprocessing tool
BIOTYPER™ 1.1 from Bruker Daltonik, Bremen, Germany. The involved peak picking
generates a peak list vector for each spectrum. All peak list vectors are aggregated such
that finally a data matrix with 937 intensity components and 109 rows is achieved as data
base. Thereby, a peak shift tolerance of 300ppm was used. A classification tree obtained by
hierarchical clustering using the BIOTYPER™ 1.1 software yields a class separation tree
as depicted in Fig.1.

This tree can serve for comparison for FLSOM class similarity detection.

3.1.2 The breast cancer tissue data set

The breast cancer tissues are collected at the Institute of Pathology in Neuherberg, GSF-
National Research Center for Environment an Health, Germany. The generic measurement
procedure can be summarized as follows. The frozen tissue is cut using a cryomicrotome
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Figure 1: Separation tree of different listeria types obtained by BIOTYPER™ 1.1 software
based on hierarchical clustering.

in sections of 12um and transferred to a conductive slide, washed in ethanol and coated
by matrix. Reference sections are used for histological staining (Hematoxylin&FEosin, im-
munohistochemical staining for HER2) and histomorphological classification. The slices are
subsequently measured in a Ultraflex Il MALDI-TOF and subsequently visualized using the
FlexImaging™ tool provided by Bruker Daltonik, Bremen, Germany [12].

The breast cancer tissue slices are manually labeled by a clinical expert (pathologist).
In this exemplary study the slice of one patient is used. Four different spatial regions
of the slice are marked according to histomorphologically classfied cell types: connective
tissue, inflammation, and two morphologically distinct tumor cell populations ( tumor-type-
1, tumor-type-2). From the whole slice 687 spectral record are generated, 438 of them are
labeled with at least 51 records per region.

These profiles were preprocessed (baseline correction, alignment, peak picking and, peak
feature extraction by means of maximum intensities) according to the CLINPROTOOLS™
2.1 from Bruker Daltonik, Bremen, Germany, see [11]. Finally, each preprocessed data record
is a 70-dimensional data vector.

3.2 Application of the methods and interpretation of the results

Both data sets are analyzed by SNG and FLSOM using the scaled quadratic Euclidean metric
as data similarity measure. For comparison we also applied SVM with different kernels and
LDA based on linear PCA. Additionally, for the bacteria data set a class dependence tree
provided as standard solution of the BIOTYPER™ 1.1 tool based on hierarchical clustering
is also available for comparison [20].

In case of FLSOM application we further investigate the detected class similarities and
provide visualization results. The optimum FLSOM lattice size was estimated by a GSOM
using standard Euclidean metric for data.

3.2.1 Results for the bacteria data set

First, we applied SNG with 3 prototypes per class and the neighborhood range o for reg-
ularization is slowly decreased to zero during the adaptation process. For FLSOM a two-
dimensional 12 x 4 lattice structure is suggested by the GSOM. Due to the large number of
prototypes for FLSOM in comparison to SNG and paying attention to the sparse data the
final regularization parameter for FLSOM is set to o = 0.4, which yields non-vanishing regu-
larization. The balancing parameter was set to 8 = 0.05 in the beginning and increasung up
to the final value of 8 = 0.85. The topology preservation of the FLSOM is preserved, as the
topographic product value TP = —0.0066 indicates. The 5-fold cross-validated classification



LDA | SVM; | SVM; | SVM;3 | SNG | FLSOM
61.5% | 34.9% | <10% | 96.3% | 97.8% | 73.4%

Table 1: Classification accuracies for the different classifiers for the listeria data set. SVMj is
a linear SVM, SVM uses a radial basis function kernel and SVMj3 uses a Tanimoto-distance-
kernel. LDA is based on linear PCA suggesting 5 principal components to be sufficient. For
FLSOM majority vote is taken to obtain the crisp classification.

accuracy results are collected in Tab. 1. Both, SNG and FLSOM show very good perfor-
mance in comparison to the other algorithms. In particular, we remark that SVM heavily
depends on the used kernel, as it is also known from other applications [25]. The slightly
decreased accuracy of the FLSOM is the consequence of the balancing parameter 5 < 1.0,
which is necessary for stability reasons of the algorithm as described before. However, this
disadvantage is compensated by the class similarity detection feature provided by FLSOM
[36]. These results are now under deeper consideration. The fuzzy class label vectors y, of
the prototypes are depicted in Fig. 2a) according to their distribution with respect to the
FLSOM lattice.

This distribution of the prototype labels suggests the following interpretation of FLSOM-
detected class similarities, which should also be compared to the above given separation tree
obtained by the BIOTYPER™ 1.1 software depicted in Fig 1: The listeria of grayi types
(class 1 & 2) should not be distinguished according to their proteom finger print. The class
8 (listeria welshimeri) is clearly isolated from each other. Classes 4, 5 and 7 (listeria ivanovii
ssp ivanovii, listeria seeligeri and listeria ivanovii ssp londoniensis) are very similar. Further
there is a class similarity between the classes 3 and 4 (listeria innocua and listeria ivanovii
ssp ivanovii). Although this similarity in the tree classification can not be ruled out, the tree
visualization suggests a stronger separation. This ’separation’ would be disappear, if the
respective branch would be rotated. Thus, the FLSOM label distribution is more adequate.
Further, FLSOM detected a similarity between the classes 6 and 4 (listeria monocytogenes
and listeria ivanovii ssp ivanovii), which is also not easily detectable in the tree visualization.
The class 3 (listeria innocua) shows multiple similarities to several other species based on
the proteom finger print. This sharing property can not be reflected adequately in the tree
classification. However, an expert biologist independently suggested a similarity between
both types?.

Thus summerizing, the FLSOM provides detailed class similarity description together
with comparable classification accuracy, whereas SNG achieves best accuracy.

3.2.2 Results for the breast cancer tissue data set

Again, we applied SNG with 3 prototypes per class and the neighborhood range o for
regularization also slowly decreasing to zero during the adaptation process. For FLSOM a
two-dimensional 15 x 5 lattice structure is suggested here by the GSOM. As for the listeria
data set the final regularization parameter for FLSOM is set to ¢ = 0.4, which yields non-
vanishing regularization. The balancing parameter setting was the same as for the bacteria
data set. The topographic product value TP = 0.0001 ensures the topographic mapping of
the FLSOM. The 5-fold cross-validated classification accuracy results are collected in Tab.
2.

2Personal communication with Dr. Thomas Maier, BRUKER. Daltonik Leipzig, Germany.
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Figure 2: Distribution of the class responsibilities within the FLSOM-lattices for a) the
listeria classification problem and b) the breast cancer problem. The label vectors y, are
depicted as barplots arranged according to the FLSOM-grid structure. Each barplot refers
to a label vector, whereby the height of the bars within is according to the probability
that the prototype is responsible for the respective class (left class 1 — right class 8, 4 -
respectively). The coloring of the bars is only for better visualization and does not contain
any information. Flat lines show ’dead’ prototypes, i.e. which did not won the competing
process for the available data.



LDA | SVM; | SVM;, | SVM3 | SNG | FLSOM
59.8% | 62.8% | 42.7% | 84.2% | 80.4% | 72.4%

Table 2: Classification accuracies for the different classifiers for the breast cancer data
set. SVM; is a linear SVM, SVM, uses a radial basis function kernel and SVMj3 uses a
Tanimoto-distance-kernel. LDA is based on linear PCA suggesting 8 principal components
to be sufficient. For FLSOM majority vote is taken to obtain the crisp classification.

Figure 3: Breast cancer tissue section with manually labeled areas used for classification
training is depicted left. Right hand, the classification obtained by the FLSOM classifier
is plotted using an MDS RGB-color embedding of the FLSOM-label vectors y,. Thereby,
similar colors represent similar class properties as detected by FLSOM (black - not used for
classification). One clearly see the fine agreement with the manual labelling.

The obtained accuracies for SNG and FLSOM show high levels with a slightly decreased
value for FLSOM, whereas SNG achieves the overall best result.

For class similarity investigation we consider the distribution of the label vectors within
the FLSOM-grid, which is depicted in Fig. 2. The connective-tissue class is well separated.
Further, we have in the distribution plane an overlapping region between the both tumor
classes, which indicates a similarity between them. The FLSOM detects a clear distinction
between tumor-1-class and the connective tissue class according to the spatial distribution of
the respective labels in the FLSOM grid, whereas small overlapping between tumor-2-class
and the connective-tissue class occurs. The inflammation class shows similarity to type-
2-tumor. Using an MDS color embedding of all label vectors y, of the FLSOM into the
RGB-color space, the FLSOM classification of the tissue can be easily visualized, see Fig 3.

A high agreement between original manually labeled tissue and obtained coloring based
on the classification and class similarity detection generated by the FLSOM can be observed.

Further information can be obtained by consideration of the learned relevance profile of
the problem specific scaled Euclidian metric. It is depicted in Fig.4.

The highest relevance for class separation can be assigned to the 4971Da-peak in the orig-
inal proteomic spectra. Recoloring of the original tissue according to the 4971Da-intensities
shows that this peak mainly separates the connective tissue class from the other classes, see
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Figure 4: Relevance profile of the scaled Euclidian metric for the breast cancer problem.
The highest relevance peak can be assigned to the data dimension 26 which is assigned to
the 4971Da-peak in the original proteomic spectrum.

Fig 5.
Analogously, the other relevance peaks could be evaluated. In this way, a detailed analysis
of the information contained in the FLSOM model can be obtained.

4 Concluding remarks

In this article two recently developed prototype based methods for classification, SNG and
FLSOM, are reviewed in the light of the analysis of mass spectrometric data in bioninformat-
ics. Both approaches are adaptive machine learning approaches and allow easy retraining,
if new data become available. They are both inherently regularizing, such that they are
able to handle sparse, high-dimensional and noisy data. As demonstrated for two exem-
plary problems in classification of proteomic spectra (bacteria and breast cancer tissue), the
generated classification models show good performance compared to other machine learning
and statistical methods.

Additionally, FLSOM provides the possibility of processing uncertain class information
for training data (fuzzy) and returns a fuzzy classification scheme. Moreover, FLSOM
provides a class similarity detection based on the fuzzy labels, which give the possibility of
deeper class analysis offering more information than simple classification trees. The fuzzy
classification can further be used for class dependent data visualization whereby similar class
information is encoded by similar colors such that an easy interpretation can be made.



Figure 5: Recoloring of the original tissue according to the 4971Da-intensities. High inten-
sities are colored red, low values are coded by blue colors.
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2.3. PROTOTYPE BASED FUZZY CLASSIFICATION IN CLINICAL PROTEOMICS49

2.3 Prototype based Fuzzy Classification in Clinical Pro-
teomics

In the article Prototype based Fuzzy Classification in Clinical Proteomics the fuzzy concept
for prototype based learning was employed for Soft-Nearest Prototype Classification and
compared to Fuzzy Labeled Neural Gas. The approaches where analyzed as local models,
using relevance learning in the context of clinical proteomics. The article was written by F.-
M.Schleif, T. Villmann, and B. Hammer. It appeared in 2008 in the International Journal
of Approximate Reasoning, 47(1), p. 4-16. I wrote the main parts of the manuscript and
implemented the methods, by combining multiple concepts published by the authors priorly.
I also run the experiments and prepared the data sets. Thomas Villmann and Barbara
Hammer supervised the project. All authors discussed the paper.
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Abstract

Proteomic profiling based on mass spectrometry is an important tool for studies at
the protein and peptide level in medicine and health care. Thereby, the identification
of relevant masses, which are characteristic for specific sample states e.g. a disease
state is complicated. Further, the classification accuracy and safety is especially
important in medicine. The determination of classification models for such high
dimensional clinical data is a complex task. Specific methods, which are robust with
respect to the large number of dimensions and fit to clinical needs, are required. In
this contribution two such methods for the construction of nearest prototype classifiers
are compared in the context of clinical proteomic studies, which are specifically suited
to deal with such high-dimensional functional data. Both methods are suitable to
the adaptation of the underling metric, which is useful in proteomic research to
get a problem adequate representation of the clinical data. In addition they allow
fuzzy classification and for one of them allows fuzzy classified training data. Both
algorithms are investigated in detail with respect to their specific properties. A perfor-
mance analyzes is taken on real clinical proteomic cancer data in a comparative manner.

Keyword: fuzzy classification, learning vector quantization, metric adaptation,
mass spectrometry, proteomic profiling

1 Introduction

During last years proteomic! profiling based on mass spectrometry (MS) became an impor-
tant tool for studying cancer at the protein and peptide level in a high throughput manner.
MS based serum profiling is under development as a potential diagnostic tool to distin-
guish between patients suffering from cancer and healthy subjects. Reliable classification
methods, which can cope with typically high-dimensional characteristic profiles, constitute
a crucial part of the system. Thereby, a good generalization ability and interpretability of
the results are highly desirable. Prototype based classification is intuitive approach based
on representatives (prototypes) for the respective classes.

KOHONEN’s Learning Vector Quantization (LVQ) belongs to the class of supervised learn-
ing algorithms for nearest prototype classification (NPC) [2]. It relies on a set of prototype

* corresponding author, Bruker Daltonik GmbH, Permoserstrasse 15, D-04318 Leipzig, Germany, Tel: +49
341 24 31-408, Fax: +49 341 24 31-404,email: fms@bdal.de
1Proteome - is an ensemble of protein forms expressed in a biological sample at a given point in time (1].



vectors (also called codebook vectors), which are adapted by the algorithm according to their
respective classes. Thus, it forms a very intuitive local classification method with very good
generalization ability also for high-dimensional data [3], which constitutes an ideal candidate
for an automatic and robust classification tool for high throughput proteomic patterns.

However, original LVQ is only heuristically motivated and shows instable behavior for
overlapping classes. Recently a new method, Soft Nearest Prototype Classification (SNPC),
has been proposed by SEO ET AL. [4] based on the formulation as a Gaussian mixture
approach, which yields soft assignments of data. This algorithm can be extended by local
and global metric adaptation (called relevance learning) to (L)SNPC-R [5] and applied
in profiling of mass spectrometric data in cancer research. In addition, the learning of
the prototype labels has been changed to support fuzzy values, which finally allows fuzzy
prototype labels yielding fuzzy SNPC (FSNPC) [6]. The approach is well suited to deal
with high-dimensional data focusing on optimal class separability. Further, it is capable to
determine relevance profiles of the input, which can be used for identification of relevant
data dimensions. In addition, the metric adaptation parameters may be further analyzed
with respect to clinical knowledge extraction.

The second algorithm also refers to the class of LVQ networks but was originally moti-
vated as an unsupervised clustering approach, named Neural GAS introduced in [7]. This
algorithm distributes the prototypes such that the data density is estimated by minimizing
some description error aiming at unsupervised data clustering. Prototype based classifica-
tion as a supervised vector quantization scheme is dedicated to distribute prototypes in such
a manner that data classes can be detected, which naturally is influenced by the data density,
too. Taking this into account the Fuzzy Labeled Neural GAS algorithm (FLNG) has been
introduced in [8, 9]. This algorithm will be used as a second prototype based classification
approach in this contribution. The capabilities of different variants of FSNPC and FLNG
are demonstrated for different cancer data sets: the Wisconsin Breast Cancer (WBC)J[10],
the leukemia data set (LEUK) provided by [11] and two other non-public proteomic data
obtained from [12].

The paper is organized as follows: the crisp SNPC is reviewed in section 2 followed by
the extension of metric adaptation (relevance learning (SNPC-R)). Thereafter the concept of
fuzzy classification is derived for the SNPC algorithm and also combined with the relevance
concept. In section 3 the FLNG algorithm will be presented. Subsequently, application
results of the algorithms are reported in a comparative manner. The article concludes by a
short discussion of the methods and shows the benefits of the metric adaptation as well as
of fuzzy classification for clinical data.

2 Soft nearest prototype classification

Usual learning vector quantization is a prototype based classification methodology, mainly
influenced by the standard algorithms LVQL...LVQ3 introduced by KOHONEN [2]. Several
derivatives have been developed to ensure faster convergence, a better adaptation of the
receptive fields to optimum Bayesian decision, or an adaptation for complex data structures
[13, 14, 4]. Any of the above algorithms LVQ1...LVQ3, does not possess a cost function in
the continuous case; it is based on the heuristic to minimize misclassifications using Hebbian
learning. The first version of learning vector quantization based on a cost function, which
formally assesses the misclassifications, is the Generalized LVQ (GLVQ) [15]. GLVQ resp. its
extensions Supervised Neural GAS (SNG) and Supervised Relevance Neural GAS (SRNG)
as introduced in [16] will be used for comparison in this article.

First, basic notations for LVQ schemes are introduced. Inputs are denoted by v with



label ¢, € £. Assume L is the set of labels (classes) with #£ = N, and V C RPV a finite
set of inputs v. LVQ uses a fixed number of prototypes (weight vectors, codebook vectors)
for each class. Let W ={w,} be the set of all codebook vectors and ¢, be the class label of
w,. Furthermore, let W.={w,|c, = ¢} be the subset of prototypes assigned to class ¢ € L.
The classification of vector quantization is implemented by the map ¥ as a winner-take-all
rule, i.e. a stimulus vector v € V' is mapped onto that neuron s € A the pointer w, of which
is closest to the presented vector v,

Uy 44:v—=s(v)=argmin d (v, wy) (2.1)
rcA

with d(v,w) being an arbitrary distance measure, usually the squared euclidean metric.
The neuron s is called winner or best matching unit. The subset of the input space Q, =
{veV :r="Ty_,(v)}, which is mapped to a particular neuron r according to (2.1), forms
the (masked) receptive field of that neuron. Standard LVQ training adapts the prototypes
such that for each class ¢ € L, the corresponding codebook vectors W, represent the class
as accurately as possible, i.e. the set of points in any given class V. = {v €V|c¢, = ¢}, and
the union U, = Ur‘ Q, of receptive fields of the corresponding prototypes should differ

wrEW,

as little as possible. This is either achieved by heuristics as for LVQ1...LVQ3 [2], or by the
optimization of a cost function related to the mismatches as for GLVQ [15] and SRNG as
introduced in [16].

Soft Nearest Prototype Classification (SNPC) has been proposed as alternative stable
NPC learning scheme. It introduces soft assignments for data vectors to the prototypes,
which have a statistical interpretation as normalized Gaussians. In the original SNPC as
provided in [4] one considers

Ns

E(S) = NLSZZUT (efvi) (1~ e, ) (2.2)

k=1 r

as the cost function with & ={(v,cy)} the set of all input pairs, Ns = #S. The class
assignment variables a, ., equals one if ¢y, = ¢, and 0 otherwise, i.e. the assignments are
crisp. u, (r|vg) is the probability that the input vector vy, is assigned to the prototype r. A
crisp winner-takes-all mapping (2.1) would yield w, (r|vy) = (r = s (vy)).

In order to minimize (2.2), in [4] the variables u, (r|vy) are taken as soft assignment
probabilities. This allows a gradient descent on the cost function (2.2). As proposed in [4],
the probabilities (soft assignments) are chosen as normalized Gaussians

exp (7 d(‘g:;”r) )

(Vi Wy )
T o (C250)

Uy (vlvi) = (2.3)

whereby d is the distance measure used in (2.1) and 7 is the bandwidth which has to be
chosen adequately. Then the cost function (2.2) can be rewritten as

Ns
B(S) = 5 > le((vien)) (2.4)
k=1

with local costs

le((Visev,) = 3 ur (xlvi) (1= e, ) (2.5)



i.e., the local error is the sum of the class assignment probabilities Qr,c,, to all prototypes
of an incorrect class, and, hence

le((Vi,ev,)) <1 (2.6)

with local costs depending on the whole set W. Because the local costs lc((vi,cy,)) are
continuous and bounded, the cost function (2.4) can be minimized by stochastic gradient
descent using the derivative of the local costs:

sty (r|vi) - le (Vi evy) - g‘flv'r if ¢y, =cr
Aw, = (2.7)
—ﬁUT (rlvi) - (1 =le(Vi,evy))) - g‘i‘; if ¢y, #or
where a1 o4
& T
G = i (11vi) (= ) = e (Vo)) - oE (2.8)
This leads to the learning rule
Wy = Wy —€(t) - Awy (2.9)

with learning rate e (¢) fulfilling 3% e (t) = oo and Y52, (e(1))* < oo as usual. All
prototypes are adapted in this scheme according to the soft assignments. Note that for
small bandwidth 7, the learning rule is similar to LVQ2.1.

A window rule like for standard LVQ2.1 can be derived for SNPC, too, which is necessary
for numerical stabilization [2],[4]. The update is restricted to all weights for which the local
value

n=lc((vi;cv)) - (1= le((Vi, ev,))) (2.10)
is less than a threshold value n with 0 < 1 < 0.25 [4]. The justification for this fact is given
in [4] (page 4).

2.1 Relevance learning for SNPC

Like all NPC algorithms, SNPC heavily relies on the metric d, usually the standard euclidean
metric. For high-dimensional data as occur in proteomic patterns, this choice is not adequate
since noise present in the data set accumulates and likely disrupts the classification. Thus,
a focus on the (priory not known) relevant parts of the inputs, would be much more suited.
Relevance learning as introduced in [17] offers the opportunity to learn metric parameters,
which is called relevance learning. This concept now is included into the above SNPC and
well be referred as SNPC-R: A parameter vector A = (A1, ..., A, ) is assigned to the metric
d (vi, wy) denoted as d* (v, w,), which now is used in the soft assignments (2.3). One
popular example is the scaled Euclidean metric

Dy
d> (v, wy) = Z (Vi — w2, (2.11)
i=1

Parallelly to the usual prototype adaptation the relevance parameters A; can be adjusted
according to the given classification problem, taking the respective derivative of the cost
function. Doing so the derivative of the local costs (2.5) becomes

Olc((vi,cy,)) 1 od}
e = oy zr:uT (xivi) - gy (a e (Vi ev,)) — 1) (2.12)




followed by a subsequent normalization of the ;.

It is worth to emphasize that SNPC-R can also be used with individual metric parameters
A* for each prototype w,. or with a classwise metric shared within prototypes with the same
class label ¢, as it is done here, referred as localized SNPC-R (LSNPC-R). If the metric is
shared by all prototypes, LSNPC-R is reduced to SNPC-R. The respective adjusting of the
relevance parameters A can easily be determined in complete analogy to (2.12).

It has been pointed out in [3] that NPC classification schemes, which are based on the
euclidean metric, can be interpreted as large margin algorithms for which dimensionality
independent generalization bounds can be derived. Instead of the dimensionality of data,
the so-called hypothesis margin, i.e. the distance, the hypothesis can be altered without
changing the classification on the training set, serves as a parameter of the generalization
bound. This result has been extended to NPC schemes with adaptive diagonal metric in [16].
This fact is quite remarkable, since Dy new parameters, Dy being the input dimension, are
added this way, still, the bound is independent of Dy . This result can even be transferred
to the setting of individual metric parameters \* for each prototype or class such that a
generally good generalization ability of this method can be expected [18]. Despite from the
fact that (possibly local) relevance factors allow a larger flexibility of the approach without
decreasing the generalization ability,they are of particular interest for proteomic pattern
analysis because they indicate potentially semantically meaningful positions.

2.2 Fuzzy classification for SNPC-R

In Fuzzy Labeled SNPC (FSNPC) one now allows fuzzy values for oy . to indicate the re-
sponsibility of weight vector w, to class ¢ such that now

0<ar.<1
in contradiction to the crisp case and under the normalization condition Ziv:ﬁl or . = 1.
These labels should be adjusted automatically during training. However, doing so, the
crisp class information for prototypes, assumed in the learning dynamic of SNPC (2.7) (or
generally required in LVQ) [4], is no longer available. However, a corresponding learning
dynamic can be derived: In complete analogy to the original SNPC with the same cost
function (2.4) one gets
T 0d,
272 Ow,

Aw, = — (2.13)

with
T =u, (r|vg) - (1 — Qre,, —lc (Vk,cvk)> .

Thereby, the loss boundary property (2.6) remains valid. Parallelly, the fuzzy labels Orc,,

.. . Alec(vi,cv
can be optimized using %

r,cvy
Naye, = —ur (r[v) (2.14)

followed by subsequent normalization.
To adjust the window rule to now fuzzified values Qrc,, One considers T'. Using the
Gaussian form (2.3) for u, (r|vg), the term T can be rewritten as

T= (nlc - na) -II (ar,cvk)



with

d(VE,Wr)
. ( ) exp (_T) (2 ].5)
Ay ¢, = |
k (l—Oér,ch _O‘F/vﬁvk)
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and 1q = e, (1 + Oér,crvk,> and 7. in according to (2.10).
As in the original SNPC,

0 <lc(Vi,cy,,) (1 =lc(vi,cy,)) <0.25
because lc (vg, ¢y, ) fulfills the loss boundary property (2.6) [4]. Hence, one gets
—-2<T7T<0.25

using the fact that a,., <1 [6]. Further, the absolute value of the factor 7" has to be
significantly different from zero to have a valuable contribution in the update rule [4]. This
yields the window condition 0 < |T|, which can be obtained by balancing the local loss
le (v, ¢y, ) and the value of the assignment variable Qrye,, -

Subsequently the idea of metric adaptation is incorporated into FSNPC too [6],[19] now
applying a local prototype dependent parametrized similarity measure d (v, w,). Again,
metric adaptation takes place as gradient descent on the cost function with respect to the
relevance parameters A, (relevance learning):

Ol (v, evy)

A, = _delviscv) 2.1
\ o (2.16)
with
Oe(Vesew) _ T Odyr (Ve we) (2.17)
ox @) 22 an () '

using the local cost (2.5) and subsequent normalization of the A; (r). In case of A = A, for
all r (global parametrized metric) one gets

Olc (v, cy,) T Ad (v, wy)
8)\]- N Z 2’7’2 8)\j (218)

In the following this variant is referred as FSNPC-R. In case of local relevance parameters
the algorithm is denoted as FLSNPC-R. The computational complexity of the (F)SNPC
methods can be estimated only roughly due to the nature of the stochastic gradient descent.
To train an (L)(F)SNPC network for each cycle and for each datapoint of the training set
|[W/| steps accounting for calculations related to prototype updates are needed. The number
of cycles is typically related to the number of training samples, e.g. for 1000 samples 1000
training cycles maybe executed. For larger datasets (>> 1000 samples) in general only a
random subset is selected and used for the optimization procedure. Especially the total
number of sample queries used to train SNPC variants can be significantly reduced by use
of active learning strategies as recently proposed in [20].

3 Supervised Neural GAS for fuzzy labeled data

Recently another fuzzified supervised LVQ algorithm has been proposed which is based on
the well known Neural Gas algorithm as introduced in [21] and concepts taken from the



Supervised Relevance Neural GAS [17]. This new algorithm is known as Fuzzy Labeled
Neural GAS (FLNG) [9] and will be reviewed in the following, compared with the above
given FSNPC approach.

It differs from the above SNPC variants in such a way that the assumption of crisp
classification for training data can be relaxed, i.e. a unique assignment of the data to the
classes is no longer required. This is highly demanded in real world applications. For
example, in medicine a clear (crisp) classification of data for training may be difficult or
impossible: Assignments of a patient to a certain disorder frequently can be done only in a
probabilistic (fuzzy) manner. Hence, it is of great interest to have a classifier which is able
to manage this type of data.

We shortly review unsupervised Neural GAS and explain thereafter the supervised mod-
ification FLNG. We complete this part by transferring the ideas of relevance learning to
FLNG too.

3.1 The neural gas network

Neural gas is an unsupervised prototype based vector quantization algorithm. It maps data
vectors v from a (possibly high-dimensional) data manifold V' CR? onto a set A of neurons
i formally written as Wy, 4 : V — A. Thereby the notations as introduced in the section 2
are kept. Also in this case it is only supposed that the used distance measure d(v, w;) is a
differentiable symmetric similarity measure.

During the adaptation process a sequence of data points v € V is presented to the map
with respect to the data distribution P (V). Each time the currently most proximate neuron
s according to (2.1) is determined, and the pointer w, as well as all pointers w; of neurons
in the neighborhood of wy are shifted towards v, according to

od (v, w;)

6Wi

Aw; = —€hy (v, W, 1) (3.1)

The property of “being in the neighborhood of w,” is captured by the neighborhood function

ki (v,W)>’

- (3.2)

he (v, W,i) = exp <
with the rank function
ki (v, W) => "0 (d(v,w;) —d (v, w,)) (3.3)
J

counting the number of pointers w; for which the relation ||v —w;|| < ||v —w;]| is valid
[21]. 6 (x) is the Heaviside-function. It should be mentioned that the neighborhood function
is evaluated in the input space. The adaptation rule for the weight vectors follows in average
a potential dynamic according to the potential function [21]:

Bye = 550y ;/ P(¥) by (v, W) d (v ;) dv (3.4)

with C (o) being a constant. It will be dropped in the following. It was shown in many
applications that the NG shows a robust behavior together with a high precision of learning.



3.2 Fuzzy Labeled NG

One can switch from the unsupervised scheme to a supervised scenario, i.e. each data vector
is now accompanied by a label. According to the aim as explained above, the label is fuzzy:
for each class k one has the possibilistic assignment xj € [0, 1] collected in the label vector
x =(z1,...,2nN,). N, is the number of possible classes. Further, fuzzy labels are introduced
for each prototype w;: y;= y{, ceey yf\h). Now, the original unsupervised NG is adapted
such that it is able to learn the fuzzy labels of the prototypes according to a supervised
learning scheme. Thereby, the behavior of the original NG should be integrated as much as
possible to transfer the excellent learning properties. This new algorithm is denoted as Fuzzy
Labeled Neural Gas (FLNG). To include the fuzzy label accuracy into the cost function of
FLNG a term to the usual NG cost function will be added, which judges the deviations of
the prototype fuzzy labels from the fuzzy label of the data vectors:

Ering = Eng + BEFL (3.5)

The factor 8 is a balance factor, which could be under control or simply chosen as § = 1.
For a precise definition of the new term FE one has to differentiate between discrete and
continuous data, which becomes clear during the derivation. The different situations are
detailed in [9] and will not be reconsidered in the following. From the numerical analysis in
[9] one can conclude that a Gaussian approach in modeling the rank replacement is suitable.
Hence, only this specific variant of FLNG will be considered.

3.3 Gaussian kernel based FLNG

In the Gaussian approach, one weights the label error by a Gaussian kernel depending on
the distance. Hence, the second term FEry, is chosen as

Epp = %Z/P(v)g,y (v,w;) (x—yj)de (3.6)

where g, (v, w ) is a Gaussian kernel describing a neighborhood range in the data space:

9y (v, w;) = exp (—‘iQ;;fj)> (3.7)

Note that g, (V,wj) depends on the prototype locations, such that Ery is influenced by

both w and y. Investigating this cost function, again, the first term 6§N & of the full gradient

Wi

6%”% is known from usual NG. The new second term now contributes according to

OErr 1 ad (v, w;)

ow; 42 P(v) gy (v,w;) (x—y;)°dv (3.8)

aWi

which takes the accuracy of fuzzy labeling into account for the weight update. Both terms
define the learning rule for the weights.

For the fuzzy label one simply obtains 3]5(,‘;% = ag%’ where
OFErr
ot = [Py, (vow) (- dv (39)

which is, in fact, a weighted average of the data fuzzy labels of those data belonging to
the receptive field of the associated prototypes. However, in comparison to usual NG the



receptive fields are different because of the modified learning rule for the prototypes and
their resulting different locations. The resulting learning rule is

Dyi = ag, (v,w,) (x - y,) (3.10)

3.4 Relevance Learning for FLNG (FLNG-R)

In the theoretical derivation of the algorithm a general distance measure has been used, which
can, in principle, be chosen arbitrarily, but sufficiently differentiable. Hence, a parametrized
distance measure can be used as before in case of SNPC-R and FSNPC-R. For this purpose
the derivatives are investigated

O0Frrnag  OEnc OErrL

= 3.11
o o (3.11)
One obtains:
OF 1 P h Wi adx(v,wj)d
NG _ 25 [ P (V) he (v, W) —g5—=dv (3.12)
Ok 2C (o) —&-ijP(v)d)\ (v,wj) %’:N’])dv
with ah”(a‘;’w’j) = —he(v;W.j) | akjg;cw). It is taken into account that the definition (3.3) of

k o
k; (v, W) with the derivative of the Heaviside-function 6 (x) is the delta distribution § (z).
In this way one gets

ok (v,W) _ O Ny (v, wj, wp)
o Z:uAA (v, w;, w;)) — (3.13)

with Ay (v, w;,w;) = dy (V,Wj) — dy (v,w;). Hence in the second term (3.12) vanishes

because ¢ is symmetric and non-vanishing only for dj (v, wj) =dy (v,w;). Thus

ad), (V,Wj)

6§f = 201(0) %:/P(v) ho (v, W, j) =5 ==dv (3.14)

Now one pays attention to the second summand 85/\2 L one has

8EFL 1 ad}\ (V7W') 2
DY e ;/P(v) Gy (v,wj) TJ (x— yj) dv (3.15)

It should be mentioned that local relevance learning for FLNG-R can be introduced similar
as within FSNPC-R but is not considered in the following. The computational complexity
of the FLNG variants is mainly determined by the number of sample queries during the
training of the networks. For each sample approximately O(|W| 4+ |W]| - log(|W])) steps
for prototype, metric and label calculations are needed. Thereby the term |W| refers to
the typical calculation needed for each LVQ variant and the log(|W|) refers to the rank
calculation which is a specific step for Neural GAS networks. The number of cycles is
typically less or equal to the number of training samples. Again only a random subset query
selection strategy may be applied for very large datasets (>> 1000) such that the number
of queries can be limited by some prior knowledge about the data distribution.



4 Experiments and Applications

In the following experimental results for the application of the different developed variants of
SNPC and Fuzzy Labeled Neural GAS are given. Thereby the SNPC results are compared
with standard methods such as SNG and SVM, followed by a comparison of FSNPC with
FLNG variants. Thereby, the usual Euclidean distance is applied. Further we investigate
the behavior of the relevance learning variants using the scaled Euclidean metric (2.11).
Then the parameter vector A modifies the weighting of individual input dimensions with
respect to the underlying optimization problem. Input dimensions with low relevance for
the classification task are scaled which can be considered as a linear scaling of the input
dimension restricted by a normalization constraint such that A; € [0,1] with i =1,..., D,,.
For \; ~ 0 the input dimensions are pruned in fact. This can be geometrically interpreted as
a linear projection of the high dimensional data onto a lower dimensional data space. This
choice allows a direct interpretation of the relevance parameters as a weighting of importance
of the spectral bands for cancer detection, which may give a hint for potential biomarkers.
In the analysis of the fuzzy algorithms we consider also the label error as a more specific
indicator of the learning error which is defined as

W9 Ng

ZJQZﬁZZZ(X‘g—y—l)Q with z; € Qp 1 i =1,..., Q]

r=1i=1 j=1

This error measure is also given for some crisp calculation on the test sets. It should be noted
that in the crisp case a miss classification counts simple as 2 giving label errors y2 € [0.0,2.0].
For the fuzzy classification there is no such obvious relation between the classification and
the label error because the classification error is obtained using a majority voting scheme
and the labels can be arbitrary fuzzy.

4.1 Clinical data and experimental settings

The different clinical data sets used to show the capabilities of the algorithms are the Wis-
consin Breast Cancer (WBC)[10], the leukemia data set (LEUK) provided by [11] and two
other non-public Matrix Assisted Laser Desorption/Ionization mass spectrometry (MALDI-
MS) proteomic data obtained from [12]. The WBC data set consists of 100 training samples
and 469 test data, whereby for the training samples exactly half the data set is to cancer
state. The spectra are given as 30-dimensional vectors. Detailed descriptions of the data
including facts about preprocessing can be found in [10] for WBC. The LEUK data are
obtained from plasma samples. A mass range between 1 to 10kDa was used. Details for the
LEUK data can be found in [11].

The MALDI-MS data (PROT1, PROT2) are obtained by spectral analysis of serum
of patients suffering from different cancer types and corresponding control probands. For
the clinical preparations MB-HIC C8 Kits (Bruker Daltonik, Bremen, Germany) has been
used. All purifications were performed in a one-step procedure according to the product
description. Sample preparation onto the MALDI-TOF Anchor Chip target are done using
alpha-cyano-4-hydroxy-cinnamic acid (HCCA) as matrix. Profiling spectra were generated
on an autoflex MALDI-TOF MS (Bruker Daltonik, Bremen, Germany) in the linear mode
for the PROT I data and on an UltraFlex MALDI-TOF MS (Bruker Daltonik, Bremen,
Germany) for the PROT II data set. The obtained spectra were first processed using the
standardized workflow as given in [22]. After preprocessing the LEUK spectra one obtains
145-dimensional vectors of peak areas. Thereby the LEUK data set consists of 74 cancer
and 80 control samples. The PROT1 data set consists of 94 samples in two classes of nearly
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SNPC SNG SVM
train test 2 train test train test
WBC 98% 85% 0.3 67% 63% 97% 95%
LEUK 100% 100% 0.0 33% 30% 100% 96%
PROT1 95% 97% 0.06 52% 52% 100% 88%
PROT?2 94% 80% 0.2 39% 37% 100% 82%

Table 1: Classification accuracy for the different cancer data sets for SNPC, SNG, SVM

SNPC-R LSNPC-R SRNG
train | test 12 train | test 32 train | test 12
WBC 98% 94% 0.12 100% | 96% 0.08 99% 94% 0.12
LEUK 100% | 100% | 0.0 100% | 100% | 0.0 100% | 100% | 0.0
PrROT1 || 97% 91% 0.18 95% 76% 0.48 96% 90% 0.2
prOT2 || 95% 81% 0.38 96% 86% 0.28 2% 80% 0.4

Table 2: Classification accuracy for the different cancer data sets for SNPC-R, LSNPC-R,
SRNG

equal size and 124 dimensions originating from the obtained peak areas. The PROT2 data
are given by 203 samples in three classes with 78 dimensions.

For crisp classifications, 6 prototypes for WBC data and 2 prototypes for LEUK data
were used. The PROT1 data set has been analyzed with 6 prototypes and the PROT2 data
set using 9 prototypes, respectively. All training procedures has been done upto convergence
with an upper limit of 5000 cycles. For the fuzzy variants of FLNG the number of proto-
types has been changed in accordance to its data distribution dependent prototype learning
property such that the LEUK and WBC model has been obtained using 6 prototypes, the
PROT1 model using 12 prototypes and the PROT2 model using 15 prototypes.

The classification results for the standard crisp classification without metric adaptation
are given in Tab. 1 and in Tab. 2 for crisp methods with metric adaptation. Clearly, metric
adaptation significantly improves the classification accuracy. Some typical relevance profiles
are depicted in Fig. 1. High relevance values refer to greater importance of the respective
spectral bands for classification accuracy and, therefore, hints for potential biomarkers.

One can observe that SNPC-R is capable to generate suitable classification models typ-
ically leading to prediction rates above 91%. The results are in parts better than those
obtained by ordinary SNPC. The results are reliable in comparison with SVM and SRNG.
Besides the good prediction rates obtained from SNPC-R one gets additional information
from the relevance profiles. For metrics per class one gets specific knowledge on important
input dimensions per class.

Subsequently FSNPC and FLNG are considered with and without metric adaptation
for the different data sets. As a first result from the simulations one can found that both
algorithm need in general longer runtimes upto convergence, especially to sufficiently learn
the underlying labeling. This can be explained due to the label learning of the prototypes,
which not any longer is fixed from the startup such that the number of prototypes dedicated
to represent a class can be determined during learning. The results depicted in Tab. 3
show reliable but a bit worse results with respect to the non fuzzy methods. FSNPC and
FLNG behave similar but it should be mentioned that FSNPC is driven by a Gaussian
mixture model approach whereas FLNG is motivated by statistical data clustering with
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Figure 1: Relevance profiles for the WBC (left) and LEUK (right) data set using SNPC-R

FSNPC FLNG
train 32 test 12 train 32 test 2
WBC 99% 0.02 97% 0.06 88% 0.16 86% 0.18
LEUK 100% 0.0 93% 0.13 92% 0.11 79% 0.24
PROT1 98% 0.03 92% 0.16 83% 0.24 89% 0.18
PROT2 90% 0.17 0% 0.44 80% 0.28 8% 0.34

Table 3: Classification accuracy and label error for the labels (y2) for the different cancer
data sets for FSNPC, FLNG

neighborhood cooperation.

Also for the fuzzy methods one can in general observe an improvement of the recognition
and prediction accuracy by incorporating metric adaptation as depicted in Tab. 4. For the
FLNG algorithm it could be observed that reliable models (measured on the recognition
accuracy) needs typically twice as much prototypes as for FSNPC or other prototype based
algorithms. This reflects, that the FLNG optimization is not just with respect to a given
classification but also to the data distribution, which becomes a more critical factor for
higher dimensional data.

For the fuzzy methods an additional measurement of convergence and accuracy, the
label error (LE) becomes important. If the data could be sufficiently well represented by
the prototype model the LE is a comparable measure for different models originating from

FSNPC-R FLSNPC-R FLNG-R
2 2 2 2 2

train Yy test Yy train y test Y train Yy test y2

WBC 98% | .03 | 99% | .02 99% | .03 | 99% | .02 91% | .13 | 92% | .14
LEUK 98% | .04 | 93% | .12 100% .0 93% | .13 88% | .18 | 96% | .14
PrROTI || 98% | .03 | 97% | .05 97% | .06 | 94% | .1 83% | 22 | 9% | .21
proT2 || 95% | .09 | 81% | .35 95% | .07 | 87% | .28 8% | .29 | 70% | .41

Table 4: Classification accuracies for cancer data sets using FSNPC-R, FLSNPC-R and
FLNG-R. A classification of a data point is accounted for that class with the highest possi-
bilistic value. The FSNPC derivatives behave similar to their crisp variants but a bit better
than in comparison to FLNG. To obtain a reliable recognition accuracy for the LEUK,
PROT1 and PROT2 data the number of prototypes had to be increased to 3, 6,5 per class.

Label errors (y2) are given for the training and test data.
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Figure 2: Typical convergence curve for label error (LE) using FLNG-R (left) and FSNPC-R
(right) for the WBC data. To get a more stable analysis the algorithms has been trained fix
with 5000 cycles to obtain these LE curves using 6 prototypes.

prototype fuzzy classifiers. An initial result is depicted in Figure 2 giving a first impression
of LE behavior for the FLNG-R and FLSNPC-R algorithm. The LE in combination with the
classification accuracy can be used as an indicator for the raw number of prototypes which
should be used to get a sufficient modeling of the underlying data labeling and by considering
this measure over time is a less raw measure for the current algorithm convergence than the
pure accuracy, which typically is constant over large periods of learning. In Figure 2 one can
see the LE’s for FSNPC-R and FLNG-R in a comparison. Both algorithms show an overall
convergence of the LE and end up with a similar error value. However for the FSNPC-R
one finds a less stable behavior reflected by strong fluctuations in the middle of the learning
task, which are vanishing in the convergence phase. For the FLNG-R changes in the LE
are much smoother than for FSNPC-R. One can also observe that both algorithms get low
LE’s already at a very early cycle. Thereby the LE for FSNPC-R is finally a bit lower than
for the FLNG-R algorithm within the different data sets. Considering the fuzzy labeling
of the final prototype sets one can observe that both algorithms were capable to learn the
labeling from the given training data. One finds prototypes with a very clear labeling, close
to 100% for the corresponding class and hence a quite clear voronoi tessellation induced by
this prototypes. But one can also find prototypes with lower safety in its class modeling
and even prototypes, which show split decisions. Especially the last one are interesting in
the sense that one immediately knows that decisions taken by those prototypes are doubtful
and should be questioned.

5 Conclusion

The usual SNPC has been extended by relevance learning as one kind of metric adaptation
and by fuzzy classification. A new adaptation dynamic for metric adaptation and proto-
type adjustment according to a gradient descent on a cost function has been derived. This
cost function is obtained by appropriate modification of the SNPC. As demonstrated, this
new soft nearest prototype classification with relevance learning can be efficiently applied
to the classification of proteomic data and leads to results, which are competitive to results
as reported by alternative state of the art algorithms. The extension of SNPC to fuzzy
classification has been compared with the FLNG algorithm. The FSNPC algorithm with
its motivation from Gaussian mixture approaches performed very well in the different ex-
periments but contains some critical parameters such as the one in the window rule, which
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may need to be adapted for some data by additional analysis. Also the estimations based
on a Gaussian mixture approach may be inappropriate for non Gaussian data distributions.
The FLNG in contrast strongly depends on the 8 control. In our analysis however it was
observed that the proposed settings are in general well suited and the algorithms behave
sufficiently stable with respect to these parametrization. It was found that the SNPC deriva-
tives showed in parts better performance regarding classification. Using the label error as a
more specific indicator of the learning behavior, the FSNPC algorithm shows a less stable
learning behavior than FLNG, but better final LE values. This is probably referred to the
specific learning dynamic of FSNPC, which is closely related to that of standard LVQ al-
gorithms. The FLNG algorithm however does not any longer migrates the update behavior
of LVQ algorithms and hence behaves different. This however brings the new possibility to
allow learning of potentially fuzzy labeled data points, which was not possible in a direct
way with prototype methods so far. From a practical point of view one can conclude that
relevance learning in generally improves the classification accuracy of the algorithm and can
be used to distinguish class specific input dimensions from less important features, which
directly supports the search for biomarker candidates. Local relevance learning gives only
small additional improvements for the prediction accuracy but can be useful to identify class
specific properties of the data. Finally the fuzziness introduced in FSNPC and by FLNG
gives the algorithm an additional freedom in determining the number of prototypes spend to
a class. In case of FLNG one is now further able to support fuzzy labeled data as well, which
allows the clinicians to keep the diagnosis fuzzy if necessary instead making it unnecessary
strict. The presented prototype based classifiers are applicable also in non-clinical domains
but they show some properties which make them very desirable in the context of clinical
applications. The prototype approach generates simple easy interpretable models leading to
group specific proteom profiles in case of proteomic data. The supported relevance learning
allows a ranking of the importance of the individual input dimensions with respect to the
classification task and can therefore be used to determine biomarker candidates. Also in
the context of life long learning prototype based approach are well suited because they can
be easily retrained if new (clinical) data become available. The new fuzzy properties are
a further benefit for questions with unsafe labeled data or fuzzy decision processes as they
often occur for clinical experiments.
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Chapter 3

Improved evaluation,
interpretation and domain
knowledge integration

3.1 Cancer Informatics by Prototype-networks in Mass
Spectrometry

The article Cancer Informatics by prototype networks in mass spectrometry by F.-M.Schleif,
T. Villmann, M. Kostrzewa, B. Hammer and A. Gammerman appeared in Artificial Intel-
ligence in Medicine (45), p. 215-228, in 2009. In the article spectral data are processed as
functional data by a wavelet based preprocessing and employing a functional metric. Proto-
type learners are extended by conformal prediction techniques used to obtain classification
models discriminating the data and providing confidence and credibility measures for the
decisions. The data were provided by M. Kostrzewa. I derived and implemented the algo-
rithm, did all experiments and wrote the majority of the article. A. Gammerman provided
support during the extension of prototype learners by conformal prediction techniques. T.
Villmann and B. Hammer supervised the project. All authors discussed the general article.

¢,

a
&

Additional related publications where I am co-author are:

1. F.-M.Schleif, M. Lindemann, M. Diaz, P. Maa, J. Decker, T. Elssner, M. Kuhn, H.
Thiele Support Vector Classification of Proteomic Profile Spectra based on Feature Ez-
traction with the Bi-orthogonal Discrete Wavelet Transform, In Computing and Visu-
alization in Science 12(4), p. 189-199, 2007. (Content: A wavelet based preprocessing
and feature selection strategy for mass spectrometry data is proposed and evaluated
on clinical proteomics data using a Support Vector Machine.)

67



Cancer Informatics by prototype networks in mass
spectrometry

Frank-Michael Schleif'* T. Villmann !, M. Kostrzewa?,
B. Hammer?, and A. Gammerman*

YUniversity Leipzig, Medical Department, Leipzig, Germany
2Bruker Daltonik GmbH, R & D, Leipzig, Germany
3Clausthal Univ. of Tech., Dept. of Math. and CS, Clausthal, Germany
3Royal Holloway University College London, London, UK

August 8, 2012

Abstract

Mass spectrometry has become a standard technique to analyse clinical samples in
cancer research. The obtained spectrometric measurements reveal a lot of information
of the clinical sample at the peptide and protein level. The spectra are high dimensional
and, due to the small number of samples a sparse coverage of the population is very
common. In clinical research the calculation and evaluation of classification models is
important. For classical statistics this is achieved by hypothesis testing with respect to
a chosen level of confidence. In clinical proteomics the application of statistical tests is
limited due to the small number of samples and the high dimensionality of the data.
Typically soft methods from the field of machine learning like prototype based vector
quantizers [17], Support Vector Machines(SVM) [32], Self-Organizing Maps (SOMs) [17]
and respective variants are used to generate such models. However for these methods
the classification decision is crisp in general and no or only few additional information
about the safety of the decision is available.

In this contribution the spectral data are processed as functional data by a wavelet
based preprocessing [29] employing a functional metric [30, 28] in the prototype based
classifiers. In particular, we demonstrate applications of the weighted Euclidean metric
and the weighted functional norm (based on weighted LP-norm) taking the specific na-
ture of mass-spectra into account. This also allows the detection of potential biomarker
candidates. To judge the classification decisions and model accuracy we focus on a
method for the estimation of confidence using prototype based networks.

We demonstrate the usefulness of the above extensions in the analysis of mass spec-
tra in proteomics and related knowledge discovery. In particular, we give application
examples for biomarker detection based on feature selection and classification of spec-
tra.

Keywords: clinical proteomics, cancer informatics, mass spectrometry, prototype clas-
sifiers confidence estimation

* corresponding author, University Leipzig, Medical Department, email: schleif@informatik.uni-leipzig.de



1 Introduction

Analysis of clinical proteomic spectra obtained from mass spectrometric measurements is a
complicated issue [22]. One major objective is the search for potential biomarkers in complex
body fluids like serum, plasma, urine, saliva, or cerebral spinal fluid [6, 24, 25, 10]. Typically
the spectra are given as high-dimensional vectors. Thus, from a mathematical point of view,
an efficient analysis and visualization of high-dimensional data sets is required. Moreover,
the amount of available data is restricted: usually patient cohorts are small in comparison
to the dimensionality of the data.
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(a) Cancer Spectrum (b) Control Spectrum

Figure 1: (a) MALDI-TOF spectrum of a colorectal cancer patient and (b) a healthy subject
after peptide isolation with C8 magnetic beads. On the Y-axis the relative intensity is shown.
The mass to charge ratio (m/z) is demonstrated on the X-axis in Dalton. The spectra are
already preprocessed (baseline correction,recalibration) using ClinProTools 2.1

In contrast to the widely applied multilayer perceptron [2], prototype based classification
allows an easy interpretation, which is of particular interest for many (clinical) applications.
One prominent prototype based classifier is the Supervised Relevance Neural Gas algorithm
(SRNG)[12]. SRNG leads to a robust classifier where efficient learning of labeled high
dimensional data is possible and has been already used in different types experiments [37,
27, 38, 34].

In general the available approaches to model classifiers in clinical proteomics initially
transform the spectra into a vector space followed by training a classifier. In this way
the functional nature of the data is lost, which may lead to suboptimal classifier models.
A functional representation of the data with respect to the used metric and a weighting
or pruning of (priorly not known) irrelevant parts of the inputs, would be desirable. A
discriminative data representation is necessary. The extraction of such discriminant features
is difficult for spectral data and typically done by a parametric peak picking procedure. This
peak picking is often the focus of criticism because some present peaks may not be detected
and the functional nature of the data is partially lost. To avoid this difficulties we focus
on the approach as given in [30, 28] and apply a wavelet encoding to the spectral data to
get discriminative features. The obtained wavelet coefficients are sufficient to reconstruct
the signal, still containing all relevant information of the spectra in a functional encoding.
However this better discriminating set of features is typically more complex and hence a
robust approach to determine the desired classification model is needed. Taking this into
account a feature selection is applied based on a statistical pre-analysis of the data and the



SRNG algorithm is used to obtained predictive models.

In this contribution, we focus on the conformal prediction concept incorporated in pro-
totype based learning vector quantizers (LVQ). The paper is organized as follows. First we
briefly review the functional encoding of mass spectrometric data by means of a wavelet
based encoding. Subsequently the theory of the Supervised Relevance Neural Gas (SRNG)
and its equipment with a functional metric is reviewed. After these settings, the method
of conformal prediction [39, 9] is reviewed and we show how it can be used together with
LVQ approaches. Subsequently the methodology is applied on experimental data from two
clinical proteom studies. We evaluate the results not only using cross validation but also in
the light of conformal prediction which allows the assessment of the classification safety by
means of p-values as known from classical statistics.

2 Preprocessing

The classification of mass spectra involves multiple preprocessing steps. In general peak
picking is used to locate and quantify positions of peaks within the spectrum and feature
extraction is applied on the peak list to obtained an adequate feature matrix. In the first
step a number of procedures as baseline correction, optional denoising, noise estimation
and normalization are needed[16, 26]. Upon these prepared spectra the peaks have to be
identified by scanning all local maxima and the associated peak endpoints followed by a S/N
thresholding such that one obtains the desired peak list.

The procedure of baseline correction and recalibration (alignment) of multiple spectra
is standard, and has been done using ClinProTools (details in [16])!. Here we propose an
alternative feature extraction procedure preserving all (potentially small) peaks containing
relevant information by use of the discrete wavelet transformation (DWT). The feature
extraction has been done by Wavelet analysis using the Matlab Wavelet-Toolbox?, due to
the local analysis property of wavelet analysis the features can still be related back to original
mass position in the spectral data which is essential for further biomarker analysis. In a first
step a feature selection procedure using the Kolmogorov-Smirnoff test (KS-test) was applied.
The test was used to identify features which show a significant (p < 0.01) discrimination
between the two groups (cancer,control). To get valid results a p-value adjustment by means
of the bonferroni-correction has been applied as well. This is done in accordance to [40] where
also a generation to a multiclass experiment is given.

2.1 Feature Extraction by Bi-orthogonal Discrete Wavelet Trans-
form

Wavelets have been developed as powerful tools [1, 19] used for noise removal and data
compression. The discrete version of the continuous wavelet transform leads to the concept
of a multiresolution analysis (MRA). This allows a fast and stable wavelet analysis and
synthesis. The analysis becomes more precise if the wavelet shape is adapted to the signal
to be analyzed. For this reason one can apply the so called bi-orthogonal wavelet transform|3]
which uses two pairs of scaling and wavelet functions. One is for the decomposition/analysis
and the other one for reconstruction/synthesis. The advantage of the bi-orthogonal wavelet
transform is the higher degree of freedom for the shape of the scaling and wavelet function.

In our analysis such a smooth synthesis pair was chosen to avoid artifacts. It can be
expected that a signal in the time domain can be represented by a small number of a

IBiomarker software available at http://www.bdal.de
2The Matlab Wavelet-Toolbox can be obtained from www.mathworks.com
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Figure 2: Wavelet reconstruction of the spectra with L = 4,5, x measurement positions,
y-arbitrary unit. The original signal is plotted with the interrupted line (blue) and the
reconstruction with the solid with a white band inside. One observes that a wavelet analysis
with L = 5 is too rough to approximate the sharp peaks.

relatively large set of coefficients from the wavelet domain. The spectra are reconstructed
in dependence of a certain approximation level L of the MRA which can be considered as
a hard-thresholding. The denoised spectrum looks similar to the reconstruction as depicted
in Figure 2. The starting point for an argumentation is the simplest example of a MRA
which can be defined by the characteristic function x|o,1). The corresponding wavelet is the
so-called Haar wavelet. Assume that the denoised spectrum f € Lo(R) has a peak with
endpoints 27k and 27 (k + 1), the integral of the peak can be written as

27 (k+1)
[ 0= [ e iy
2k R

Obviously the right hand side is the Haar DWT scaling coefficient ¢;, = (f, ;) at scale
a =27 and translation b = 27k.

One obtains approximation- and detail-coefficients [3]. The approximation coefficients
describe a generalized peak list of the denoised spectrum encoding primal spectral infor-
mation and depend on the level L which is determined with respect to the measurement
procedure. For linearly MALDI-TOF spectra a device resolution of 500 — 800Da can be
expected. This implies limits to the minimal peak width in the spectrum and hence, the
reconstruction level of the Wavelet- Analysis should be able to model corresponding peaks. A
level L = 4 is typically sufficient for a linear measured spectrum with ~ 20000 measurement
points (see Figure 2). The level L can be automatically determined by considering expected
peak width in Da and the reconstruction capabilities of wavelet analysis at a given level.
Alternatively multiple levels can be tried and a standard peak picking approach can be ap-
plied on both, the original and the reconstructed spectrum. If the obtained peak lists are
sufficiently similar, which means, that at least peaks with good S/N values in the original
spectrum are sufficiently recovered in the reconstruction the taken level can be considered
as acceptable for the experiment.

Applying this procedure including the KS-test on the spectra with an initial number of ~
4000 measurement points in a range of 1500 — 3500 Da per spectrum one obtains 416 wavelet
coeflicients used as representative features per spectrum, still allowing a reliable functional
representation of the data. An application of the KS-Test still keeps 101 coefficients for the
final analysis of the colorectal cancer patients (CRC) data set and 40 coefficients for the
lung cancer (LC) data set3.

3The ks-test is an optional data reduction step, the removed dimensions are in general neighbored, closed
stripes of noise and not discriminating signals



3 Bioinformatic methods

The Supervised Relevance Neural Gas (SRNG) algorithm is a prototype based classification
model, which will be introduced very briefly. Subsequently we extend the concept of confor-
mal prediction as introduced in [39, 9] in the context of prototype based networks which is
used in the evaluation part to determine confidence values for obtained classification results.

3.1 Supervised Relevance Neural Gas with generalized metrics

Supervised Neural Gas (SNG) is considered as a representative for prototype based classi-
fication approaches as introduced by KOHONEN. Different prototype classifiers have been
proposed so far [17, 23, 14, 36] as improvements of the original approach. The SNG has been
introduced in [36] and combines ideas from the Neural Gas algorithm (NG) introduced in
[20] with the Generalized learning vector quantizer (GLVQ) as given in [23]. Subsequently
we give the basic notations and some remarks to the integration of alternative metrics into
Supervised Neural Gas (SNG). Details on SNG including convergence proofs can be found
in [36].

Let us first clarify some notations: Let ¢, € £ be the label of input v, £ a set of labels
(classes) with #L£ = N.. Let V C RPV be a finite set of inputs v. LVQ uses a fixed number
of prototypes (weight vectors, codebook vectors) for each class. Let W ={w,} be the set
of all codebook vectors and ¢, be the class label of w,. Furthermore, let W.= {w|¢c; = ¢}
be the subset of prototypes assigned to class ¢ € L.

The task of vector quantization is realized by the map ¥ as a winner-take-all rule, i.e. a
stimulus vector v € V' is mapped onto the closest wy,

Uy, 4 v s (V) = argminge 4d* (v, wy) (1)

with d* (v, w) being an arbitrary differentiable distance measure* which may depend on a
parameter vector A and A a (ordered) grid of neurons. Subsequently we only expect that
the used distance measure is differentiable with respect to its parameters. For the moment
we take A as fixed. The neuron s (v) is called winner or best matching unit. The subset of
the input space

W ={veV:r=0y_4(v)} (2)

which is mapped to a particular neuron r according to (1), forms the (masked) receptive
field of that neuron forming a Voronoi tessellation. If the class information of the weight
vector is used, the boundaries 9§2) generate the decision boundaries for classes. A training
algorithm should adapt the prototypes such that for each class ¢ € L, the corresponding
codebook vectors W, represent the class as accurately as possible. This means that the
set of points in any given class V. = {v €Vl]ey = c}, and the union U, = U, e of
receptive fields of the corresponding prototypes should differ as little as possible.r ‘

Supervised Neural Gas (SNG) constitutes a method to train prototypes efficiently accord-
ing to given data points. Again, let W.={w,|c; = ¢} be the subset of prototypes assigned
to class ¢ € £ and K, its cardinality.

Further we assume to have m data vectors v;. As pointed out in [36], neighborhood
learning for a given input v; with label ¢ is applied to the subset W,.. The respective cost

4 A distance measure is a non-negative real-valued function, which, in contrast to a metric does not neces-
sarily fulfill the triangle inequality and the symmetry property. For prototype algorithms of the mentioned
type the used distance measure need not to be a metric. A detailed discussion of this fact with respect to
the considered methods is available in [11, 13]
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d2 is defined as the squared distance to the best matching prototype but labeled with

Cr_ # Cy, say wy_ and dp = d* (v, w,). Details on the corresponding update rules are given
in [36].

3.1.1 Incorporation of a functional metric to SNG

As pointed out before, the distance measure d* (v, w) is only required to be differentiable
with respect to A and w. The triangle inequality has not to be fulfilled necessarily. This leads
to a great freedom in the choice of suitable measures and allows the usage of non-standard
metrics in a natural way. We now review the functional metric as given in [18], the obtained
derivations can be plugged into the above equations leading to SNG with a functional metric,
the data are functions represented by vectors and, hence, the vector dimensions are spatially
correlated.

Common vector processing does not take the spatial order of the coordinates into ac-
count. As a consequence, the functional aspect of spectral data is lost. For proteom spectra
the order of signal features (peaks) is due to the nature of the underlying biological samples
and the measurement procedure. The masses of measured chemical compounds are given
ascending and peaks encoding chemical structures with a higher mass follow chemical struc-
tures with lower masses. In addition multiple peaks with different masses may encode parts
of the same chemical structure and hence are correlated.

In [18] a distance measure has been proposed taking the functional structure of the data
into account, involving the previous and next values of v; in the i-th term of the sum, instead
of v; alone. V can be represented as V' = (v1,...,vp). Assuming a constant sampling period
7, the proposed norm is:
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are respectively the triangles on the left and right hand sides v;. Just as for L,, the value
of p is assumed to be a positive integer. At the left and right ends of the sequence, vy and
vp are assumed to be equal to zero. The derivatives for the functional metric taking p = 2
are given in [18].

Now we consider the scaled functional norm where each dimension v; is scaled by a
parameter \; > 0 \; € (0,1] and ), A; = 1. Then the scaled functional norm is:
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putting all together and with some minor mathematical transformations one obtains:
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Using this parametrization one can emphasize/neglect different parts of the function for
classification. This distance measure can be put into SNG as shown above and has been
applied subsequently in the analysis of clinical proteom spectra. SNG with metric adaptation
is subsequently referred as SRNG.



4 Evaluation of Prototype based classifier models

Advanced prototype based classification models show typically high regularisation capabili-
ties [11]. Nevertheless also the results of prototype networks need a thoroughly analysis by
cross validation to get practical measures to rate the prediction capabilities of the current
model. Beside these generic measures of confidence in the results obtained by a classifica-
tion model a more fine grained confidence analysis would be desirable. Classical statistics
typically allows a judgment on the classification accuracy of a single item by means of p-
values [15] but are not applicable (in a valid sense) for these type of data, in general. Also
Gaussian Mixture Models allow to determine the probability of a classification decision, but
make additional constraints on the considered type of data [15]. This techniques are well
understood but in general not available for soft methods like SVM or prototype networks.
Only few attempts were made to give reliability estimate for these soft methods (see e.g.
[4, 5]). Thereby the reliability estimate can be helpful to judge on the reliability of a decision
but also in a more generic framework to improve the overall performance of the classifier.
Reliability sometimes also referred as confidence, has been subject of a quite new theory
called conformal prediction as introduced in [39] which fills this gap under some moderate
constraints. Here we show how the concept of conformal prediction can be applied to pro-
totype networks and allows the determination of statistical significance values as needed in
clinical studies and cancer informatics.

4.1 Conformal Prediction for Prototype based Networks

Conformal predictors aim at the estimation of confidence of a given classification decision.
They remain automatically valid (in average) under the randomness assumption [39, 9]. Tt
is assumed, that the objects and their labels are generated independently from the same
probability distribution. This appears to be a strong assumption but in fact it is a much
weaker assumption than assuming a parametric statistical model. Conformal predictors
never overrate the accuracy and reliability of their predictions [39, 9]. When the stochastic
mechanism significantly deviates from the model, conformal predictors remain valid but their
efficiency inevitably suffers [39, 9]. As conformal predictors are provably valid, efficiency
with respect to computational performance as well as with respect to the effort to extend a
classifier to a conformal predictor, are the only things which we need to worry about. First
we will give some basic notations and review the main concepts of conformal prediction as
given in [39, 9].

4.1.1 Conformal prediction a brief overview

We now briefly review the concepts of conformal prediction as presented [7] and the tutorial
given in [31]. The basics of conformal prediction rely on confidence intervals from classical
statistics and are well theoretically founded [8]. Here we focus on classification and deal
with labeled data. The task is: predict each label after seeing its object:

e from x; predict y;

e from (x1,y1), x2, predict yo

e from (x1,y1), (x2,y2), 3 predict y3 and so on



Here we assume randomness. In reality we choose the examples independently from some
probability distribution Q on Z = D x Y. The samples are independent and identically
distributed. And we do not make any assumptions about QQ. Usually independence can be
weakened to exchangeability [31]. To do the prediction with confidence we write Z* for the
set of all finite sequences of elements of Z such that:

7r=US 2"

n=0
A level (1 —€) confidence predictor is a mapping
I:7Z*xD—2Y

after observing old examples 21, ..., 2,_1 and the new object z,,, we predict that the label
of (2, yn) will be in the subset
D(z1,-. .y 2n—1,Tn)

of the label space Y. A (1—¢) confidence predictor is exactly valid if its hits are independent
and all happen with probability (1 —€). It is conservatively valid if the probability that the
predictions on rounds ny,...,n, are all hits is always at least (1 — ¢)¥. This does not
depend on a specific probability function. Valid confidence predictors are constructed from
nonconformity measures by means of real values functions A: (z1,91), ..., (Tn-1,Yn-1), (z,y)
as a measure of how different (z,y) is from (z1,41),...,(Zn-1,Yn—1). Here one predicts
values of y,, that make z,,,y, differ minimally from the rest. From a given nonconformity
measure, we construct a (1 — €) confidence predictor I' for every e € [0, 1], and they are
nested in the natural way: T''(zq,...,2,,2,) C I'(21,...,2,,2,) when ¢; > €. The
more confident one wants to be, the larger the region must be chosen. So e.g. T'?:% the
prediction region, is a set that contains the true labeling with a probability of at least 95%.
Typically %% also contains the prediction . We call § the point prediction. In case of
classification T'°% may consist of a few of these values or, in the best case, just one [31].
Given a nonconformity measure, the conformal prediction algorithm produces a prediction
region I'® for every probability of €. The region for I'® is a 1 — € prediction interval which
contains ¢. with a probability of at least 1 — €. The regions for different € are nested: when
€1 < €9: so that 1 — ¢€; is a lower level of confidence than 1 — €5 , we have 't C "2, If I'*
consists of only one entry (label) we may ask our self how small € can be made until the
cardinality changes, the obtained 1 — € is the level of confidence.

To summarize these points, the most useful prediction is those containing exactly one
label. Therefore two error rates are of particular interest, €; being the smallest € and es
being the greatest € so that |I'¢| = 1. ey is the p-value of the best and €; is the p-value of
the second best label y. So the prediction can be summarized as

(confidence) =1 — €1 =1 —py, , (10)
(credibility) = €2 = py,., (11)

Confidence says something about being sure that the second best label and all worse ones are
wrong. Credibility says something about to be sure that the best label is right respectively
that the data point is (un)typical and not an outlier.

As further pointed out in [39, 9] there are two approaches to construct conformal predic-
tors by means of inductive or transductive learners, here we focus on transductive learners
(for details see [39, 9]). While the just sketched theoretical framework of conformal predic-
tion is a generic statistical approach, the concrete utilization needs a so called nonconformity
measure which is individual for each type of algorithm.



Definition 1 (Nonconformity measure) A nonconformity measure is a function A :
B x Z — R With B as the set of all finite bags of elements in Z.

In practical applications A is chosen such that large values of A(B,z) indicate that z is
strange relative to B. As an example for classification suppose D = R¥ and Y finite. Then,
a useful nonconformity measure is:

ming.,, —y d(zi,y)

Az, ... =
(21,...,2n,2) Min.y, £, d(T;,Y)

where d refers to an arbitrary distance measure. A 95% confidence region for y, is con-
structed by a nonconformity measure A, old examples z1,...,2,_1 and a new object .
The procedure can be summarized as follows. We consider each labeling y € Y with B a bag
consisting of z1,...,2,_1 together with z,,y. Let now B~ the bag obtained by removing
2;, further define W; = A(B~%, 2;) with i = 1,...,n and set:

n

Py =

Then p, is the p-value for the current labeling y. It is the fraction of the elements in B that
are at least as strange relative to the others as (z,,y). Finally we include y in the confidence
region if and only if p, > 0.05.

4.1.2 Conformal prediction with prototype based classifiers

GLVQ and variants are successful prototype based learning algorithms with a winner rule
in accordance or similar to the Eq. 1 used in the corresponding cost function. Multiple
variants of this scheme have been presented but their common property is the existence of
the distances d* and d~ (closest winner with the same (+) labeling or closest prototype
with a different label (—)) used in the cost function to optimize the prototype positions.
To transform GLV(Q variants into conformal predictors a nonconformity measure has to be
determined which is of the form of Def. 1

For prototype based networks one natural measure of non-conformity (C(vi,¢;) for a
given sample v; and a given (crisp) labeling ¢; is the sample margin as the distance of the
data point to the closest prototype with the same label (+) normalized by the distance of
this item to the closest prototype with an alternative labeling (—):

C(Vi, ci) = d;rLlin,)\(WI" Vi)/d;in)\(wﬁ Vi) = d;;in,)\(xm yi)/dr:lin,)\(xr’ Y1) (12)

Here, )\ is some parametrization of the underlying distance measure d and the classifier
decision is considered to be safe if the obtained non-conformity score is small - by means of
a small distance of the datapoint to its closest prototype with the same labeling.

4.1.3 Confidence estimates within clinical studies

Conformal predictors require the definition of a valid nonconformity measure of the used
modeling approach. In the former section such as measures have been presented for GLVQ
networks which is applicable for SRNG as well. The estimation of confidence and credibility
based on conformal prediction can be done by either induction or transduction. While the
former is very common it has the drawback, that multiple splits in the data into hold-out-
subsets are necessary. The transductive method avoids additional splits but is computa-
tionally expensive if the number of samples or the number of labels becomes (very) large.
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In clinical proteomics the number of samples is typically small, in general around 50 — 500
samples per class with a number of classes below 10. Hence a transductive approach is
still applicable, avoiding unnecessary splittings of the data while keeping computations re-
liably effective. The number n used in the modeling should, however not become to small.
Otherwise the validity of the conformal prediction will be decreased, or more precise the
confidence bounds getting worse.

5 Clinical Data

Serum protein profiling is a promising approach for classification of cancer versus non-cancer
samples. The data used in this paper are taken from a colorectal cancer (CRC) study and
patients from healthy individuals®. Here it should be mentioned only that for each profile a
mass spectrum is obtained within an analyzed mass-to-charge-ratio of 1500 to 3500Da. Two
sample spectra are depicted in Figure 1. The data have been preprocessed as explained before
using the approach published in [28]. The spectra are encoded by 416 wavelet-coefficients
which leads to a data reduction of &~ 95% using the rawdata and is approximately twice
the range of the number of peaks as obtained by the standard peak picking approach as
proposed in [16] The preprocessing step has to be included in the crossvalidation procedure
to avoid overfitting. For the considered data set it could be observed that the discriminating
wavelet coefficients (with respect to the ks-test) at p < 0.01 including a p-value adjustment
in accordance to bonferroni, reduce further to 101 (CRC) or 40 (LC) significant coefficients
in a 5—fold double cross validation. The wavelet method was used as mentioned in the
previous section with L = 4.

The data set consist of 100 - colorectal cancer (CRC) and 90 - lung cancer (LC) data
points. For the colorectal cancer and lung cancer study, 50 samples are taken from patients
suffering from colorectal or lung cancer and the remaining samples are taken from a matched
healthy control group. Colorectal cancer (CRC) is among the most common malignancies
and remains a leading cause of cancer-related morbidity and mortality. It is well recognized
that CRC arises from a multistep sequence of genetic alterations that result in the trans-
formation of normal mucosa to a precursor abdomen and ultimately to carcinoma. Given
the natural history of CRC, early diagnosis appears to be the most appropriate tool to re-
duce disease-related mortality. Currently, there is no early diagnostic test with sufficient
diagnostic quality, which can be used as a routine screening tool. Therefore, there is a need
for new biomarkers for colorectal cancer that can improve early diagnosis, monitoring of
disease progression and therapeutic response and detect disease recurrence. Furthermore,
these markers may give indications for targets for novel therapeutic strategies.

6 Experiments and Results

We focus on a supervised data analysis and reduce the dimensionality of the data by use of
a problem specific wavelet analysis combined with a statistical selection criterion. We avoid
statistical assumptions with respect to the underlying data sets, but take only measurement
specific knowledge into account.

Hence we have a 101 and a 40 dimensional space of wavelet coefficients and we use mul-
tiple algorithms and metrics to determine classification models. We focus on the presented
SRNG algorithm.

5Details about the data source can be obtained via Bruker Daltonik GmbH, 04109, Leipzig, Deutscher
Platz 5d, Germany (km@bdal.de)
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We trained in a first investigation a SRNG with 1 prototype per class which has been
initialized as the mean of 30 randomly selected points from the training data, labeled by a
post labeling procedure. The prototype optimization was done until convergence with an
upper limit of 2000 iterations and a learning rate of & = 0.01 using the strategy as proposed
in [35] and [12]. The relevance parameters A; of the scaled Euclidean metric are adapted in
parallel. This leads to a ranking of the input dimensions according to their importance for
classification. A typical relevance profile using scaled Euclidean metric is depicted in Figure
3. The most important frequencies are indicated by high spiked (absolute) values. The
depicted frequencies contribute substantially to classification accuracy and, therefore, are
important for distinction of the classes. In all analyses we used a 5-fold CV in accordance
to the suggestions in [21] because the number of sample is not so small and they are reliable
homogeneous per group.

Considering the CRC study the SRNG models obtained at least ~ 78% cross validation
accuracy in a 5-fold cross-validation. The usage of relevance learning typically improved
the results by 10% such that a good prediction accuracy of around 90% could be achieved.
The LC data set was found to be more complicated and the best obtained predictions are
close to 80%. Considering the relevance profiles, looking for high ranked features, the data
show the following picture. For the CRC study both metrics scaled functional and scaled
Euclidean metric show similar profiles as depicted in Figure 3, the most significant features
are consistent with findings as obtained by a standard peak based analysis. For the LC data
set the situation is different. For the profile with scaled Euclidean metric most features are
ranked as equally important with some minor exceptions. The most significant feature is
encoding a peak not picked by the standard approaches and gives a cross validation accuracy
of ~ 78% for its own using a kNN (k = 3) classifier on that feature. This shows that the
wavelet encoding may help to reveal discriminative features and peaks not identified so far.
The relevance profile on the LC data using the functional metric is a bit more diverse. The
feature rankings are still similar with respect to the Euclidean profile but some features are
pruned. Here different explanations are possible. For one position in the profile at around
2660Da a closer inspection with respect to the original data shows that this peak is the
main peak of a quintet of closely located peaks. In the Euclidean relevance profile each peak
got some relevance and the main peak obtained a higher relevance. In the functional metric
only the right neighbor of the main peak is weighted high while the remaining neighbored
peaks are pruned out. Further a correlation analysis of the intensities of the associated
peak at 2670Da shows, that the discrimination power of this peak is similar to that of
the new peak at around 2790Da which was pruned out in the functional metric but was
most significant using the Euclidean metric. Hence the data representation of the functional
metric is more sparse but similar discriminative as also visible in the crossvalidation results
which are slightly better using the scaled functional norm on the LC data set. A comparison
of the SRNG results using the different metrics and alternative algorithms is given in Table
1. It should be mentioned that for SVM the presented functional metric can not be applied
directly because the generalized LP distance has no inner product. A potential alternative
would be the use of a Sobolev metric which mimics the functional nature of LP distance but
supports an inner product making the generation of a functional kernel possible [33].

One observes that the results are competitive with respect to other classifiers. The
wavelet prepared data perform similar than a standardized peak picking approach with
other parameters fixed but allow also the usage of features with complicated peak shape or
smaller S/N level, which may be overseen by a standard peak picking approach. Considering
the cross validation results for each data set in Table 1 it can be observed, that similar
results were obtained using the different metrics. However the metrics itself show different
properties. The relevance profile of the scaled Euclidean metric indicates most important
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Figure 3: Visualization of a typical relevance profile obtained by SRNG using scaled Eu-
clidean metric (upper part) and the functional norm (lower negative part of the plot) on
the CRC study. Features with larger values indicate higher relevance with respect to the
classification task. The x-axis indicates the relative mass position of the corresponding
wavelet coefficient in the original spectrum. The y-axis is a relevance measure € [0, 1]. Here
relevances for the functional norm are indicated by negative values for illustration purposes.

data features in a univariate interpretation whereas the generalized LP norm takes local
neighborhoods or correlations in the data space into account while keeping the functional
nature of the MS spectra. Therefore also descents in the function and not just peaks as
well as correlative effects can be interpreted as relevant features. This trace of information
can be further analysed by e.g. LC/MS techniques to test if a potential useful pattern can
be observed which in the current linear measurement has not been sufficiently resolved so
far. Beside of these good results the LVQ based approaches generates models which can
be interpreted very easily by clinicians because the primal model parameters (prototypes)
are representative for their receptive field. This is similar to the concept of a prototypical
patient.

In Figure 5 an illustration of conformal prediction results for 20 samples of the lung cancer
data set is given. The conformal prediction was done using the SRNG with the parametrized
functional metric and the parameter settings as mentioned above. To interpret the shown
values one should remember that high (e.g. 100%) confidence means, that all labels except
the predicted one are unlikely. If say, the 10th example where predicted wrongly, this would
mean that a rare event (of probability arround 1%) had occured; therefore, we expect the
prediction to be correct which it is. In the case of the item 8 the confidence is also quite high
(arround 90%), but we can see that the credibility is low arround 30%. From the confidence
we can conclude, that the alternative label is excluded at the 10% level, but the predicted
label itself is excluded at a level of around 30%. This shows, that the prediction algorithm
was unable to extract from the training set enough information to allow us to confidently
classify this example: the strangeness of the labeling different from the predicted label may
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Figure 4: A gel view of the two classes (LC study) with the control class (region A) and
cancer class (region B). The relevant mass positions are indicated by arrows (bottom) using
the relevance profile of SRNG with scaled Euclidean metric (top overlaid plot) or functional
norm (bottom overlaid plot).

be due to the fact, that the object itself is strange; perhaps the spectrum is very different
from all examples in the training set. Unsurprisingly, the prediction for this example is
wrong. In general, high confidence shows that all alternatives to the predicted label are
unlikely. Low credibility means that the whole situation is suspect. In summary we can
trust a prediction if the confidence is close to 100% and the credibility is not low (e.g. not less
than 5%) [39, 9]. Taking this advice into account (with a confidence threshold of 95%) and
reanalyzing the results shown in figure 5, only the items {4,5,9, 10,15} would be consideres
as trusty results with high confidence and moderate or high credibility and indeed the labels
for these items are correct predicted. Lowering the confidence level to 90% gives 10 trusty
results, but for item 11 the prediction is wrong which means, that for this item a rare event
has occurred. An analysis of further samples sets, in the way as shown in Figure 5 reveals
that in general very low credibility or low confidence with high credibility, for a single item
is indeed a good indicator for miss classifications, motivating the rejection of this item or
assignment to the reject class. Which in our case of two classes should be interpreted as
an unclear classification, where the considered item may belong to non of the two classes.
Using the methodology of conformal prediction classification results can be judged not only
on the basis of averaged cross validation accuracies but also in a fine granular single item
analysis.

Initial results using the conformal prediction approach are promising. The conformal
prediction on the test data sets give similar accuracy than with the standard classifiers but
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Figure 5: Visualization of conformal prediction results for 20 samples of the lung cancer
data set using the parametrized functional metric. Positive entries show the values for the
credibility in an obtained class prediction and negative values indicate the confidence of the
single results. The predicted class labels 0, 1 are given by black circles at 0 or 1 respectively.
Miss classifications are indicated by red stars at the 0-level.

Dataset CRC data LC data

Method CV-Rec CV-Conf CV-Cred CV-Rec CV-Conf CV-Cred
SNG-EUC 77.89% 89.28% 60.15% 75.00% 85.07% 64.15%
SNG-LP 78.95% 89.41% 60.00% 75.00% 85.06% 64.20%

SRNG-EUC | 90.53%  95.86% 53.48%  74.00% = 88.52% 63.74%
SRNG-L* 89.47%  95.68% 56.42%  78.00%  88.80% 59.67%

SVM-Linear | 88.42% n.a. n.a. 67% n.a. n.a.
SVM-RBF 90.53% n.a. n.a. 2% n.a. n.a.
SVM-CPT 86.00% n.a. n.a. 74.00% n.a. n.a.
SNN-CPT 85.78% n.a. n.a. 72.00% n.a. n.a.

Table 1: Cross validated prediction accuracies, and corresponding mean confidence and
credibility values for SRNG using conformal prediction and different distance measures in
comparison to alternative standard approaches on wavelet encoded data. The last two rows
are for comparison with the standard peak picking based approach as available in ClinPro-
Tools using default settings for SVM and SNN (a prototype classifier approach similar to
SRNG).

in addition for each datapoint a confidence and credibility measure becomes available which
allows a judgment of the classification decision for each single patient in a statistical manner.
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7 Conclusions

We presented a specific pre-processing for mass spectrometric data analysis combined with
an extension of the SRNG by a functional metric and integration of conformal prediction.
The presented processing of the spectra aims on a natural compact encoding of the signals
by means of a functional representation, while the classification model is especially suited to
deal with high dimensional sparse data and allows strong regularizations to reduce overfitting
effects.

In an initial setup the presented scenario has been embedded into a conformal prediction
approach which allows the determination of clinical relevant confidence measures. The
extension of conformal prediction for multiple types of prototype based classifiers has been
presented.

Beside of the good results the problem of high dimensionality is still remaining. An
analysis of proteomic spectra based on peak lists is in general easier to handle, e.g. it is
easy to apply multiple different classification models. The wavelet based approach leads to
a compact but still high dimensional representation of the data and overfitting may be a
stronger issue than in contrast to a standard peak picking approach.

In future research a stronger integration of domain specific knowledge will be tried to
overcome these problems and to make the approach more robust and easier to apply 6. We
will also apply the method using the priorly motivated Sobolev-Kernel[33] to improve the
functional encoding using SVM.
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3.2. SUPERVISED DATA ANALYSIS AND RELIABILITY ESTIMATION FOR SPECTRAL DATAS87

3.2 Supervised data analysis and reliability estimation
for spectral data

The article Supervised data analysis and reliability estimation with exemplary application for
spectral data, by F.-M.Schleif, T. Villmann and M. Ongyerth, appeared in NeuroComputing
72 (16-18), p. 3590-3601, in 2009. The article provides an in depth analysis of prototype
based learners equipped with conformal prediction techniques for the analysis of functional
data. Particular, a thresholding approach is proposed which can be employed in the analysis
of functional spectral data combining the two measures of confidence and credibility, derived
from conformal predictions. This permits to provide a reject region for prototype based
learning based on a strong formalism. The approach is applied to classify remote satellite
imaging data and found some novel insights in the data. I developed the thresholding
algorithm and necessary experimental workflow. Experiments where done by myself and M.
Ongyerth. The project was supervised by T. Villmann, who also provided the preprocessed
spectral data and additional knowledge about the analysis of remote sensing data. The
article was widely written by myself with specific contributions by the co-authors. All
authors discussed the general article.

Additional publications in international conferences where I am co-author and which
cover a similar or related topic include:

1. X. Zhu, F.-M. Schleif, B. Hammer, Secure Semi-Supervised Vector Quantization for
Dissimilarity Data, In Proceedings of IWANN 2013, accepted, 2013 (Content: We
extend the semi-supervised relational learning algorithm to non i.i.d. problems)

2. X.Zhu, F.-M. Schleif, B. Hammer, Semi-Supervised Vector Quantization for proximity
data, In Proceedings of ESANN 2013, 89-94, 2013 (Content: Relational learning is
extended by self training concepts coupled with conformal prediction)

3. F.-M. Schleif, X. Zhu and B. Hammer, A conformal classifier for dissimilarity data,
In Proceedings of ATAT 2012, 234-243, 2012 (Content: Relational learning is extended
by conformal prediction concepts)

4. K. Bunte, P. Schneider, B. Hammer, F.-M. Schleif, T. Villmann and Michael Biehl
Limited Rank Matriz Learning, discriminative dimension reduction and visualization,
In Neural Networks, 26, p. 159-173, 2012 (Content: Matrix learning with limited ranks,
leading to an internal low dimensional representation of the data, is proposed. The
method can be used to identify discriminating features, but also to get a discriminative
low dimensional visualization of the data. In the experiments we used the same remote
sensing data as above.)
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Abstract

The analysis and classification of data, is a common task in multiple fields of experimental
research such as bioinformatics, medicine, satellite remote sensing or chemometrics leading to
new challenges for an appropriate analysis. For this purpose different machine learning methods
have been proposed. These methods usually do not provide information about the reliability of the
classification. This however is a common requirement in e.g. medicine and biology. In this line
the present contribution offers an approach to enhance classifiers with reliability estimates in the
context of prototype vector quantization. This extension can also be used to optimize precision
or recall of the classifier system and to determine items which are not classifiable. This can lead
to significantly improved classification results. The method is exemplarily presented on satellite
remote spectral data but is applicable to a wider range of data sets.

Keyword: spectral analysis, reliability estimation, classifier optimization, conformal prediction,
rejection region, conformal thresholding

1 Introduction

The generation of classification models, is a common task in multiple fields of experimental research
such as bioinformatics, medicine, satellite remote sensing or chemometrics [23, 25]. Reliability
estimation of the obtained classification models is frequently required. In traditional statistics this
information is usually provided by significance levels whereas for machine learning models such
estimators are rare. Recently a learning theoretical approach for this problem was proposed by
[33], called conformal prediction. We adapt this model for utilization of prototype-based classifiers
like Learning Vector Quantization (LVQ) namely Supervised Relevance Neural Gas (SRNG) [32].
This model classifies each sample prototype-based and additionally offers a level of its classification
reliability.

We demonstrate the capabilities of this method for classification of satellite remote sensing spec-
tral data. For this type of data true color images allow a visual control of classification accuracy
[8]. In this specific application another aspect is given by the functional character of the data which
requires an adequate handling [19, 23, 29]. In particular we favor the usage of functional distances
for similarity determination instead of standard euclidean metric.
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The paper is organized as follows. First we briefly introduce the main ingredients for our model.
We start with a short review of the Supervised Relevance Neural GAS (SRNG) for prototype based
classification [32] and demonstrate how this approach can deal with different types of metrics in-
cluding a functional metric. Thereafter the method of conformal prediction [33] is discussed in the
light of prototype based classifiers. It is shown how a thresholding approach can be employed in
the analysis of functional spectral data combining the two measures of confidence and credibility as
derived from conformal predictions. The experimental settings of our approach are defined. In the
experimental section we apply our framework on data obtained from remote satellite imaging. The
data are analyzed in detail and some new findings are made which have not been reported so far. The
paper is closed by a summary and a discussion of open points and research directions.

2 Material and Methods

2.1 Supervised Neural Gas for functional Data

Supervised Neural Gas (SNG) [10] is considered as a representative for prototype based classifi-
cation approaches as introduced by Kononen [15]. Different prototype classifiers have been pro-
posed so far [15, 21, 10] as improvements of the original approach. The SNG combines the
idea of neighborhood cooperativeness during learning from the unsupervised Neural Gas algorithm
(NG)introduced in [18] with the supervised Generalized learning vector quantizer (GLVQ) as given
in [21]. Subsequently we give the basic notations and some remarks to the integration of alternative
metrics into Supervised Neural Gas (SNG). Details on SNG including convergence proofs can be
found in [10].

Let us first clarify some notations: Let ¢y € £ be the label of input v, £ a set of labels (classes)
with #£ = Ny. Let V C RV be a finite set of inputs v. LVQ uses a fixed number of prototypes
(weight vectors, codebook vectors) for each class. Let W = {w,} be the set of all codebook vectors
and ¢, be the class label of w,. Furthermore, let W.= {w;|c; = c} be the subset of prototypes assigned
to class ¢ € £ and W, is the cardinality of W.,.

In vector quantization a stimulus vector v € V is mapped onto that neuron s € A the pointer w,
of which is closest to the presented stimulus vector v,

‘P(l,_)ﬂ 1V > s (v) = argmin,,d* (v, wy) €))

d* (v, w) is an arbitrary differentiable similarity! measure, which may depend on a parameter vector
A. For the moment we take A as fixed. The neuron s (v) is called winner or best matching unit. The
subset of the input space

Q;.l = {V eV:.r= TV—)A (V)} (2)

which is mapped to a particular neuron r according to (1), forms the (masked) receptive field of
that neuron forming a Voronoi tessellation. If the class information of the weight vector is used, the
boundaries AQ generate the decision boundaries for classes. A training algorithm should adapt the
prototypes such that for each class ¢ € L, the corresponding codebook vectors W, represent the class
as accurately as possible. This means that the set of points in any given class V. = {v €V|cy = ¢},
and the union U, = Umﬁw( Q, of receptive fields of the corresponding prototypes should differ as
little as possible.

! A similarity measure is a non-negative real-valued function, which, in contrast to a distance measure does not necessarily
fulfill the triangle inequality and the symmetry property.



We suppose to have m data vectors v;. As pointed out in [10], the neighborhood learning for a
given input v; with label ¢ is applied to the subset W,.. The respective cost function is

S h, (r,vi,W,.) - ,
Costsne 1) =), ) _— C(;) KJi;M(r = 3)

i=1 rlw,eW,,

. _ di—d}
with f(x) = (1 +exp(-x)) I,h7 (r,v,W) = exp (—M) and py(r,v) = d;’+d:‘:

defined as the squared distance to the best matching prototype but labeled with ¢, # ¢y, say w,._ and
d! = d* (v, w,). For a detailed formal analysis of SNG we refer to [10].

whereby d{ is

2.1.1 Incorporation of a functional metric to SNG

As pointed out before, the similarity measure d* (v, w) is only required to be differentiable with
respect to 4 and w. The triangle inequality has not to be fulfilled necessarily. This leads to a great
freedom in the choice of suitable measures and allows the usage of non-standard metrics in a natural
way. We now review a functional metric as given in [16]. This type of metric is especially suited in
case of functional data because it takes consecutive points into account which is a natural property
in case of functional data. In [16] a successful application of this type of metric was shown using
the well known tecator data provided in [2].

The corresponding derivations can be plugged into the above equations leading to SNG with
a functional metric, whereby the data are functions represented by vectors and, hence, the vec-
tor dimensions are spatially correlated. A similar situation can be observed for satellite spectra as
demonstrated in [26].

Common vector processing does not take the spatial order of the coordinates into account. As a
consequence, the functional aspect of spectral data is lost. For proteom spectra the order of signal
features (peaks) is due to the nature of the underlying biological samples and the measurement
procedure. The masses of measured chemical compounds are given ascending and peaks encoding
chemical structures with a higher mass follows chemical structures with lower masses. In addition
multiple peaks with different masses may encode parts of the same chemical structure and hence are
correlated.

LEee proposed a distance measure taking the functional structure into account by involving the
previous and next values of x; in the i-Th term of the sum, instead of x; alone. Assuming a constant
sampling period 7, the proposed norm is:

1

D P
Licc (v) = [Z (Ax (V) + B (V))pJ “
k=1
with
5lv if 0 < vy
A (V) = z| k|v£ ! kVi-1 .
I 0> v
5l if 0 < wyv
By (v) = 3l k|v2 . kVi+1 o
%lvk|+|l;’k+|| if 0 > ViVi+1

are respectively of the triangles on the left and right sides of x;. Just as for L, the value of p is
assumed to be a positive integer. At the left and right ends of the sequence, xy and xp are assumed
to be equal to zero. The derivatives for the functional metric taking p = 2 are given in [16]. Now we



consider the scaled functional norm where each dimension v; is scaled by a parameter A; > 0 4; €
(0,17 and }}; 4; = 1. Then the scaled functional norm is:

D »
LI (v) = (Z (Ag (AV) + Bi (Av))? ™
k=1
with
LA ve] if O < vpvpe
AL(aY) = {3 Kl JZIM kVi-1 (®)
3 Tl A €18€
T el if O < vy
By (Av) = {f ¢l ];lzvg e ®
2 il A1 Ve else

The corresponding derivations can be found in [26]. Using this parametrization one can empha-
size/neglect different parts of the function for classification. This distance measure can be put into
SNG as shown above and has been applied subsequently in the analysis of the spectra. SNG with a
parametrized metric is subsequently referred as SRNG. The functional metric will be just referred
as FUNC and will be always used with metric adaptation if not stated otherwise.

2.2 Conformal prediction - Reliability estimation

In the analysis of spectral data the determination of a classifier is a difficult task. The data are
functional and in general high dimensional and only few assumptions about the specific nature (e.g.
distributions) of the data can be made. Due to this reasons an analysis using classical statistics
such as statistical tests for group comparisons, Linear discriminant analysis or partial least squares
methods (see e.g. [12] for an overview) can not be applied, in general. Alternatively so called soft
methods, with only minor assumptions about the specific properties of the data, are used. Typical
representants of these type are prototype based classifiers such as the formerly mentioned Supervised
Relevance Neural Gas [11] and variants or the famous Support Vector Machines (SVM) [28]. These
methods have already proven to be appropriate for the analysis of spectral data [22, 24] also in case
of very high dimensional complex problems. A drawback of these methods, in contrast to classical
statistics, is the lack of reliability measures, which similar to the well known p— or g-values can
be used to judge the significance or reliability of a taken decisions. Only few attempts were made
to give reliability estimates for these methods (see e.g. [5, 7]). Thereby the reliability estimate can
be helpful to judge on the reliability of a decision but also in a more generic framework to improve
the overall performance of the classifier. Reliability sometimes also referred as confidence, has been
subject of a quite new theory called conformal prediction as introduced in [33]. These theory directly
aims on the determination of confidence and as a second measure credibility of classifier decisions.
The stability of the algorithm presented here follows immediately from the stability analysis of
conformal prediction as provided in [33] because our approach is directly derived from it. According
to this analysis the algorithm is stable in stochastic sense. Thereby the type of the classifier is
not much limited but it is assumed that a so called non-conformity measure is available, revealing
relevant knowledge of the classification decision. Subsequently we introduce the relevant parts of
the conformal prediction approach and detail how it can be used in the analyzed experiments.

2.2.1 Settings

For the introduction to conformal prediction we switch to a more practical notation. Let the training
dataz; = (x;,y)) € Z=XxY,i=1...Lbe given by the data points x; € X = RP" and their labels



vieY ={L,2,...,N,} belonging to one of the N classes. Furthermore let x;,; be a new observed
data point with unknown label y; | and classification / prediction y 1.

For conformal prediction we need the following terms: conformal prediction algorithm, predic-
tion region, nonconformity measure,r-value, error rate €, confidence & credibility, exchangeability
and validity which are explained in more detail subsequently.

In our setting the conformal prediction algorithm computes for the given training data (z;)i=1... 1,
the observed data point x;,; and a chosen error rate € the prediction region I'*(zy, ..., 2z, X1+1) C Y
consisting of 0 to n possible labels. The applied method ensures us that if the z; are exchangeable®
then

POra €Tz, ... 2, x041)) < € (10)

holds asymptotically for L — oo for each distribution of Z. One says that the predictor is asymptoti-
cally valid. 1t is important to mention, that the probability is an unconditional one what means, that
if we repeat the process of drawing samples x;,; and generating I'"* n times we will find with respect
to statistical fluctuations that in less than € X n cases the real label y;,; is not under the predicted
labels of I'“. It does not mean, that for a certain x| yz+; is in I'® with probability > 1 —e€. As counter
example one considers an empty prediction region for which this conditional probability becomes
exactly zero. Such cases may happen if the observed sample x;.; is extremely rare in X (Z) in such
a way, that it is not typical with respect to the given training data. So it does not effect the error rate
(10).

The conformal prediction algorithm is illustrated in Figure 1 and (11)-(15). The non conformity
measure A(D;, z;) is used to calculate a non conformity value «; that estimates how badly z; fits to
the representative data D;={z1,. .., zr+1
z;}. For a certain prediction y one calculates its r-value by adding z;+1 = (xz+1,9) (11) to the
training data (12), calculating the a; by checking each z; against the rest (13) and retrieving ry as the
relative amount of samples that are as bad or worse conformal to all remaining examples (14). For
a reasonable non conformity measure A @ | should be small if x;,; is typical and the prediction ¥
is right and typical for the data point x7 ;. This involves a high r; and a membership of $ in I'* for
most €. If xz, is untypically or y is wrong A should detect this mismatch and generate a big a4 ;.
In this case only a few examples of the training data have a greater nc-value such that r; will be quiet
small. As a consequence ¥ will only be contained in I"* for smaller e.

VyeY
def R

21 = (5241, 9) (11)

VYie{l,...L+1}
D ={z1,...,ze+1) \ {2} (12)
a; = AD;, z) (13)

fa;: a; > apql

p = oot A = Ll 14
s L+1 (14)
I“={y:ry>e€ (15)

2.2.2 Non Conformity Measure

As explained in the previous section the non conformity measure should evaluate the fit of a test
example z; to representative data D;. It is those part of the method that can incorporate detailed

2exchangeability is a weak condition: e.g. independently and identically distributed random variables are exchangeable
[33]
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Figure 1: Schema of cooperating parts in conformal prediction. As it can be seen the conformal
prediction algorithm uses the training data and an arbitrary non conformity measure to generate
valid prediction regions. Normally one wants to incorporate a neural map to calculate meaningful
nc values.



knowledge about the data distribution. In our setting its the place to use the learned neural map (as
A in Figure 1). Nevertheless one can use any arbitrary real valued function 3 (10) but maybe with
negative impact on prediction efficiency (see 2.2.3). To apply this on a prototype based situation
one has to think about how the match between arbitrary z; and D; could be managed. A obvious
solution, to learn a neural map with each individual D; and match z; against it, would entail high
computational costs, because this has to be done for all the L one left out multi-sets D; for each of
arbitrariness of A 4. We can ignore matching z; exactly against D; but instead use the whole training
data without z; 1, therefore learning must be performed only once. The lost amount of information
will be small if the number of training data is high, so that adding z; but leaving out z;.; will not
change learning results dramatically.
Obvious measures for prototype based methods are k nearest neighbor methods for example:

k +
_ 219
Zj:l ij

with d;']. being the given distance between x; and the j-th nearest prototype with identical label y;
and dl.’j being the given distance between x; and the j-th nearest prototype with a label different to y;.
Other measures are conceivable.

(16)

2.2.3 Prediction Region

The prediction region I'*(z1, . .., z7, X;+1) stands in the center of conformal prediction. It contains for
a given error rate € the possible labels of Y that ensures (10). But how can we use it and how will it
change for different values € and different A?

Suppose we are using a meaningful non conformity measure A. If we would set € nearly to O
then conformal prediction has to produce I'’s that makes nearly no error at all, which can only be
satisfied if I" contains all possible labels. Of course such a prediction bears no information. But
if we slowly raise € we allow some rare errors to occur and as a benefit the conformal prediction
algorithm excludes some unlikely labels from our prediction region and increasing its information
content. In detail those y are discarded whose r-value is less equal €, that means only a few z; are
as non conformal as 741 = (x1+1,9). This is a strong indicator that z;,; does not belongs to the
distribution Z and so § seams not to be the right label. If one further raises € only those $ will remain
in I" that can produce a high r-value meaning that the corresponding z; . is rated as very typical by
A.

So one can trade the error rate against information content. The most useful prediction is those
containing exactly one label. Therefore two error rates are of particular interest, €; being the smallest
€ and e, being the greatest € so that [['¥| = 1. e, is the r-value of the best and ¢ is the r-value of the
second best label y. So the prediction can be summarized as

{(confidence) =1 —¢ =1-r1,,, (17)
k(credibility) = € = ry,, (18)

Confidence says something about being sure that the second best label and all worse ones are
wrong. Credibility says something about to be sure that the best label is right respectively that the
data point is (un)typical and not an outlier.

As mentioned in 2.2.2 the non conformity measure has a direct impact on the efficiency of the
prediction region. A good, informative measure will exclude wrong labels for small error rates and

3 Any measureable function on Z®*) x Z taking values in extended real line is called a non conformity measure
“This could be a constant function or a relatively to z; fixed random value leaving out D; at all



will reject typical data only for great error rates, meaning that €, — € being large for typical data.
That means, that a good measure can give useful information already for an ensured (10) small error
rate €; and on the other hand one would have to face up a high average error rate ¢, to exclude the
right label from the prediction region.

For practical applications here we are only interested on prediction regions with |[[| = 1. For
these regions natural measures of confidence and credibility become available by application of
the conformal prediction methodology. These two values combined with the conformal prediction
(predicted label) can be employed subsequently not only to estimate the pointwise reliability of the
classification but also to improve the classifier system, by means of a thresholding approach.

2.2.4 Recall/Precision/Thresholding with Conformal Prediction

Recall-Precision graphs are very common in the field of information retrieval (IR) to estimate the

performance of the considered IR-system [17]. Here we use this graphs in combination with a

thresholding to improve the overall classifier performance. Thereby the recall R and the precision P
are defined as:

C c*

R=— P=—

L C

with C as the number of classified (not rejected) data points and C* as the number of correct classi-
fied data points. Further we introduce a so called rejection set S, and an acceptance set S,

19)

Sr={xi:G<4GVKi <k} Sa={x:4280 MK 2 k) (20

with {;/k, as the user defined confidence/credibility thresholds. For a chosen threshold pair ¢;/«;
the definitions for recall R and the precision P are adapted in the natural way using the acceptance
region such as the thresholded recall R, ) and the thresholded precision P, ,,) become:

1S, [Sal”
Rty = ——

o= el 21
7 @) = 15 2D

with |S,| as the number of classified (not rejected) data points in the acceptance set and |S,|* as the
number of correct classified data points in the acceptance set. An example of such a recall/precision
graph for different thresholds ¢;/«; is given in Figure 3.

3 Data description

We applied the algorithm to a large real world data set: a multi-spectral LANDSAT TM satellite im-
age of the Colorado area. Airborne and satellite-borne remote sensing spectral images consist of an
array of multi-dimensional vectors (spectra) assigned to particular spatial regions (pixel locations)
reflecting the response of a spectral sensor at various wavelengths. A spectrum is a characteris-
tic pattern that provides a clue to the surface material within the respective surface element. The
utilization of these spectra includes areas such as mineral exploration, land use, forestry, ecosystem
management, assessment of natural hazards, water resources, environmental contamination, biomass
and productivity; and many other activities of economic significance [20].

Spectral images can formally be described as a matrix S = v*¥), where v**) € RP is the vector
(spectrum) at pixel location (x,y) with D¢, = 6. The description of the spectral bands is given in
Table 1. The elements vgx’y), i =1...Dq of spectrum v*» reflect the responses of a spectral sensor
at a suite of wavelengths [4]. The spectrum is a characteristic fingerprint pattern that identifies the
averaged content of the surface material within the area defined by pixel (x,y). The individual 2-
dimensional image S; = v;*>) at wavelength i is called the ith image band. The data density P (V)



ID | frequency range  label  resolution bits
1 0.45-0.52 blue 30 x 30 8
2 0.52-0.60 green 30 % 30 8
3 0.63-0.69 red 30 x 30 8
4 0.76-0.90 near IR 30 x 30 8
5 1.55-1.75 mid IR 30x 30 8
7 2.08-2.35 mid IR 30x30 8

Table 1: Characteristics of the Landsat imaging device

may vary strongly within the data. Sections of the data space can be very densely populated while
other parts may be extremely sparse, depending on the materials in the scene and on the spectral
bandpasses of the sensor.

In addition to dimensionality and volume, other factors, specific to remote sensing, can make
the analyses of hyperspectral images even harder. For example, given the richness of data, the goal
is to separate many cover classes, however, surface materials that are significantly different for an
application may be distinguished by very subtle differences in their spectral patterns. The pixels
can be mixed, which means that several different materials may contribute to the spectral signature
associated with one pixel. This may lead to an unsafe prediction. Training data may be scarce for
some classes, and classes may be represented very unevenly (see Table 2). All the above difficulties
motivate research into advanced and novel approaches. However it should be mentioned, that the
presented approach is not limited to this type of application, but can be applied to a wider range of
(spectral) or feature driven imaging analysis such as MALDI-Imaging [8, 30], raman spectroscopy
of tissue slices or the analysis of microscopic images [3, 31] to name just a few.

The image was taken very close to colorado springs using satellites of LANDSAT-TM type°.
The satellite produced pictures of the earth in 7 different spectral bands. The ground resolution in
meter is 30 x 30 for the bands 1 — 5 and band 7. Band 6 (thermal band) has a resolution of 60 x 60
only and, therefore, it is often dropped. The LANDSAT TM bands were strategically determined
for optimal detection and discrimination of vegetation, water, rock formations and cultural features
within the limits of broad band multi-spectral imaging. The spectral information, associated with
each pixel of a LANDSAT scene is represented by a vector v € V € RPv with D = 6. The aim
of any classification algorithm is to subdivide this data space into subsets of data points, with each
subset corresponding to specific surface covers such as forest, industrial region, etc. The feature
categories are specified by prototype data vectors (training spectra). Additionally, the Colorado
image is completely labeled by experts ®. There are 14 labels describing different vegetation types
and geological formations. The detailed labeling of the classes is given in Table 2, here we also
specify the used coloring for the subsequently generated images as obtained from the classification
models’. The colors where chosen such that similar materials get similar colors in the RGB space.
In addition we show plots of the data using the HSV color space whereby the H channel encodes the
class (1 — 14 scaled to the full range), S the results of the confidence measure ¢ and V the results for
the credibility measure x. Using this setting a perfect recognition/prediction results in colors with
high saturation and colorimetry (v - channel), whereas less perfect detected data points reduce the
saturation and/or the colorimetry such that they appear darker and more dirty.

SThanks to M. Augusteijn (University of Colorado) for providing this image.

S1ts known that an exact ground truth labeling is complicated to obtain in this field and also effects such as the granularity
may significantly effect the data and hence the label precision (e.g snow may appear as water). Under this light imprecision
of the labeling is a general problem for multiple data sets.

7For better visualization in b/w the misclassifications are sometimes also given with white coloring. Due to some specifics
of the given labeling with respect to the information encoded in the data, as pointed out in the text, the class 7 (also white) is
often subject of misclassifications, anyway. Colored versions of the image can be obtained from the corresponding author.



Label | class R G B ground cover #pixels
0 128 O Scotch pine 581424

—

12255 128 O Pastureland 267495
13 0 128 128 Dry meadow 675048
14 128 128 128 Alpine veg. 27556
15 0 0 0 misclassif. -

a
b 2 128 0 128 Douglas fir 355145
C 3 128 0 0 Pine / fir 181036
d 4 192 0 192 Mixed pines 272282
e 5 0 255 O Mixed pines 144334
f 6 255 0 O Aspen/Pines 208152
g 7 255 255 255 Noveg. 170196
h 8 128 60 O Aspen 277778
i 9 0 0 255 Water 16667
j 10 0 255 255 Moistmeadow 97502
k 11 255 255 O Bush land 127464
1

m

n

0

Table 2: Short description of the different classes of the satellite image, the used similarity based
coloring (in RGB space) and the number of pixel present for each class.

Thereby, the label probability varies in a wide range. The size of the image is 1907 x 1784 pixels
8

4 Experiments and Results

To get a valid setting of the experiments the data have been split into multiple sets, such that three
data splits are obtained. These sets are named as funing set (TRS) with 1500 data points per class,
the crossvalidation set (CRS) with 3.381.079 data points has been used in a 5 X 5 cross validation,
thereby we call each test set as the rest set (RS) of this crossvalidation. For the set TRS and CRS
the points have been selected randomly from the original data set such that each class is equally
represented. The TRS has been used for parameter tuning studies, thereby the data points have been
split into a training and a test set such that 1000 points where used for training and 500 points to
determine the optimal parameters. In additional experiments it has been verified that alternative set
sizes of the cross-validation do not change the results significantly as long as the data statistics is
sufficiently preserved. For details on this topic we refer to [1].

The parameter tuning part has been done for SRNG with standard and scaled Euclidean metric
(SNG/SRNG). The identified optimal settings for the basic parameters of S(R)NG with conformal
prediction were transferred to the other models. The SRNG with appropriate parametrization has
been subsequently applied to the prior not used data in the CRS data set and evaluated in a 5 x 5-fold
crossvalidation scheme. From the crossvalidation runs, showing very small variances between the
different models, we choose the first model to label the whole satellite image. In the following we
detail the three stages of our experiments, followed by an additional analysis employing conformal
prediction in a thresholding experiment.

8Thereby 9 pixel have a unclear label and have been removed.
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Figure 2: True coloring of the satellite data. Left the coloring in accordance to the RGB channels of
the original data (data approx 1990), right a up to data image as obtained from [9]

method | W3 WIO W2 WP Wi
EUC-rec | 90.50 92.1 937 950 965
EUC-pre | 89.8 914 922 922 923
SEUC-rec | 91.1 925 939 952 965
SEUC-pre | 90.5 917 927 924 929

Table 3: Tuning results evaluated by recognition and prediction for metric Euc and SEUC varying
the map size parameter of SRNG.

4.1 Parameter tuning

As already mentioned the SRNG parameters have been optimized on a very small subset of the
original data set using the TRS split. Thereby the following parameters have been subject of opti-
mization: map size, as the number W, of prototypes per class in a range of {5, 10, 20, 50, 100} and the
parameter k of the k-NN based non-conformity measure. The remaining parameters of SRNG have
been chosen in accordance to [32] with 200 training cycles for each experiment. First we analyzed
the effect of different map sizes, as shown in Figure 3 using precision/recall graphs we also took the
prediction accuracy of the model (on the test set of TRS) to judge the appropriate size. We observed
that for a fixed k = 1 of the non-conformity measure a map size of 100 would give best results. How-
ever we found also that already 10 prototypes per class constitute a similar performance, therefore a
map size of 10 balancing performance and model complexity was chosen as the final setting. Fixing
the model size of 10 prototypes per class we varied the parameter k of the non-conformity measure
in a range of {1, 3, 5}. Again we employed the recall/precision graphs and observed that fora k = 1
the dispersion of the overall precision was optimal. It should be mentioned that for the other metrics
these parameters have been found to be stable as well as depicted in Table 3.

The use of Recall/Precision graphs motivates the use of a threshold to balance between recall
and precision (see Figure 3). This of course is very problem dependent and should probably not be
automated®. Thereby the conformal prediction approach reports the reliability parameters (£, k) for
each data point as ideal candidates for thresholding. Here we determined the thresholding parameters
for three points (95% recall, break-even, end) point using the first model of the crossvalidation part
(a model with optimized parameters) given in Table 4. The 95% recall can be considered as a natural

°In principle it is possible to get an automatic threshold determination e.g. by line fitting on the recall/precision graph -
but this is not the focus of this paper.
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Figure 3: Recall/Precision plots for the different map sizes using SRNG (without thresholding). The
curves are given as: map size 5 (dots/black), 10 (stars/blue), 20 (circle/red), 50 (filled star/magenta),
100 (arrow/yellow). The second plot shows a histogram of the credibilities determined for all data
points. The third plot shows pairs of (£, k) using the optimal map size 10 with k = 1 in the non-
conformity measure for scaled Euclidean metric and the last plot a similar curve for the FUNC
metric. This plot and the histogram may be employed to determined an appropriate threshold used
later on.
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point /)
EUCys4, 0.09/0.95
EUCy, cur 0.20/0.98
EUC,,.s 0.44/0.99
SEUCys4, 0.12/0.92
SEUC,,car | 0.20/0.97
SEUC,,.s 0.40/0.99
FUNCys¢, 0.11/0.92
FUNCyear | 0.11/0.95
FUNC.,,.4 0.47/0.96

Table 4: Optimal thresholding parameters for (£, ) as obtained by manual inspection of the re-
call/precision graph of one SRNG model with the different metrics.

metric ‘ Rec. Pred. mean Pred. std.
EUC n.a. 92.6 0.2
SEUC | n.a. 92.3 0.23
FUNC | n.a. (87.4) -

Table 5: Crossvalidation results for SRNG with metric Euc, SEUC, FUNC using the optimized
parameters, without thresholding. For the FUNC metric only one model has been calculated.

criterion which allows to omit 5% of the points, occurring quite often for the analysis of real data.
The second point in our analysis is the break-even point, which can be considered at that point of
the recall/precision graph at which a break in the recall/precision graph can be found (e.g. a ascent
of ~ 1 for a tangent fitted against the graph). The third point is an extreme of the graph at which a
further removement of points does not significantly improve the precision of the classifier'’.

The identified thresholding parameters have been used later on to get optimal precision / recall
values of the classifier on the remaining (never prior used rest data RS).

4.2 Cross validation results

The SRNG with a map size of W, = 10 and k = 1 for the non-conformity measure was applied on the
given satellite remote sensing data using the data subset CRS. Thereby the SRNG was trained using
the three considered metrics namely, standard Euclidean metric (EUC), scaled Euclidean metric
(SEUC) and the functional metric (FUNC). The results for recognition and prediction in a 5-fold
crossvalidation, without thresholding, are depicted in Table 5.

One observes that the recognition and prediction accuracies are very high with close or above
90%. An analysis of the different confusion matrices supports these finding and shows also that all
classes are sufficiently modeled. These findings support the results published in [32]. Interestingly
the differences between the different metrics are very small. Nevertheless the metric SEUC allows
the identification of discriminating features. A typical ranking of the features for SEUC is obtained
as in Table 6 and visualizations of the results using the whole image are shown in 4 and 5.

101t should be mentioned that the generated recall/precision graph may not give a graph as a function but a cloud of
distributed point. In this case we determine the convex hull of the cloud. It may also happen that the mentioned three points
do not exist but only the 95% point. For our experiments it was always possible to determine the three mentioned points.
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metric D, D, D;
SEUC | 0.08(1E7?) 0.14Q2E™?) 0.24(2E7?)
FUNC 0.12 0.19 0.20
metric Dy, Ds Dg
SEUC | 0.3(1E™%) 0.24(1E7?) 0.0(0)
FUNC 0.26 0.23 0.0

Table 6: Relevance profile for the metric SEUC and FUNC. For the SEUC mean and standard
deviation are shown.

Figure 4: RGB plot for the colorado image. The left plot shows the image with the given labeling and
the right plot the same image but with a predicted labeling using conformal prediction and SRNG
(EUC). The color table is given as is in Table 2.

Figure 5: HSV plot for the colorado image. The left plot shows the image with the given labeling
H = labeling/14,S = 1,V = 1 and the right plot the same image but with a predicted labeling
using conformal prediction, and S = {/median({), V = «/median(k) using one of the determined
models. The HSV coloring is easier to interpret using conformal prediction but the coloring is not
semantically related to the ground material.
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point Recall/Precision (CRS-1)  Recall/Precision (RS)
EUCysq, 95.05/94.59 93.89/93.18
EUChear 79.52/97.99 76.49/97.64
EUC, 4 56.93/98.90 52.49/99.07
SEUCys4, 95.18/92.20 91.54/93.08
SEUC),cqak 79.49/97.05 77.80/97.01
SEUC, 4 60.72/99.04 60.45/98.93
FUNCoys9, 95.11/91.02 94.15/89.83
FUNCeak 77.11/95.07 79.07/94.64
FUNC,,.s 31.60/98.68 48.38/98.24

Table 7: Recall and precision values by application of the thresholding on SRNG-EUC, SRNG-
SEUC and SRNG-FUNC using different thresholds for (£, «). It can be seen that there is strong
difference between the metrics but the SRNG-FUNC metric performs slightly worse than the others.
As expected a more restrictive threshold (reducing the recall) improves the precision up to 99% in
this case. Thereby also in case of a larger number of assignments to the unclassified state (EUCp,eur,
SEUC),cqk, FUNCy,eqr) the structural information of the satellite image is still kept as shown in
Figure 6.

4.3 Thresholding

While the results found so far are already very promising we were looking for further improvements
as well as a more detailed reliability estimation than plain cross validation accuracies or confusion
matrices. Therefore we employed the conformal prediction methodology on the remaining test sets
RS. The results for recall and precision using the different threshold are given in Table 7 for com-
parison the thresholding was also applied on the data used in for the first cross validation.

Multiple results can be found in the thresholding approach by considering Table 7 as well as the
HSV plots on the differently thresholded RS data (see Figure 6). As a first point we see, that the
thresholding improves the precision, not only on the CRS-1 data, which is expected, but also on the
prior not used RS data. This observation is valid for all three thresholding points. Considering the
Figure 6 we find that removing 50% of the data points still keeps the structural information encoded
in the image. The removed points are in general located at the class boundaries which are a natural
source of uncertainty with respect to the classification decision. The points removed at the EUCys¢,
level, again mainly account for class border points but there is also a significant amount of points
which appear to be inside of classes. In fact confidence and credibility of the points are in general
quite high. This however implies that the classifier was quite sure in its decision, nevertheless these
points have been found to be classified wrong. A closer inspection of these points reveals that the
most of it belong to the class 7 which is no vegetation but are classified to class 14 alpine vegetation
(not vice versa), this is surprising but considering Figure 2 (left) the effect becomes clear. Miss
classification to class 14 do always occur where the true-color image shows snow-coverage, this is
due to the fact that the region labeled as alpine vegetation (class 14) is completely covered by snow
at the time point of taking the satellite image. Hence class 14 should - with respect to the measured
data - better be labeled as snow than alpine vegetation. The effect is depicted in more detail in
Figure 7. There it also becomes visible, that this error in the labeling accounts for a larger number
of misclassifications. Considering this case high values of confidence and credibility combined with
misclassifications maybe in fact an indicator for a wrong labeling or contradictory data (see also
Figure 8).

A further region of interesting points is depicted in Figure 9, nearby the Lake George (see Figure
2 (right)).

Thereby multiple misclassifications of class 3 (pine/fir) and class 2 (Douglas fir) to class 9 (water)
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Figure 6: Visualization of the thresholding using SRNG-EUC with different threshold. Its clearly
visible that the borders of the classes are subject of uncertainty but also (as pointed out later on)
different interesting findings can be made with respect to the safety of a classification considering
different thresholds. The first plot shows the classified (recall) pixel at a threshold of EUCysg,, the
second plot EUCy, .. and the third for EUC,,,; respectively. It can be seen that the number of rejected
points (assigned to class 15 - colored white) is increasing. This helps to identify regions which are
safe or unsafe with respect to the classification even if the predicted labeling is still correct.

have been found. Considering both images in Figure 2 we found that the effected pine/fir points are
near to water regions. Figure 2 (right) suggests that water level may have changed and hence this
miss classification are explainable also.

5 Conclusions

A method for the reliability estimation and optimization of prototype based classifiers has been pre-
sented. Thereby the approach incorporates conformal prediction to determine a threshold based on
recall/precision analysis and to get reliability estimates for the classification of single items. By use
of these measures the performance of the classifier can be tailored with respect to optimal recall and
/ or precision. This in general improves the interpretability of the generated classifications as shown
here exemplarily for satellite remote sensing images. Further a classification can be analyzed with
respect to its reliability and also the state of not classifiable can be supported. Especially the new
class of unclassifiable entries is relevant in multiple classification tasks such as cases involving a
classifier based automatic labeling of samples from medicine [26, 27], psychology [13, 14] or bio
security domains [6], to name just a few. In these fields the confidence of the classification plays
an essential role and the proposed approach offers a better interpretability of the results. In a next
step the method will be applied to larger cohorts of spectral data obtained from MALDI-Imaging ex-
periments [30]. Beside of the different promising aspects of the methods there are also some points
which could be improved. Currently the choice and parametrization of the non-conformity measure
must be optimized by crossvalidation a procedure which is only possible if a sufficient amount of
samples is available. In future work, different non-conformity measures should be analyzed with
respect to their properties under different conditions to get more generic knowledge about the be-
havior of a chosen measure. This knowledge could be used to simplify the formerly mentioned
parametrization and choice.
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Figure 7: Region with stronger misclassifications related to the alpine-vegetation class (14). Top row
shows a zoom into the region close to the alpine region. Left up to date image of the region, next true
color view of this regions dating back to approximately 1990, third plot with the RGB coloring of
the original labeling of the map. The second row shows the results as obtained by SRNG-EUC with
conformal prediction. The plot on the left shows a coloring in RGB with the conformal predictions,
the plot in the middle the HSV image using confidence and credibility. Only few dark regions (low
credibility/confidence) can be found in the lower part of second plot, second row. Interestingly these
items (class 12 pastureland) are not misclassified but only unsafe. But there are also regions of high
confidence/credibility which are labeled as class 14 or class 7 (vegetation free).
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Figure 8: Confidence and credibility histogram plots. The plot helps to identify regions of high
confidence with respect to the classification decision. It is also visible that there exist a larger amount
with high confidence but wrong labeling - which fits to the findings presented in Figure 7.
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3.3 Evolving Trees for the Retrieval of Mass Spectrom-
etry based Bacteria Fingerprints

The article Evolving Trees for the Retrieval of Mass Spectrometry based Bacteria Finger-
prints by S. Simmuteit, F.-M.Schleif, T. Villmann and B. Hammer was published by Knowl-
edge and Information Systems 25(2), p. 327-343, in 2010. In the article the Evolving Tree
(ET), a Self-Organizing-Map (SOM) based, unsupervised, learning method is extended and
applied to the hierarchical analysis of taxonomic, spectral data. The article provides a
formal derivation of the heuristically proposed ET of Pakkanen and Oja. It provides strate-
gies for the parameter estimation and links evaluation methods known from SOM to the
ET approach. The approach is applied to spectra with an assumed underlying hierarchical
structure using two data encoding approaches. The algorithm permits a log-linear identi-
fication time of the spectra fingerprints employing the learned ET structure. I suggested
the basic idea of the paper and derived, together with T. Villmann the formal derivation
of the ET approach. My co-author S. Simmuteit did the experimental evaluations and a
prototypical implementation of the ET method. We both extended the method to the new
concepts. I implemented the preprocessing methods for the peak-based spectra processing
and the sparse coding. I wrote the majority of the article and integrated the approach
into the original mass spec identification tool. B. Hammer and T. Villmann supervised the
project. All authors discussed the general article.

Additional publications in international conferences where I am co-author and which cover
a similar or related topic include:

1. S. Simmuteit, F.-M. Schleif, T. Villmann and M. Kostrzewa, Hierarchical PCA using
Tree-SOM for the Identification of Bacteria, In Proceedings of the 7th International
Workshop on Self Organizing Maps WSOM 2009, 272-280, ISBN:978-3-642-02396-
5,2009 (Content: Provides PCA based learning for Evolving Trees and allows the
identification of relevant masses for the fingerprint spectra.)

2. S. Simmuteit, F.-M. Schleif, T. Villmann and T. Elssner, Tanimoto metric in Tree-
SOM for improved representation of mass spectrometry data with an underlying tazxo-
nomic structure, In Proceedings of the International Conference on Machine Learning
and Applications ICMLA 2009 , 563-567, IEEE Press, ISBN:978-0-7695-3926-3, 2009
(Content: Improves the identification performance of ET by use of a taxonomic dis-
tance measure, applied to the identification of animal furs)

3. S. Simmuteit, F.-M. Schleif and T. Villmann, Hierarchical evolving trees together with
global and local learning for large data sets in MALDI imaging, In Proceedings of the
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Extends the ET concept by an additional hierarchical layer for the processing of larger
data)
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tional Conference on Artificial Intelligence and Applications ATA 2011, 2011 (Content:
Provides a deconvolution technique for ET to decompose spectra mixtures)
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Abstract

In this paper we investigate the application of Fwvolving Trees for the analysis of
mass spectrometric data of bacteria. Evolving Trees are extensions of Self-Organizing
Maps developed for hierarchical classification systems. Therefore they are well suited
for taxonomic problems like the identification of bacteria. Here we focus on three
topics, an appropriate pre-processing and encoding of the spectra, an adequate data
model by means of a hierarchical Evolving Tree and an interpretable visualization.
First the high-dimensionality of the data is reduced by a compact representation. Here
we employ sparse coding, specifically tailored for the processing of mass spectra. In the
second step the topographic information which is expected in the fingerprints is used
for advanced tree evaluation and analysis. We adapted the original topographic prod-
uct for Self-Organizing-Maps for Evolving Trees to achieve a judgment of topography.
Additionally we transferred the concept of U-matrix for evaluation of the separability
of Self-Organizing-Maps to their analog in Evolving Trees. We demonstrate these ex-
tensions for two mass spectrometric data sets of bacteria fingerprints and show their
classification and evaluation capabilities in comparison to state of the art techniques.

1 Introduction

The identification of bacteria in medical and biological environments by means of classical
methods like gram staining is time consuming and frequently leads to mistakes in separation
of species or even genus. The utilization of mass spectrometry (MS) provides a fast and
reproducible way to receive bio-chemical information to identify bacteria. This approach
relies on an effective experimental design and measurement as pointed out in [41].

One key algorithmic issue is the management and storage of the high-dimensional mass
spectra whereas the other main topic is the classification of the fingerprints. This requires an
accurate pre-processing and a reasonable classification structure to achieve adequate storage
and retrieval performance. This paper concentrates on the encoding part but considers also
an appropriate representation model.

Existing approaches for the identification of bacteria by means of mass spectrometry
techniques (see e.g. [16]) are based on the direct comparison of spectra with manually
selected reference spectra by means of peak matching including intensities as well as mass
positions.



Alternative common approaches analyze the whole sequence of peptides or genes of bac-
teria with algorithms like Blast to get identifications with respect to known sequences stored
in databases [20, 17]. These approaches need a very accurate biochemical sample preparation
as well as a sufficient technical equipment, to get a large number of usable base pairs (bp),
e.g. multiple 100 bps matched against a sequencing database. In parts these approaches
need equipment of high resolution as shown in [46] which make the identification not only
complicated and time consuming but also quite expensive. Some other approaches, which
employ also machine learning algorithms like artificial neural networks, are very specific to
a given problem and hence not generic in there application field, see e.g. [37].

In this paper we use data taken from a rather new measurement approach which is robust
with respect to the experimental design (growing conditions of the bacteria) and can be used
also with well established mass spectrometers [1]. This avoids in parts design problems as
mentioned in [45, 19].

Beside of the wet-lab and measurement aspects of bacteria identification also the data
analysis part is challenging. The application of MS for bacteria identification is quite new
and a representation of the taxonomic (tree-) nature of bacteria is difficult. The problem of
discriminating bacteria species with MS and specifically tailored data analysis approaches is
described in [1]. FORERO ET AL. use extracted features from images of bacteria to identify
them [11]. Discrimination of bacteria can be done also by bio-markers based on MS spectra
[29]. Most of these approaches are also based on the evaluation of the peak intensities.
In case of bacteria even the peak intensities alone are an unsafe criterion. Further, the
encoded peaks (line spectra) to be compared are high-dimensional vectors representing a
functional relation (mass/charge to intensity). Fast and reliable investigation of line spectra,
for short (LS), requires, on the one hand side, an adequate processing, which preserves the
relevant information as good as possible. On the other hand, optimum data structures for
classification, like trees or other shapes [9], support fast retrieval. Available approaches have
insufficient identification accuracy and retrieval performance [1, 16]. One of the most critical
points is also the identification time which, for traditional approaches is quite long, due to
the measurement technique and the identification model, taking up to 48 hours [16].

This contribution provides new aspects for efficient information-preserving processing
of line spectra by sparse coding and subsequent data-driven classification tree generation.
Both parts are based on neural methods which preserve structural information in the data
space. On the encoding part this is realized by using Sparse Coding Neural Gas (SCNG)
[24, 25] and for the classification model by means of the Evolving Tree (ET) [32], which are
both neural vector quantizers.

2 Methods

In this section we briefly provide the main algorithmic components for our MS based iden-
tification approach of bacteria. These are the encoding of the line spectra as well as the
generation of a classification tree.

2.1 Sparse Coding Neural Gas

The line spectra to be classified are high-dimensional vectors with dimensionality in the range
of usually thousands of mass positions. Thus, an information-preserving dimension reduction
is required for a fast data processing and a reliable analysis. Simple principal component
analysis (PCA) is commonly used [14] but may fail due to the non-linearity of the data [13].
Kernel PCA is a non-linear extension but it could be difficult to process new data adequately,



see [38] p. 151. Other reduction methods can be found in approximation theory. Most
prominent examples are wavelet and Fourier descriptions [12]. These approaches have in
common that a predefined system of basis functions is applied to encode the data. However,
this choice has to be made in advance which can be sub-optimal or may result in misleading
interpretations [35]. Thus a representation in terms of a data adapted set of basis functions is
demanded. Sparse Coding (SC) offers a solution to this problem [31]. The resulting adapted
set of basis functions, however, is not complete in mathematical sense, as it is known from
wavelet- and Fourier-analysis. A computationally efficient realization of SC is the Sparse
Coding Neural Gas (SCNG) [24], which is briefly introduced in the following:

We suppose that N data vectors f; € RP are available with ||f;| = 1 [30]. A set of
M, maybe over-complete and/or not necessarily orthogonal, basis function vectors ¢; € RP
should be used for representation of the data in form of linear combination:

M
fo=Y ajr-¢;+& (1)
J
with & € RP being the reconstruction error vector and o i are the weighting coefficients
with a;, € [0,1], Zj a;r =1 and ar = (a1k,...,anrk). The cost function Ej, for f is
defined as
Ep=|&lP = A- Sk, 0<A<1 (2)

which has to be minimized. Thereby A is a control parameter balancing sparsity and the
reconstruction error. It contains a regularization term .Sj, which judges the sparseness of
the representation chosen as

Se=Y 9 (as) )

whereby ¢ (z) is a nonlinear function like exp (fxz), log (Tlﬂ)v etc.. Another choice for

the regularization term would be to take the entropy
Sk = H (ay) (4)

of the vector ap. We remark that minimum sparseness is achieved iff o, = 1 for one
arbitrary j and zero elsewhere. Using this minimum scenario, optimization is reduced to
minimization of the description errors ||§k||2 or, equivalently, to the optimization of the
basis vectors ¢;. As outlined above, PCA may fail due to its linear property. This might be
overcome by local PCA in local partitions €2; of the data space. Thereby, minimum principal
component analysis requires at least the determination of first principal component. Taking
into account the inherent spatial arrangement of the subsets €2; an efficient computation of
the local first principal components is possible using the Oja-learning rule [30].

In basic SCNG N prototypes W = {Wi € RP } approximate the first principal compo-
nents p; of the subsets ;. A functional data vector f;, belongs to €Q; iff its correlation to p;
defined by the inner product O (w;, f) = (w;, fi) is maximum:

0 = { i = avma oy} (5)
J
The approximations w; can be obtained adaptively by Oja-learning starting with random
vectors w; for time ¢t = 0 with ||w;|| = 1. Let P be the the probability density in €2;. Then,
for each time step ¢ a data vector f, € €, is selected according to P and the prototype w;
is updated by the Oja learning-rule

Aw; = &,0 (w;, £) (fr, — O (wy, £) wy) (6)



with e, > 0, & o 0, ,e: =00 and >, e? < oo which is a converging stochastic process
— 00

[23]. The final limit of the process is w; = p; [30].

Yet, the subsets 2; are initially unknown. To calculate the €2; knowledge about the
corresponding first principal components p; according to (5) are needed. This problem
is solved in analogy to the original neural gas in vector quantization [27]. For a randomly
selected functional data vector fj, (according P) for each prototype the correlation O (w;, fi)
is determined and the rank r; is computed according to

N
ri (£, W) =N =Y 0(0(w;,fr) — O (w;, i) (7)
j=1
counting the number of pointers w; for which the relation O (w;,f;) < O (w;,fy) is valid
[27]. 6 (z) is the Heaviside-function. Then all prototypes are updated according to
Aw,; = ethy (V,W,1) O (wy, £i) (£, — O (wy, £r) w;) (8)
with
(9)

is the so-called neighborhood function with neighborhood range o; > 0. Thus, the update
strength of each prototype is correlated with its matching ability. Further, the temporary
data subset €; (t) for a given prototype is

ho (£, W) = exp <_<ka>)

Ot

0 () = { i = g (w;. )} (10)

J

For ¢ — oo the range is decreased as oy — 0 and, hence, only the best matching prototype
is updated in (8) in the limit. Then, in the equilibrium of the stochastic process (8) one
has Q; (t) — §; for a certain subset configuration which is related to the data space shape
and the density P [42]. Further, one gets w; = p; in the limit. Both results are in complete
analogy to usual neural gas, because the maximum over inner products is mathematically
equivalent to the minimum of the Euclidean distance between the vectors [21, 27].

2.2 Evolving Trees

2.2.1 Definition and Evolving Tree Learning

The 'natural’ identification methodology in taxonomy /analysis of bacteria is tree structured.
Therefore, in context of machine learning, shape-aware clustering approaches [34] or decision
trees (DT) may come into mind. However, DTs do not integrate structural data information
like data shape and density in an adequate manner during tree generation. For the considered
data the labeling is in parts unsafe or even not perfectly available, hence an unsupervised
setting is more appropriate. For a pure unsupervised analysis the sparsity of the data may
provide a challenging task and hence it can be expect to be valuable to included additional
knowledge about the data. In this line we include the structural information on the topology
of the data, by means of a hierarchical structure in the modeling. An alternative to standard
DTs is presented by PAKKANEN ET AL. — the Evolving Trees (ET) [32]. The ET-approach is
an extension of the concept of self-organizing maps (SOMs) introduced by KOHONEN [21].
SOMs project high-dimensional vectorial data onto a predefined low-dimensional regular
grid usually chosen as a hypercube. This mapping is topology preserving under certain



conditions, i.e. in case of an unviolated topology similar data points in the data space are
mapped onto the same or neighbored grid nodes. For this purpose, to each node a weight
vector, also called prototype, is assigned. A data point is mapped onto this node, the
prototype of which is closest according to a similarity measure in the data space, usually
the Euclidean distance. This rule is called winner-takes-all. In this sense, all data points
mapped onto the same node fall into the same receptive field of this node and the respective
prototype is a representative of this field.

The usual rectangular lattice as output structure is not mandatory. Other choices are
possible depending on task. ETs use trees as output structures and, hence, are potentially
suited for mapping of vectorial data with hierarchical substructure.

Suppose we consider an ET 7 with nodes r € Ry (set of nodes) and root ry which has
the depth level ., = 0. A node r with depth level I, = k is connected to its successors r’
with level [, = k41 by directed edges &,_,,» with unit length. The set of all direct successors
of the node r is denoted by S,. For S, = @, the node r is called a leaf. The degree of a
node r is 8, = #5,., here assumed to be constant § for all nodes except the leafs. A sub-tree
T, with node 7 as root is the set off all nodes ' € Ry such that there exist a directed
cycle-free path p,_,,v = €4 0...08m 4w with m,...,m’ € Ry and o is the concatenation
operation. L, _ , is the length of path p,_,,s, i.e. the number of concatenations plus 1. The
distance dy (r,r’) between nodes r, 1’ is defined as

dT (7", 7’") = Lpf'ﬂr + LPP_W/ (11)

with paths ps_,, and ps_,,» in the sub-tree 7; and Ry, contains both r and 7’ and the depth
level I; is maximum for all sub-trees 77 which contain r and r’. A connecting path between
a node r and a node 7’ is defined as follows: let ps_,,» and p;_,, be direct paths such that
Ly ., oLy, isdy(r,r"). Then p,_, is the reverse path p,/_,; ® ps_,, and the node set
of P is denoted by N,  ,. As for usual SOMs, each node r is equipped with a prototype
w, € RP, provided that the data to be processed are given by v €V C RP. Further, we
assume a differentiable similarity measure dy : RP? x RP — R. The winner detection is
different from usual SOM but remains the concept of winner-takes-all. For a given subtree
T, with root r the local winner is

s1. (v) = argmin (dy (v,w,.)) (12)

resSy

If s7. (v) is a leaf then it is also the overall winner node s (v). Otherwise, the procedure is
repeated recursively for the sub-tree 7. . The receptive field €, of a leaf r (or its prototype)
is defined as

Q. ={veVis(v)=r} (13)
and the receptive field of root r’ of a sub-tree 7, is defined as
Qr’ — UT”ERT , Qr” (14)

The adaptation of the prototypes w, takes only place for those prototypes which are
leafs. The others remain fixed. This learning for a randomly selected data point v €V is
neighborhood-cooperative as in usual SOM:

Aw, = ehson (r, s (v)) (Vv —w,) (15)

with s (v) is the overall winner and € > 0 is a small learning rate. The neighborhood function
hson (r,7') is defined as a function depending on the tree distance usually of Gaussian shape

hson (r,r") = exp <M> ) (16)
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with neighborhood range o.

Unlike for the SOM we cannot guarantee that s(v) is the true best matching unit (bmnu)
because the tree model is subject to a stochastic optimization process.

The whole ET learning is a repeated sequence of adaptation phases according to the
above mentioned prototype adaptation and tree growing beginning with a minimum tree of
root rg and its § successors as leafs. The decision which leafs become roots of sub-trees at
a certain time can be specified by the user. Subsequently for each node r a counter b, is
defined. This counter is increased if the corresponding node becomes a winner and the node
is branched at threshold 8 € N, 6 > 0.

Possible criteria might be the variance of the receptive fields of the prototypes or the
number of winner hits during the competition. The prototypes of the new leafs should be
initialized in a local neighborhood of the root prototype according to dy. Hence, the ET
also can be taken as a special growing variant of SOM as it is known for example from [4].

2.2.2 Evaluation and Visualization

Since ETs are extended variants of usual SOM one can try to transfer evaluation methods
known from SOMs to ETs. One important criterion is the topology preservation property. A
mathematically exact definition for SOMs is given in [43]. Several methods are developed to
judge the degree of topology preservation, the best known ones are the topographic product
TP and the topographic function T'F, [3] and [43], respectively. A detailed comparison can
be found in [2]. Although the topographic product may fail in cases of strong non-linear
data shapes, it is a robust estimator for the true degree of topology preservation. It, the
topographic product, relates the distance between lattice nodes in the SOM grid to the
respective distances between their prototypes. Hence, the method can immediately adopted
for ETs. In particular we define:

The topographic product relates for each neuron the sequence of input space neighbors to
the sequence of output space neighbors. It is originally defined for rectangular and hexagonal
lattice structures but can easily transferred to ETs as follows:

During the computation of TP for each node r the sequences an(r) and n}/ (r) have to

be determined, where an(r) denotes the j-th neighbor of r, with distance measured in the
tree 7, and n}/(r) denotes the j-th neighbor of r, with distances dy (WT, wn}/(r)) evaluated

in the input space V. dr (r,r’) is the tree distance defined in (11). The sequences an(r)

and n}/ (r) and further averaging over neighborhood orders j and nodes r finally lead to [3]:

dV (Wrawan(r)) ) dT (7“, an(T))
0 (WT-,Wan(r)) dr (r,n} (r))

N—-1
1 1 ,
TP=——c—=>" 3" —log(T_ 17
N(N 1) & = 2j 1=1 (17)

with IV being the overall number of nodes in 7. TP can take positive or negative values.
Only if TP = 0 is valid, the tree structure approximately matches the topology of the input
data, i.e. the ET is topology preserving. In this case the ET represents the data structure
adequately.

A visualization method which also allows a further evaluation of the map is the concept
of U matrix introduced in [40], which computes the averaged distances between prototypes

for neighbored lattice nodes. Here we adapt this approach for ETs 7 as well. The resulting
U-tree is denoted by U+ and has entries

1

Ut (r') = T 45,

> dv (W, W) +dy (W, w,) |1 €5, (18)

r'’es,
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Figure 1: Labeling of nodes with the class-names of learned bacteria in the respective
receptive fields. The gray-levels represent the U -tree entries, dark circles represent small
values (close) and light-gray-colored circles represent high Up-tree values (distant). The
root node is not colored.

with S, being again the set of direct successors of the node r. If v/ is ro, Ur (') = 0. In
this way, each node is equipped with an additional value, indicating its local separation
level. This value can be used in tree visualization of the ET to gray level the tree nodes
accordingly. A corresponding example is depicted in Figure 1.

The U-tree Ut offers further visualization possibilities. One alternative visualization
is available by a further analysis of the Uy values. For this purpose we consider dis-
tances dy, (r,,y with 77" € {R7]S, = 0,5, = 0}, ie. 7,7’ have to be leafs. Let
k* = maxgen, (U7 (k)), the node index with maximal U-tree-value on a path between
two nodes r,7’ and Uy« = Uy (k*) the corresponding U-tree-value then the U-tree-value
distances dy. (r, ') are given as:

dy,(r,r) = Uzt - Y Ur(k) (19)
kEN,

r—r!

Now, with equation (19) we are able to build a matrix of U-tree-values between all leafs
and process it with an arbitrary similarity based clustering algorithm such as single-linkage
clustering or relational neural gas [5] to generate a dendrogram as shown in section 3.3. The
ordering of the leafs in the visualized dendrograms remains arbitrary.

A further traditional approach is to visualize the data together with such generated trees
in the PCA space. The principal components of the training and the prototype data are



calculated. The obtained coefficients (PCs) can be used to draw a two- or three-dimensional
illustration of training data and the connected prototypes using the first two or three most
relevant PCs.

Unknown samples can be identified using the ET in the following way. The ET is
fully labeled by assignment of a label to each node by an analysis of the receptive fields of
the corresponding sub-trees. The root node remains unlabeled. For each receptive field a
common label is determined by a majority voting of the contained samples and their labels.
An unknown, new item is preprocessed as described later on. For this item the bmu in the
tree is determined in accordance to Equation (12) and calculating s(v). The label of the
receptive field of s(v) defines the label of the item.

3 Evolving Tree applied on Mass Spectra of Bacteria

The introduced methods are now applied to investigate MS-spectra of bacteria for classifi-
cation. These data are spectra of different species of vibrio- and listeria-bacteria. Thereby
we compare two kinds of pre-processed raw spectra, namely line spectra and sparse coded
spectra. The ET-approach is subsequently applied to both data and the resulting classifi-
cation is visualized and compared with classification according to the standard BioTyper
approach.

3.1 Data

The data used in the experiments are MS spectra of 56 different vibrio species and 7 different
listeria species. Every data-set contains about 20 — 40 single spectra, being measurements
of the same bacterium. Together there are 1452 spectra of vibrio and 231 spectra of listeria.
Each MS measurement is processed as shown in the next section. Biological details on
the bacteria samples can be obtained from [8]. For the listeria data an additional set of
independent samples is available consisting of 10 measurements with an expert labeling
(listeria innocua) provided by a visual evaluation of a biologist. Within the listeria data the
listeria monocytogenes are well known to effect humans or are even pathogenic and therefore
its high sensitive and specific identification is important [1].

3.2 Measurement and pre-processing

A mass spectrometer fires a laser beam onto a sample of bacteria coated with matrix solution.
The material is fragmented and energized such that the fragments are accelerated in a
vacuum tube into the direction of a ion-detector measuring the time-of-flight (TOF). The
TOF corresponds with the mass of the sample fragment. At the end of the measurement
we get a mass axis in m/z with the unit Dalton and a unit-less intensity for every mass.
One obtains a high-dimensional vector (profile spectrum) of intensities, often visualized as
a function of mass. More details on the mass spectrometry technique can be found in [26].

The standard way of pre-processing mass spectra to generate line spectra (consisting only
of peaks) is provided by the measurement system as detailed in [7]. A line spectrum typically
consists of around 100 — 500 peaks depending on the sample complexity and system mode
while the profile spectra are originally given as measurements with around 40 000 sample
points. In order to map the line spectra on a common axis, the peak lists are mapped onto
a global mass vector covering every appearing peak within a predefined tolerance (here 500
ppm) depending on the expected measurement accuracy.



The resulting aligned peak-lists are now located in the same data space, still very high-
dimensional. For the listeria data the line spectra have a dimensionality of D = 1181 (peak
positions) whereas for the vibrio data the dimensionality is given as D = 2382. An ap-
proach to achieve a further reduction of the dimensionality is sparse coding [24] as described
previously. Alternative data reduction techniques for MS has been discussed in [18]. The
sparse coding calculates a new basis system for the representation of the line spectra such
that the contained structural information is effectively used. For this purpose the expected
complexity of the structures included in the line spectra has to be incorporated into the
sparse coding parameter settings. This can be done by the generation of appropriately sized
patches of the original line spectra. For the listeria data 7 patches with 150 peak positions
have been generated for each spectrum' and for the vibrio data a setting of 11 patches with
200 peak position was used. These settings have been determined by expert knowledge. In
both cases the SCNG has been used with 100 prototypes to identify the new basis system.
Finally we obtain 7 x 100 dimensions for the sparse coded listeria data and 1100 for the
vibrio data, respectively.

These steps are done for the training data, but not for the test data for independent
validation. We avoid the effect, that we put knowledge about the test data into the training
data. For the retrieval, the data are mapped using the common mass vector obtained from
the training procedure, such that we get test vectors in the same data-space as the training
data. In a second step the test data are encoded in accordance to the chosen pre processing
model. Either no additional processing is applied as in case of line spectra analysis, or a
sparse coding in accordance to the pre-calculated sparse coding model is done.

3.3 Experimental settings

Euclidean distance is used to find the bmu. A number of §,, = 3 successors has been chosen for
all nodes without leafs. The learning is done in accordance to the standard SOM approach,
thereby the initial learning rate «yq is defined as ap = 0.2 which is exponentially decreased
during learning to a final value of aenq = 0.01. The neighborhood cooperation value o is
initialized with o = 1 and exponentially decreased to o = 0.35 in accordance to suggestions
given in [43]. The total number of learning iterations I is determined depending on the
number of training samples, the desired number of clusters #C, ¢, and # in accordance to
Equation (20)

9 [4%%701—1"

I =
M|

(20)

with M as the number of samples. Equation (20) is motivated by initial studies as shown
in [39]

4 Experiments and Results

Different experiments have been performed to evaluate the performance of the presented
approach and to obtain reliable identifications of the considered bacterial data. We divide
the experiments into two parts. First the ET is evaluated on line spectra using the vibrio
or listeria data set, subsequently the same experiments are performed using a sparse coded
representation. In an external validation the small independent listeria set was evaluated

1Due to the transformation of the spectra in patches of equal size, a small region on the border may
remain which is truncated in this setting.



Threshold TIterations Mean Accuracy Standard Deviation @Nodes

496 43 82.85% 3.42 140.0
991 84 86.09% 1.80 150.0
1487 127 83.81% 2.75 151.0
1982 168 87.06% 4.22 157.0

Table 1: Crossvalidation results for 56 vibrio species (line spectra) with increasing learning
time but constant expected tree size.

Threshold Iterations Mean Accuracy Standard Deviation @Nodes

153 12 100.00% 0.00 21.0
230 19 99.56% 0.77 22.0
306 24 96.93% 5.32 20.0
383 30 99.56% 0.76 21.0

Table 2: Crossvalidation results for 7 listeria species (line spectra) with increasing learning
time but constant expected tree size.

on the determined ET listeria model using both codings. All experiments of the first part,
in the evaluation of the ET, have been performed with different settings of the variable
methods parameters and in a 3-fold cross validation to judge the classification performance
and generalization capability. The parameters have been varied such that the number of
cluster by means of leafs remained stable. For the first part of the experiments a comparison
with the BioTyper is not possible. The available data of listeria and vibrio samples are a
subset of the BioTyper data base. The BioTyper design ensures that all spectra used for
modeling the BioTyper database are perfectly identified, hence a match of such data against
the BioTyper will not be a fair evaluation.

The results for the vibrio study using line spectra are shown in Table 1 with different
combinations of threshold and number of iterations. The threshold for the branching is
provided in the first column and the number of iterations I is determined in accordance to
Equation (20) leaving all other parameters fixed as mentioned priorly, to ensure an almost
constant tree size.

The same experiments have been performed using listeria species as shown in Table 2.

In a further analysis vibrio and listeria data have been analyzed using ET with a sparse
coding as a pre-processing step. The results of the cross-validated sparse-coded vibrio species
are shown in Table 3.

Table 4 shows the result of a crossvalidation experiment with the same data like in 2,
but sparse-coded.

Obviously the Evolving Tree algorithm is able to discriminate reliably bacteria species.
The mean accuracy for the vibrio data using line or sparse coded spectra is at least 82% with
a small standard deviation. For the listeria data the situation is different. The performance

Threshold TIterations Mean Accuracy Standard Deviation @Nodes

496 43 84.96% 3.77 152.0
991 84 82.72% 2.32 153.0
1487 127 82.36% 2.06 152.0
1982 168 84.09% 3.91 152.0

Table 3: Crossvalidation results for 56 sparse-coded vibrio species.
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Threshold TIterations Mean Accuracy Standard Deviation @Nodes

153 12 87.61% 3.92 22.0
230 19 86.75% 3.23 24.0
306 24 91.88% 1.48 24.0
383 31 86.75% 5.78 24.0

Table 4: Crossvalidation results for 7 sparse coded listeria species.

ET BNG KD-Tree
SC Listeria | 91.88% 71.79% 94.80%
SC Vibrio 84.96% 89.16% 87.96%
LS Listeria | 100.00% 50.48% 93.51%
LS Vibrio 87.06% 76.90% 90.70%

Table 5: Crossvalidation results for the Listeria and Vibrio data set. The data is preprocessed
to line spectra (LS) and sparse coded data (SC). Columns show results for Evolving Tree
(ET) and Batch Neural Gas (BNG) and the supervised KD-Tree.

using the line spectra approach is quite good with a mean accuracy of at least 97% and
also a small standard deviation. For the same data using sparse coding the identification
performance is only around 85% with a slightly larger standard deviation. Thereby the
number of iterations has only a small impact on an improvement of the results and already
a short learning of the ET gives reliable results. The sparse coding does not improve the
identification accuracy, but leads to significantly faster identifications, because the dimen-
sionality of the data encoded in the ET could be strongly reduced without a significant loss
of identification performance.

In Table 6 we compare the identification results of the state of the art MS bacteria
spectra identification tool BioTyper as provided by [6] with the Evolving Tree using the
independent listeria data set. The underlying models for the BioTyper as well as for the
ET were obtained using the same large listeria data set as in the previous experiments (see
Table 2).

The BioTyper identifications provide a score value which is interpreted as follows: a score
value of > 2 indicates a secure genus identification. A score value > 2.3 indicates a highly
probable species identification. Lower values then 2 raises doubts on the identification, even
on the genus and additional tests are recommended. Details on the scoring as well as on
the BioTyper algorithm are published in [15]. The Evolving Tree has a 100% identification
rate for this data-set using line spectra, but fails in the species identification by use of
a sparse coding as a pre-processing step. Considering the rather unsafe results provided
by the BioTyper this behavior of the ET using sparse coded data can be explained. The
identification of the bacteria on a species level is obviously complicated and small difference
become relevant which are lost due to the sparseness of the coding in favor of a faster
identification and tree generation. Hence for bacteria which are hard to discriminate on the
species level sparse coding may have limited applicability.

In case of unsafe identifications a further analysis of the data e.g. by an inspection
of a corresponding tree visualization may be helpful. For the listeria data set a Up-tree
based visualization using the line spectra is depicted in Figure 2 and shows that the listeria
species Innocua and Monocytogenes fall in the same branch and hence can be considered
to be very similar. A similar situation can be observed in the Figure 1. This result is in
perfect agreement with the findings shown in Table 6. In Table 6 an external validation
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SpNo. BioTyper Score S/H/D | ET-LS ET - SC

1 Ivanovii Ivanovii 1.881 D Innocua Monocytogenes
2 Monocytogenes 1.837 D Innocua Monocytogenes
3 Innocua 2.029 H Innocua  Monocytogenes
4 Innocua 1.854 D Innocua  Monocytogenes
5 Innocua 1.948 D Innocua Monocytogenes
6 Innocua 1.860 D Innocua Innocua

7 Innocua 2.004 H Innocua  Monocytogenes
8 Monocytogenes 1.915 D Innocua Monocytogenes
9 Innocua 2.205 S Innocua  Monocytogenes
10 Innocua 2.264 S Innocua Monocytogenes

Table 6: Identification of unknown listeria with the Bruker BioTyper and an Evolving Tree.
Column S/H/D is (S)ure, (H)igh, (D)oubt identification.

Grayi

[ Monocytogenes
Innocua
0.8 0.6

Welshimeri

Seeligeri

Ivanovii lvanovii

Ivanovii Londoniensi

1.6 14 1.2 1

Figure 2: Evolving Tree and U-tree based dendrogram of seven listeria species

set has been used and processed as described previously. This set is not included in the
BioTyper-Database and has also not been used in the model generations steps for the ET
approaches. Yet, this set is completely independent and can be seen as a real live test set. All
these spectra belong to the Innocua group as validated by manual analysis using traditional
approaches. We observe that the BioTyper is a bit unsafe with respect to its identification.
This is reflected by low score values (below 2.0) and three potential species assignments
(Ivanovii Ivanovii, Monocytogenes, Innocua). For the ET approach both pre-processing
techniques lead to consistent identifications. In case of line spectra the identifications were
always correct and for the sparse coded data the very similar species of Monocytogenes (see
1) has been identified in general.

The time needed for a reliable identification is linear in case of the BioTyper approach
and hence gets longer with an increasing database. For the ET the complexity of a query
remains log-linear depending on the depth and branch-degree of the tree. For a larger
number of considered types of bacteria this leads to a significantly faster identification by
ET than by the BioTyper. As for a standard SOM approach the dimensionality of the data
has a strong influence on the model generation as well as on the retrieval time in the distance
calculations and weight updates. This complexity can effectively be reduced by application
of sparse coding as an additional pre-processing step. This has only a minor impact on
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the identification performance as shown above. In case of the expected huge amount of
queries in real life applications the time needed for the tree generation and the encoding
of new items can be neglected. To compare the performance of the presented approach
with alternative techniques as shown in Table 5, experiments with the batch-Neural-Gas
(BNG) [10] algorithm, which is a kind of an advanced k-means clustering, and a KD-Tree
[28] implementation have been done?. An approach for the comparison of clustering under
unsupervised settings has been presented in [33]. In our experiments the labels are provided
hence a more accurate evaluation by means of cross-validation is possible. The number
of prototypes for the batch-Neural-Gas have been chosen in accordance to the number of
leafs in the ET, further we selected the parameter set of ET with the best performance
on the training data for comparison. The KD-Tree has been applied using the Gini-Index
as split-criterion. We observe for the unsupervised BNG that the ET has always a better
performance on all considered data sets. For the sparse coded vibrio data the performance is
comparable, but also slightly better. With respect to the encoding technique we observe that
sparse coding significantly improved the performance of BNG while for ET there is no strong
effect on the performance. These result clearly indicate that in an unsupervised setting the
introduction of topological knowledge about the data space is helpful and provides improved
identification results by ET. This is especially remarkable for the identification of bacteria,
because for the taxonomy of bacteria the labeling is in parts unsafe and still subject of
change - hence a stable supervised setting is in general not really available. If we consider
the data in a supervised setting as for KD-Tree we observe that the identification results
improved further, also with respect to ET. However the generated KD-Trees have been found
to be extremely unbalanced, in general they order in a flat chain, leading to again linear
query times. As already pointed out the labeling of bacteria is not always valid and hence
a unsupervised approach maybe preferable as also shown in [15, 1].

5 Conclusions

In this contribution an approach for the generation and evaluation of models for the identi-
fication of bacteria spectra has been proposed. It could be shown that the ET gives reliable
results in comparison to the standard BioTyper method but with significantly faster identifi-
cations due to the tree structure. The presented U -tree based visualizations give additional
insights in the identification procedure and provide easy usable access to the models. It could
be shown that the presented approach is high efficient with respect to the retrieval accu-
racy and identification speed. Coupled with the used MS based identification technique
the presented method is especially interesting for bacteria identifications in the clinical do-
main due to time and cost restrictions and the effective method workflow needed in such
an environment [22]. Thereby ET are not limited to the identification of bacteria spectra
but can be applied also on other types of data as long as an appropriate pre-processing is
available. Future work should include the processing of spectra, which consist of a mixture
of bacteria cultures. Todays identification approaches only allow the identification of single
bacteria, otherwise the identification becomes blurred and post-identification steps become
mandatory. As a future extension it maybe desirable to combine the fast identification per-
formance of the ET with the well established identification approach of the BioTyper, such
that the pre identification-decision of the ET is checked against the BioTyper but only for
that part of the database containing candidates of the same genus or species level. Further
the ET can be extended to provide reliability estimates using the approach presented in [36]

2A PCA on the data with subsequent application of KD-Tree results in a performance of only 30% - this
also motivates data specific encoding techniques.
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such that a similar evaluation like with the BioTyper scores can be obtained. In case of
taxonomic data labels for training data become available and could be used in a supervised
manner during learning. This provides the opportunity to develop a supervised variant of
the Evolving Tree similarly to [44]3.
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3.4. GENETIC ALGORITHM EMPLOYING METRIC LEARNING FOR NMR DATA ANALYSIS127

3.4 Genetic algorithm for shift-uncertainty correction
in 1-D NMR based metabolite identifications and
quantifications

The article Genetic algorithm for shift-uncertainty correction in 1-D NMR based metabolite
identifications and quantifications by F.-M.Schleif, T. Riemer, U. Borner, L. Schnapka-
Hille and M. Cross appeared in Bioinformatics 27 (4), p. 524-533, 2011. In the article
the Extended Targeting Profiling (ETP) is proposed, a method for the (semi-) automatic
identification and quantification of metabolites in nuclear magnetic resonance (NMR) spec-
tra. The method employs a specific genetic algorithm approach coupled with a functional
distance measure to optimize the theoretically derived spin-system parameter model with
respect to the observed data. The optimized parameters can be used to generate proto-
typical metabolite spectra. This article is based on an interdisciplinary work between the
chemist T. Riemer, responsible, mainly for the NMR, equipment, the biochemist U. Bérner,
responsible for the NMR wet-lab experiments and two biologists L. Schnapka-Hille and M.
Cross, responsible for the biological modeling and cell experiments. In this article I de-
veloped the preprocessing and optimization methods for the analysis of the spectra. The
algorithm has been developed by myself with some support by T. Riemer to incorporate
the NMR simulation environment used in ETP. I conducted all non-wet lab experiments
and wrote the majority of the paper. My co-author T. Riemer helped to integrated the
gamma simulation environment and wrote the technical part of the NMR related section.
U. Borner did the wet-lab experiments for the cell extracts and artificial samples, she also
wrote the corresponding section to describe the experimental designs. L. Schapka-Hille did
the experiments with the cell lines and M. Cross supervised the lab experiments. All authors
discussed the general article.
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Abstract

1 Motivation:

The analysis of metabolic processes is becoming increasingly important to our under-
standing of complex biological systems and disease states. Nuclear magnetic resonance
spectroscopy (NMR) is a particularly relevant technology in this respect, since the
NMR signals provide a quantitative measure of metabolite concentrations. However,
due to the complexity of the spectra typical of biological samples, the demands of clini-
cal and high throughput analysis will only be fully met by a system capable of reliable,
automatic processing of the spectra. An initial step in this direction has been taken by
Targeted Profiling (TP), employing a set of known and predicted metabolite signatures
fitted against the signal. However, an accurate fitting procedure for 'H NMR data is
complicated by shift uncertainties in the peak systems caused by measurement imper-
fections. These uncertainties have a large impact on the accuracy of identification and
quantification and currently require compensation by very time consuming manual in-
teractions. Here, we present an approach, termed Extended Targeted Profiling (ETP),
that estimates shift uncertainties based on a genetic algorithm (GA) combined with a
least squares optimization (LSQO). The estimated shifts are used to correct the known
metabolite signatures leading to significantly improved identification and quantifica-
tion. In this way, use of the automated system significantly reduces the effort normally
associated with manual processing and paves the way for reliable, high throughput
analysis of complex NMR spectra.

2 Results:

The results indicate that using simultaneous shift uncertainty correction and least
squares fitting significantly improves the identification and quantification results for
'H NMR data in comparison to the standard targeted profiling approach and com-
pares favorably with the results obtained by manual expert analysis. Preservation of
the functional structure of the NMR spectra makes this approach more realistic than
simple binning strategies.
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Figure 1: Overlapping effect in a 'H NMR spectrum of multiple metabolites. It can clearly
be seen, that the assumption of the Lorentzian fails to provide an accurate approximation
in some regions. This can lead to incorrect estimates of target heights and hence wrong
concentration estimates.

3 Availability:

The simulation descriptions and scripts employed are available under: http://139.18.218.40/metastemwww
/bioinf/bioinf_suppl_nmr_ga_opt_schleif_et_al.tgz

4 Contact:

schleif@informatik.uni-leipzig.de

5 Introduction

The quantitative profiling of metabolites and the mathematical modeling of metabolic net-
works is set to make a major contribution to our understanding of complex biological sys-
tems, including the processes underlying development and tissue homeostasis ([29]). The
most commonly used methods for metabolite detection are mass spectrometry (MS) and nu-
clear magnetic resonance spectroscopy (NMR). While each has its specific advantages, the
inherently quantitative nature of NMR makes it most attractive for providing data for the
development of mathematical models. However, the current challenge is to extract reliably
quantitative data from experimental spectra which are often complex and subject to back-
ground variability. Here we focus on the exact extraction of metabolite information from 'H
NMR measurements. The general strategy involves pre-processing steps such as phase- and
baseline correction, smoothing and data reduction ([31, 3]), followed by the identification
of distinct metabolite signatures in the signal and the estimation of metabolite concentra-
tions with respect to the original biological samples. Details of the basic pre-processing
used in this work are provided in ([21, 22]). A number of approaches have been reported
to help in the subsequent identification and quantification of individual metabolites from
preprocessed data ([1, 32, 33, 30]). However, none of the methods currently available can
be applied in the reliable, automated fashion necessary for the high-throughput processing
of complex biological samples ([17, 15]). As an initial step towards automatic processing,
targeted profiling (TP) ([30]), employs a set of known and predicted metabolite signatures
(targets) fitted against the signal. However, an accurate fitting procedure for 'H NMR data
is complicated by small but significant shift uncertainties in the peak systems, caused by
even minor variations in parameters such as temperature and pH ([4]).



These uncertainties have a large impact on the accuracy of identification and quantifi-
cation and currently need to be compensated by very time consuming manual interactions.
Independent correction of the shift followed by fitting of the corrected target descriptions
against the signals is not generally feasible because of the strong overlaps typical of 'H NMR
spectra.

Generic methods for the compensation of peak shifts are typically based on a specific or
average reference signal taken from the data ([7]). If such a reference is available, then the
NMR spectra are locally aligned to it such that the final set of spectra is reasonable aligned
and corresponding peaks match. The used optimization techniques commonly employed
include partial least squares approaches ([28]), genetic algorithms ([6]) and procedures based
on the fourier transformation ([19]). This type of alignment problem is relevant not only to
NMR but also to other data, including mass spectrometry ([18, 20]). While the proposed
approaches are promising and reasonable fast, they assume the availability of a reference
spectrum to be used as the objective goal. Sometimes it is merely assumed that a set of
common reference peaks is available so that an alignment function can be estimated based
on these data ([20]). However, this is often not realistic and in the setting considered here
we do not assume the existence of a (global) reference spectrum. Furthermore, even for the
aligned spectra one can not ensure that the peaks are aligned to their true position, only
they are aligned to one another. If the chosen reference is not an undisturbed signal then
there is no guarantee that the aligned spectra show correct ppm or mass positions for the
peaks. In the case of metabolic profiling, this leaves the problem of correct identification and
quantification of the metabolites in a spectrum with potential peak shifts. Our approach
focuses on this special problem. The prior mentioned alignment methods can be used as a
potential preprocessing only if the analyzed spectra are reasonable similar, as it should be
the case for replicates. In this case it is possible to align the spectra first before using the
approach, presented below.

The targets consist of a set of parametrized peak models showing uncertainties in their
positions with respect to a true measurement, as described in more detail below. A typical
NMR signal from a biological sample containing a variety of targets contains around 100
erroneous shift parameters. Local shift uncertainties need to be corrected within a given
tolerance for all these parameters and often within the context of overlapping targets. Fur-
thermore, NMR, data show very spiked peaks so that both the correct peak positions and
accurate target height estimates are decisive to the accuracy of metabolite concentration
estimates. This makes a complete evaluation of all possible solutions unfeasible and the
problem is ill posed.

We present here an approach designed to improve this situation by semi-automatic anal-
ysis of the spectra such that only minor, simple interaction steps are necessary to allow the
processing of large data sets. We developed an approach estimating shift uncertainties based
on a genetic algorithm (GA) ([8, 16]) combined with a least squares optimization (LSQO)
([5]). Genetic algorithms are known to be very effective in finding local optimal solutions
for ill-posed problems and have already been applied to spectroscopic data ([10, 9]). The
estimated shifts are used to correct the known metabolite signatures, leading to significantly
improved identification and quantification results. The shift uncertainties are generally cor-
rected with sufficient accuracy that little or no subsequent manual interaction is necessary to
generate the final quantifications. The method has been tested on a range of NMR spectra
obtained from cell culture experiments. We have evaluated the models obtained in compar-
ison to a standard targeted profiling approach as well as to the defacto standard of a careful
manual analysis. We have also studied the observed shift uncertainties with respect to their
influence on the concentration estimates during the multiple steps of the GA.



6 Approach and Methods

6.1 NMR Spectroscopy

All 'H NMR-spectra were acquired on an AVANCE 700 MHz NMR-spectrometer (Bruker,
Rheinstetten, D) equipped with a 5 mm cryo-probe. A pulse acquire sequence was used
with 512 accumulations, 65536 complex points, 8389.2 Hz sweep width corresponding to
11.982 ppm on the chemical shift axis ( 0.002 ppm , 0.13 Hz nominal spectral resolution,
respectively) and a repetition time of 20 seconds (> five times the T1 of the reference and
metabolites) ensuring fully relaxed, quantifiable signals. NMR samples were prepared by re-
suspending lyophilised cell extracts in 500ul D20 (99.9 atom %, Sigma Aldrich, Steinheim,
D) potassium phosphate-buffer (0.05M, pH 7.4) containing a known concentration (60 —
120uM) of 2, 2’dimethylsilapentane-5-sulfonate (DSS, 99.0%, Fluka, Taufkirchen, Germany)
as a reference for chemical shift and quantification. Each extract was then mixed vigorously
by vortexing and centrifuged for 4 min at 10.000g. The supernatants (approx. 500ul) were
transferred to 5 mm NMR-tubes (Wilmad, Vineland NJ USA). All samples were subject to
NMR analysis at 298 K within 12 h.

6.2 Data pre-processing

We focus on the analysis of 'H liquid NMR spectra obtained from extracts of cultured
stem/progenitor cells, detailed subsequently. Each spectrum was preprocessed using in-
house Matlab ([14]) routines. Spectra were phased, baseline corrected and referenced using
DSS as a chemical shift and shape indicator (CSI) !. Furthermore, the region around (4.5 —
5.9ppm) was set to zero for each spectrum to remove the water resonance contributions.
Further details on the basic pre-processing are given in ([21, 22]).

6.3 Data set description

We employed a set of 6 NMR spectra from cells cultured under a range of conditions to
provide biologically realistic degrees of sample complexity and variation. The expected
metabolites in the signal (subsequently referenced as targets) were: Alanine - (Ala), Asparagine
- (Asn), Aspartate - (Asp), Citric Acid - (Cit), Cysteine - (Cys), Glutamate - (Glu), Glutamine - (Gln),
Glycine - (Gly), Histidine - (His), Iso-Leucine - (Ile), Lactate - (Lac), Leucine - (Leu), Malate - (Mal),
Methionine - (Meth), Myo-Inositol - (Myo), Phenyl-Alanine - (Phe), Proline - (Pro), Pyruvate - (Pyr),
Serine - (Ser), Succinate - (Succ), Threonine - (Thr), Tryptophan - (Trp), Tyrosine - (Tyr), Valine - (Val),
Fumarate - (Fum) and DSS as the standard reference. The signal is also expected to contain
some unspecified metabolites.

The murine multipotent hematopoietic progenitor cell line FDCPmix (Factor Dependent
Cells Paterson mixed potential) was grown in IMDM supplemented with 5 mM D-glucose,
2 mM L- glutamine, 1 mM sodium pyruvate, 20% horse serum and 10 u/ml IL-3. Six
independent cultures were analysed, generated separately over a period of 18 months under
the same culture conditions. The cells were maintained at 37 °C in 5% CO5 in air at densities
between 6 x 10* and 5 x 10° cells per ml by passaging every 2 — 3 days. At the final passage,
the cells were transferred to fresh medium and cultured for 3 days. Between 1 x 10® and
2 x 108 cells from each experiment were harvested by centrifugation and washed four times
with ice cold phosphate buffered saline (PBS) to remove medium constituents. The cell
pellets were shock frozen in liquid nitrogen and extracts prepared by addition of 800ul ice

LOther choices for the CSI e.g. trimethylsilyl propionate (T'SP) are also possible. The ideal CSI is only
one peak with no overlap to other peaks.



cold methanol:acetonitrile:water 1 : 1 : 1 mixture. To ensure efficient cell disruption the
cells were subjected to 2 x 1 minute bursts of ultrasound in an ice cold ultrasonic bath. The
samples were then transferred to a 70 °C water bath for 10 minutes to denature the proteins
before being diluted 1 : 7 with water and lyophilized.

Additionally we analyzed a set of 4 spectra of wet-lab mixtures of the 5 metabolites
(Ile,Leu,Glu,Val,Meth) and DSS as a standard with known concentrations.

6.4 Manual NMR expert analysis

The metabolites of interest were first measured individually by NMR to provide reference-
spectra. A known concentration of the metabolite (1 - 20 mM) together with DSS (0.1 — 2
mM) was prepared in 500u! buffered D2O solute (see 2.1) and measured under the same
conditions as those used for the cell extracts. This allowed the determination of all chemical
shifts (o) and coupling constants (J) of each signal-generating metabolite proton as a basis
for the reliable identification of metabolites in subsequent experiments.

Metabolite identification and quantification was achieved using purpose-developed NMR
software (NMRj,[23]) allowing for the interactive subtraction of a simulated from a mea-
sured NMR- spectrum. The chemical shifts and coupling constants from the simulation
were carefully adjusted within a range of < 0.01 ppm to enable stringent fitting of the fre-
quency pattern of the individual spin systems to the cell extract-spectrum. The criteria
for an acceptable fit were firstly that all of the simulated peaks be present in the mea-
sured NMR-spectrum (i.e. identification of the metabolite) and secondly that the difference
spectrum resulting from subtraction of the simulation from the measurement exhibited a
smooth baseline at the position of metabolite frequencies. The latter step requires that the
simulated signal is folded by a line broadening function that is as close as possible to that
of the measured spectrum. This was achieved by using up to three exponential broadening
functions, independent in amplitude, damping and frequency offset, for folding the simulated
spectral time signal. Metabolite concentrations were calculated from the identified metabo-
lite’s NMR time-signal amplitude relative to the time signal amplitude of the known DSS
reference concentration taking into account the relative number of contributing protons.

6.5 NMR and targeted profiling

High resolution 'H NMR. spectra consist of a large number of relevant signals. Metabo-
lite signatures are represented in general by multiple narrow peaks located on top of a
wide underlying complex baseline. The NMR signal s(v) can be approximated as a super
composition of Lorentzians ([11]), Gaussian functions or mixtures thereof. However, such
assumptions are highly idealized. In practical measurements the line shape of the peaks
is much more complex and inhomogeneous due to measurement imperfections. This poses
multiple challenges in the analysis because almost all relevant signals in the NMR measure-
ment show strong overlapping components. Without an appropriate model of the signal
structure and line shape a deconvolution is extremely complicated. This is especially true
for signal components at low concentrations which may otherwise be easily overlooked.

The TP approach ([30]) analyses metabolites by referencing to a set of known signatures.
Taking some relatively strong assumptions concerning the line shape and knowledge about
the structure of the targets, TP tries to identify and quantify these target metabolites in
the complex NMR spectrum.

The TP approach assumes an almost perfect knowledge of the peak or line shape, which
is typically modeled as a Lorentzian or a Gaussian function. It is also assumed, that the
number of candidate signatures in the mixture s(v) is small and restricted to a specific



subset of known metabolites, the targets. Furthermore, it is assumed that for all targets,
their peak sequence, i.e. the signal signature defined by the position and height of the
peaks, is known perfectly beforehand. In practice it is often very difficult to provide such
a description analytically for complex mixtures with extensive overlaps. For this reason
the peak system is constructed (manually) by adding appropriate peaks at the correct ppm
position and height. The targets are subsequently fitted against the measurement.

TP is being adopted as a standard technique in metabolite analysis and has already been
employed in a number of studies see e.g. ([27, 26, 25]). While TP has been found to be
very effective in a range of applications it remains suboptimal in many cases: (1) Due to
variations in the measurement conditions (e.g. temperature, pH) the position of the g; in a
target (groups of peaks) may shift in a non-linear manner. (2) A specific line shape has to be
chosen for the fitting of the candidate targets against the signal. Since the actual line shape
may deviate from the chosen forms, this assumption can lead to further problems especially
for strongly overlapping signals as depicted in Figure 1. (3) The simple fit of individual
targets against the signal s(v) may fail for strongly overlapping structures, while the use of
lower constraints on the fitting commonly leads to incorrect identifications of targets. In the
later case it can happen that lines are fitted into regions without signal.

The TP approach also lacks the formal and mathematical derivation and modeling basis
which would simplify adaptations, for instance to accommodate moderate changes in the
device settings such as alternative measurement frequencies, or to incorporate alternative
peak shape models.

In the following section we formalize targeted profiling and detail our extension thereof.
We provide an appropriate mathematical modeling for the fitting and parameter estimation
approach, taking the functional characteristic of the measurements into account.

7 Extended Targeted Profiling

An arbitrary metabolite may formally be given by a functional description f(v) for a target
signal as f(v) = ZJG g;(v) with g;(v) as a peak pattern or a function of delta functions
with non-zero entries only on the appropriate peak positions as detailed below and G as
the number of such peak patterns. Using the TP approach f(r) may be folded with an
appropriate line shape e.g. a Gaussian. A reconstruction of alanine using the functional
description is given in Figure 2.

An alternative compact description of a target e.g. alanine is given by its 'H NMR spin
system classification as AsX spin system (see e.g. [13]), with the associated values for the
chemical shifts of o(H4) = 1.46 ppm, o(Hx) = 3.76 ppm and an A-X coupling constant of
Jax = 7.2 Hz see Figure 3.

Using the above spin system classification, we can employ a NMR simulation environ-
ment ([24]) to simulate the alanine spectrum whilst taking the physical properties of our
measurement system (such as device frequency) into account.

This simulation yields transition tables providing information on the peak positions and
heights of each peak for the target. A transition table for L-alanine is shown in Table 1.

From this line spectrum we can generate a profile spectrum, similar to a true measure-
ment by folding the line spectrum with an assumed line shape, leading to our functional
description f(v) of a given target (see Figure 2). Taking this approach we can model the,
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Figure 2: Reconstruction of L-alanine using the functional description. The x-axis is given in
ppm and the y-axis shows the intensities. (a): the quartet generated by the H, proton with
a shift parameter o(H,) and (b): the doublet caused by the three magnetically equivalent
H 4 protons with shift parameter o(H 4).
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Figure 3: Structure of L-alanine (left) and in A3 X notation (right).

phased and baseline corrected signal s(v) as
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We employ a non-negative Least Squares Fit over all J identified targets f;(v) using
the functional description and the subsequently generated peak information. Thereby o
represents a global shift which can be compensated by a reference shift correction and e
represents noise. The target f; can be approximated as a super composition of its component
functions or peak groups g; defined by the number G; of chemical shifts in the molecule’s
spin system.

A small local shift —y < A; < ++ typically within a range of |y| < 0.005 ppm can



Index PPM Intensity Group index AsX

1 1.4596 11.2246 1 As
2 1.4700 11.2752 1 As
3 3.7499 0.9438 2 X
4 3.7603 2.8187 2 X
) 3.7706 2.8061 2 X
6 3.7809 0.9311 2 X

Table 1: Transition table providing the information for a line spectrum reconstruction of
L-alanine. The table was generated using standard settings for a 700.153 MHz NMR system
'H channel as specified before.

be expected for each peak group. Each component O (v) of ¢;(v) can be considered as a
delta function, contributing to a line spectrum with non vanishing amplitude for one peak
position only. We denote such a single position v as v;;; to specify peak k caused by
group % in metabolite j. K is the multiplicity of a component function g;. The origin of
the chemical shift group components O (v) lies in the spin-spin interaction characterized
by the scalar coupling constant J4x and can be deduced from the quantum mechanical
calculations for the spin system parameters describing the target metabolite. Subsequently
this line spectrum is folded ® by a line shape function g to mimic the line shape of the real
measurement. In the following we will use G for G; and K for K ; if the indices are known
from the context. In NMR the position of the g; are known as chemical shifts. The estimates
of these shift positions need to be as accurate as possible and are the main error-source in
the TP approach.

An accurate peak shape estimate is the key to an appropriate subtraction of signal
components from s(v) in order to reveal potentially hidden components. We approach this
issue by taking the shape of the DSS reference signal added to the sample, as a template for
o. This shape is used to estimate the expected peak width present in the signal.

To tackle the shift-uncertainty problem, we estimate values for the disturbances A shown
in Eq. (2) and present an initial solution to optimize the g; positions in potential targets
using a grid search strategy. This approach leads to a general improvement in position
estimates for the true chemical shifts of the sub-patterns g; of potential targets f; and hence
to more accurate identification and quantification estimates as shown below.

Whereas standard TP identifies signatures in NMR mixtures by employing known database
references of (manually) specified peak patterns the Extended Targeted Profiling approach
(ETP) described here modifies this concept by modeling the targets based on their theo-
retical spin-system model (see ([24]). This model provides the peak information (transition
tables). The physical model easily deals with measurement variables such as different device
frequencies and is known to provide very accurate peak lists. The parameters of the targets
are optimized with respect to the measurements at hand. Each target description T (gener-
ating a signal f;(v)) is characterized by a set of spin-system descriptors Ty € S. S describes
the theoretical aspects of the spin system of T" and can be used in combination with a model
of the measurement system (NMR system) to simulate the spectrum f; for T. A spectrum
representation of T' can be divided into multiple parts, one for each spin-system descriptor
Ty, known as the peak group (g). A peak group may consist of multiple or single peaks and
is potentially overlapping. For each group a potential (limited) shifting uncertainty A; can
be expected. New targets can be added to the ETP approach very easily by specifying the
spin-system model, outlined above, based either on knowledge available in the literature or
by own measurements of the pure target substance under the previously defined measure-
ment conditions. In the latter case the obtained spectrum is analyzed manually to define



the spin-system model. Hereby an NMR expert constructs a spin-system model such that
the reconstructed spectrum, based on this model, fits best to the observed data. The three
steps of ETP required to obtain an optimized fit based on this new encoding strategy are
detailed below.

7.1 Line representation of a NMR spectrum

NMR spectra can be described by means of a set of overlapping peaks, which provides a
compact representation of the signal and can also reveal quickly whether or not an expected
target is likely to be present in s(v), since all simulated target peaks must also be present
in the peak list of s(v). The peak picking process is rather complicated, and a number
of heuristic approaches have been proposed to improve the situation ([11, 2]). Here we
focus on a simple parametric hill-climbing approach ([22]). We further assume that for each
measurement a known CSI signal is available, in our case this is DSS. This signal has a known
position of 0 ppm, which can be used to compensate the global shift offset of the spectrum.
We look for a maximum within a window of 0.05ppm at the expected CSI position. From
this position we then go down (to lower intensities) on the left and the right flank of the peak
as long as the signal is a descending monotone. The peak is then truncated at a predefined
maximal width. The center position and the peak width at half maximum (PWHM) are
then calculated for this peak. The PWHM is used as a rough estimate of the peak width.
Due to effects such as imperfect phasing, shimming or baseline correction, a direct inverse
deconvolution of s(r) with the CSI reference is not generally feasible. Instead, we employ
a hill-climbing algorithm and look above a predefined threshold (the expected noise level)
through the whole signal for local maxima, whose flanks are sufficiently steep and for which
the obtained peak has a sufficient width. By application of this algorithm we obtain a list of
peaks in a spectrum. This list is subtracted from s(v) and the algorithm is repeated until no
further peaks are detected. This approach can also resolve peaks in an overlap, although not
in every case. Alternatively, the strategy described in ([11]) can be used with an underlying
Lorentzian support, the particular peak picking algorithm is not of much relevance here as
long as it discovers the peaks in the spectrum to a sufficient degree of accuracy. The list of
peaks is subsequently denoted as P. These peak lists are compared to those of the potential
targets. If a sufficient number of peaks (e.g. 30%) in a target can be matched within a
tolerance of 0.01ppm to the peaks P we consider the target to be identified and proceed
with the analysis steps for this target. We now have the target as a functional line spectrum
fj(v) with p as the fitted line function.

7.2 Genetic algorithm for shift uncertainty estimation

A major feature of our approach is the shift uncertainty correction performed by means of
a Genetic Algorithm (GA). The genetic algorithm software was written in-house in Matlab
running on an Intel Xeon multiprocessor system with 8 3.20 GHz processors and 16 GB
memory using the parallel processing, signal processing and optimization toolbox with Mat-
lab 2008b. We made use of the GA implementation in the optimization toolbox but replaced
some of the core methods with our own purpose-developed implementations. Specifically,
we replaced the methods used to generate the initial population and the mutation function
and provided a specific fitness function as described below. The basic algorithm and pa-
rameters for the GA are shown in Table 2 and the overall workflow is depicted in Figure 4.
Briefly, we generate a large number of chromosomes P, each chromosome has the same length
Z = Zj G, equal to the number of groups over all analyzed targets, and each of which con-
tains the currently estimated, or randomly determined shift values for the A;. These A; are



Parameter Description Value

C single chromosome c € RZ ¢; € [ppmmperis]
M set of chromosomes M ={Cy,...,Cp}

K Number of generations 200

P Number of chromosomes 900; | M|

Di permutation probability 0.1

Z Length of the chromosomes > G

PPM-E PPM uncertainty of the A; 0.01

SR Down-sampling rate 4

d distance measure {0,1}

Table 2: Basic parameters of the genetic algorithm. The distance measure is either euclidean
- 0, or a functional distance - 1.

optimized by the GA. Furthermore the smallest shift is limited by the ppm-axis resolution.
We have found that a reduction of the original spectrum to 16k points corresponding to
0.5 Hz spectral resolution, is possible, whilst maintaining structural information of sufficient
quality for the subsequent identification task. In this case up to 25 valid shift positions are
possible for a given shift uncertainty of £0.01ppm 2.

7.2.1 Fitness function and evaluation measures

The fitness function is the core element of the GA and is evaluated for each single chro-
mosome separately. It consists of three procedures: (1) The spin-system classifications of
all identified metabolites are used to generate the corresponding spectral representation.
Thereby, the shifts given by the chromosome are applied to the corresponding groups g;,
and the reconstructions folded with the prior estimated line shape. We denote the matrix
of all reconstructions f;(v), given as row vectors, as the matrix R

fi(w) fi ()
R= .. R = .

) £3(9)

(2) These reconstructions are reduced to a range representation such that a compact form of
R denoted as R’ is obtained. In R’ not all values for v are used but only a limited set of v in
form of potentially overlapping range vectors <y= [, — (2- PPM — E) : yj+ (2- PPM — E))
with [ as an index of a peak positions in Y.

We collect all peak center positions of the metabolites denoted as ¥ = {Yy,..., T} with
T; = {lek}ZGkXK and v; € Y. Here we also incorporate the A; and take the peak positions
from the transition tables extended to a range of twice the assumed ppm-uncertainty PPM-E
for each peak. A reduced test spectrum s’(1) is constructed, accordingly.

(3) The matrix R’ and the vector (1) are subsequently used in the LSQO, as the
third step, to calculate the a; for all targets. The reduction to a range based representation
is useful to avoid very large and extremely sparse matrices, which would complicate the
subsequent « estimations. This step has no detrimental effects on the a—estimates.

10



Ve

Downsample the signal by a factor SR: This will reduce the complexity of the \
problem such that only a limited number of shift positions are valid e.g. for 65k
points and a tolerance of 0.01 ppm only ~25 shift positions [-0.01ppm:0.01ppm]
are valid per peak group

Create initial population: Each individual solution is generated from the grid of
valid shifts in acc to a gaussian with the 0 mean shifted by 50% to the positiv
\shift values (prefering positiv shifts) /

Evalutate Fitness of the Population: we access the goodness of fit for each
signal reconstruction based on the shifts of this very chromosome using the
fitness functions — in this case the non negative linear least squares
optimization and a distance measure on the reconstruction and the test
spectrum. The obtained distance is the fitness

Generate the new population:

» Tournament selection, cross over and child generation — in
acc to the standard GA implementation

* Mutation — for each point in the chromosome with a
probability p, apply a mutation. Thereby we replace the

value by one of the shift positions in acc to the same

distribution as for the initial population

Figure 4: Workflow of the genetic algorithm used to obtain optimal A;. The first (outer)
folded corner is repeated until K generations are analyzed or one of the alternative standard
stopping criteria is met. The inner folded corner is repeated until a new population of the

same size as before is generated.
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(a) Two functions: Euc = LP-norm (b) Two functions: Euc # LP-norm

Figure 5: Ilustration of the LP-norm. Plot (a) indicates the case in which the distance
between two functions is equal, both for Euclidean or LP-norm. In plot (b) parts of the
functions are interchanging (crossing). The distance using Euc is still the same as in plot
(a) but for the LP-norm the distance is changed, giving a more realistic measure of the

distance of the two functions.
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[ [ Ile [ [ Leu [ [ Val [

[ EXP [ TP [ ETP [ EXP] TP | ETP | EXP | TP | ETP |
M-DS; 113.23 [ 31.07 [ 62.32 3235 [ 1729 [ 2353 36.27 | 1788 [ 18.59
M-DS;-C 72.64 37.77 21.85
M-DS; 36.32 [ 2600 [ 7398 | 6296 [ 15.00 [ 21.43 32.78 [ 15.98 | 28.52
M-DS,-C 60.54 50.37 43.71
M-DS3 51.92 [ 19.62 | 27.10 | 6030 | 1352 [ 21.44 5145 [ 1629 [ 32.00
M-DS3-C 36.32 62.96 32.78
M-DS4 57.98 | 2127 [ 36.01 58.85 [ 16.55 [ 25.94 3433 ] 1450 [ 11.46
M-DS4-C 48.43 62.96 21.85
® [ 063 | 0.46 [ 074 ] 0.60 [ 055 [ 0.43

Table 3: Concentrations of metabolites in the synthetic wet-lab study. The weighted
sample concentration is given in the -C' rows each. The estimate of the expert EXP, TP
and ETP are given in the columns. All concentrations are given in g mol. Considering the
median relative error (®) of the concentration estimates the ETP approach is best in all
cases. In a case by case comparison ETP is almost always the best, with three exceptions

{(Speca, Val), (Specy, Glu), (Specy, Ile)}.

[ [ Glu [ [ Meth [
[ EXP | TP | ETP | EXP | TP | ETP |
M-DS; 52.37 | 26.29 | 63.40 79.61 | 56.52 | 49.50
M-DS;-C 38.65 57.57
M-DS; 30.92 ] 22.30 | 35.07 71.97 ] 47.94 ] 52.41
M-DS;-C 30.92 43.18
M-DS3 37.68 | 21.59 | 33.95 94.22 ] 48.50 | 75.11
M-DS3-C 30.92 71.97
M-DS4 31.58 ] 30.73 ] 50.48 115.01 | 61.03 ] 84.51
M-DS4-C 23.14 86.36
® { 0.35 | 0.17 { 0.40 | 0.27

Table 4: (Table 3 continued) Concentrations of metabolites in the synthetic wet-lab study.
The weighted sample concentration is given in the -C' rows each. The estimate of the
expert EXP, TP and ETP are given in the columns. All concentrations are given in g mol.
Considering the median relative error (®) of the concentration estimates the ETP approach
is best in all cases. In a case by case comparison ETP is almost always the best, with three
exceptions {(Speca, Val), (Specy, Glu), (Specy, Ile)}.

7.3 Non negative least squares fitting

The targets f;(>d) are now given in the functional description of (2) with optimized A;,
using the known O and our functional shape estimation for all peak groups. The function
to fit is our reduced spectrum s’(<1). We add constraints for non negative «; and allow
for user definition of «; fixed on a target f; by employing standard optimization modeling
techniques. Solving the optimization problem by use of a standard constrained linear least
squares algorithm we obtain the o; in a column vector «, which can subsequently be used
to calculate the concentration estimates. To this end, the area under the a-scaled target is
calculated and associated to the area of the a-scaled reference signal (here DSS). A scaling
step is then performed, based on the number of protons 'H present in the reference, nine for

2If we assume a spectral resolution of SR = 0.5 Hz, a device frequency of F' = 700 MHz and an error of
PPM-E= £0.01 ppm the number of valid positions V' is V ~ 2 - PPM-E/(SR/F).
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DSS, compared to the number of protons present in the metabolite e.g. four for Ala. This
leads to the following equation for the concentration ¢ in mol: ¢(Ala) = %
with area as an appropriate estimation function for the area under the curve. One can also
calculate estimates of the lower concentration limits by scaling the target intensities of f;

to the noise level and repeating the procedure. The reconstruction s* is obtained as:
s*=R".a (5)

To judge the fitness of this solution we may now either use the quality of fit provided
by the LSQO algorithm or evaluate the reconstructed spectrum s*(v) with respect to s(v)
using a problem specific distance measure. Here we use either the standard Euclidean
distance (EUC) or a functional distance measure as an extension of the LP norm proposed
n ([12]) (FUNC). The functional distance measure has the advantage of taking the functional
nature of the spectra into account. The standard Euclidean distance considers the individual
features of the NMR spectrum to be independent, so that a change in the order of the ppm
positions does not affect the calculated distance. However, the features or measurement
points in NMR spectra are not independent, so that a distance taking this aspect into
account can be considered to be more appropriate for this type of data. Lee proposed a
distance measure taking the functional structure into account by involving the previous and
next values of a signal v; in the i-th term of the sum, instead of v; alone. Assuming a
constant sampling period 7, the proposed norm (FUNC) is:

D 5
Lo (v) = (Z (Ak (v) + By (v))”) (6)

k=1
with
5 TorT T ona] kUk—1
Bi(v) = {' o Osekn (®)
3 TorTHlor] if 0 > vgvgy1

representing the triangles on the left and right sides of v; and D being the data dimension-
ality. For the data considered in this paper v takes the position of v. As for L,, the value
of p is assumed to be a positive integer. At the left and right extremes of the sequence, vy
and vp are assumed to be equal to zero. The concept of the LP-norm is shown in Figure 5.
The calculation of this norm is slightly more complex than that of the standard Euclidean
but, as is shown below, significantly improves the fitting results as well as the convergence
speed of the GA3.

8 Results and Discussion

8.1 Identification and quantification

We have tested our approach using measurements of metabolites in lysates of cultured cells
as well as a small test set with known concentrations of defined metabolites. Rather than
focusing on a specific biochemical question we aim to compare the range and concentrations
of metabolites detected using TP and ETP with those obtained by manual expert profiling.

3The additional effort in the calculations is almost negligible - the time to calculate a generation is
changing only minor, by a few seconds.
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Figure 6: Concentration estimates for some of the different metabolites using ETP in com-
parison to TP and an expert analysis (Specy). The x-axis denotes the metabolites and the
y-axis the intensities in p-mol.

8.1.1 Wet lab metabolite mixture experiment

The wet-lab mixture data sets (M-DS) can be considered to be an artificial data set with
known concentrations. In Table 3 the known concentrations (weighted sample) and the
concentration estimates as obtained by the expert, TP and ETP using the functional distance
measure are given. We observe that the ETP approach is closer to the expert estimation
than is TP. The DSS concentration was given with 77.05 p mol for all spectra.

8.1.2 Cell culture experiment

Details of the analyzed cell extract data are shown in Figure 6. The optimized approach
provides results which are much closer to the expert analysis, for 16 of the 21 targets. Eth,
Cit, His, Myo and Mal were noted as being absent by the expert but by ETP and TP with
very low concentrations.

Test spectrum | Error TP | Error ETP (ruxc) | Error ETP (ruc)
Speci 49.65 31.95 (97) 32.05 (121)
Specs 68.68 45.89 (106) 68.71 (122)
Specs 30.92 28.40 (112) 29.87 (147)
Specy 87.53 55.70 (118) 56.01 (132)
Specs 64.04 47.30 (97) 46.39 (121)
Specs 111.09 87.60 (81) 93.77 (137).

Table 5: Mean errors in p-mol of TP and ETP with respect to the expert concentration
estimates. The expert concentration is assumed to be optimal (0 error), the values for TP
and ETP are then compared with the expert using the mean square error, normalized by
the number of metabolites. It can be seen that the new approach clearly improves the
concentration estimates. The number of generations until convergence is shown in brackets.

Figure 9 shows a reconstruction of a signal part with respect to the original signal to
illustrate the effect of the shift correction.

From Table 5 we observe that the EUC measure in the fitness function is indeed less
effective then the FUNC measure, consistent with our expectation that the FUNC norm
is more appropriate to data which are themselves functions *. We subsequently restrict

4Using the median in Figure 6 gives similar results with respect to TP but comparing FUNC and EUC
the results are less pronounced due to the dominance of the (many) small metabolites
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Ala Asn Asp Cys Glu Gln Gly Ile

TP 0.66 1.77 1 1 0.26 1.83 0.69 0.61

ETP 0.28 1.56 1 1 0.19 1.78 0.3 0.08

Imp 1 1 0 0 1 1 1 1

Sig + o o o o o + +
Lac Leu Meth Phe Pro Pyr Ser Succ

TP 0.34 0.27 0.49 0.56 0.64 1 0.64 0.44

ETP 0.32 0.31 1.21 0.58 0.5 1.96 0.26 0.09

Imp 1 1 2 2 1 2 1 1

Sig o o o o o o o o
Thr Trp Tyr Val Fum Mean

TP 0.97 0.85 0.44 0.71 1 0.81

ETP 0.14 0.42 0.07 0.06 0.21 0.66

Imp 1 1 1 1 1 -

Sig + o [ + o 0

Table 6: Relative median metabolite error. Change judged in the row labeled by Imp: 1
(improvement/optimal), 2 (worse estimate), 0 (no improvement). The rows labeled with Sig
indicate if the change was significant by use of a t—test.
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Figure 7: Relative error estimates for different metabolites using TP (a) and ETP (b).
The y-axis encodes the relative error and is limited to [0,4]. The x-axis lists the different
metabolites.

our analysis to the FUNC norm and the standard TP approach. In Figure 7 we show
Box-Whisker Plots of the relative concentration errors with respect to the expert of the
metabolite concentrations using the standard TP and the ETP (FUNC) approaches. It can
be seen that the relative error of ETP is much smaller than that of TP in the large majority
of the metabolites. Also the variance of the results is smaller. Median errors of TP vs ETP
are shown in Table 6. Significance of an improvement is indicated by a + using a t-test on
a 5% level, with significances of p < 0.03. We observe that =~ 25% of the differences are
significant and all of these are positive.
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8.2 Shift uncertainty properties and influence

The shift uncertainty estimates A change over time with respect to the GA evolution and
the underlying constraints. The GA can only determine a local optimal solution, which
is expected to correspond to the global optimum in only a very few cases. An analysis of
the number of updates per shift uncertainty estimate reveals parameters which are likely to
be incorrect either because they have not been updated at all or because they have been
updated very frequently. An example for Spec; is shown in Figure 11. Taking this statistic
into account the expert can be assisted by an indicator that highlights peak group shifts, that
are likely to be incorrect. Considering the values of the shift uncertainties for the analyzed
spectra we found around 3 — 4% of the A; to be 0 after convergence. Analyzing the shift
updates also provides information about potentially unreliable modeled regions, indicated by
either very few or very many A updates, as shown in Figure 10. There the relative number
of A changes by the GA with respect to the total number of generations until convergence
is shown over all spectra. The various metabolites are indicated by different symbol shapes
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and shadings.

One can clearly see that for most A (indicated by the symbols) around 40% of the GA
generations are sufficient to obtain a stable solution. Even if this solution may not be a
global optimum, it can still be considered as a stable local optimum. For some of the A
(e.g. those for pyruvate and aspartate) a (much) larger number of updates is necessary and
it can be expected that these shifts are not well optimized, but that no better solution could
be found by the GA. For some of the other metabolites one can also see that only a single
group is optimized very frequently as is the case for the group of Val (valine) around 0.98
ppm or Ser (serine) around 3.83 ppm. The concentration estimates for these two amino
acids compare quite well with the expert estimates. Very few updates can be observed e.g.
for Succ (succinate) around 2.39 ppm, Gly (glycine) around 3.55 ppm or Glu (glutamate)
around 2ppm and 3.75ppm. Interestingly Succ, Gly and Glu are optimized very well and the
estimated concentrations correspond reasonably to those obtained by the expert. However
it should be borne in mind that the concentration estimate is not equally split over the
groups.

b WU

Figure 9: Spectrum in the region of valine and iso-leucine. The two sub figures on the top
show the fit with ETP, left for iso-leucine (filled), right for valine (filled). Below the same
but in the original TP fit.

The plot in Figure 10 provides an initial indication of which metabolites are most likely
to have been poorly optimized and should therefore be manually corrected by the expert.
This provides a basis for the focused and guided manual interaction avoiding the inspection
of all metabolites. In the example shown, the optimizations appear to have been reasonably
effective and correct for those metabolites for which the number of updates for the corre-
sponding A lies within a range of 20 — 40%. The plots in Figure 8 show the effect of the
genetic evolution with respect to the concentration of the metabolites and the parameter
modifications. One can see that most of the optimization of GA parameters and hence of
concentration changes occurs in the first 10-20 generations. The plot also shows that even
relatively small errors in the A; may have large impact on the concentration estimates, with
very high values at the beginning of the optimization and comparatively small values at the
end for some metabolites.

Median relative error estimates of single metabolites using TP and ETP (FUNC) are
shown in the Box-Whisker plot 7. The relative error is calculated as the absolute concen-
tration error compared to the expert value.In terms of the median errors, we find that ETP
provides a clear improvement over TP but has still problems with some metabolites such as
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Leu, Meth, Phe and Pyr. In these cases, however, we note that even the manual fit by the
expert is challenging. On average the median error improved from 0.78 to 0.64 with 0 as the
perfect agreement. These findings show that ETP is superior to TP in providing reason-
able estimates for metabolites on a magnitude level. However, the accuracy attainable from
single measurements is still low. This highlights the need both for the use of experimental
replicates and for the analysis of multiple spectra of the same sample.
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9 Conclusion

In summary, this work has shown that an approach combining GAs with LSQO leads to
highly effective error estimates for the shift uncertainties in 'H NMR measurements. The
simultaneous fit outperforms the standard TP approach with respect to identification and
quantification accuracy and compares favorably to the expert analysis. We have further
shown that the usage of a data specific (functional) distance measure to calculate the fitness
values is preferable to a standard Euclidean measure. It also significantly improved the
convergence rate of the GA. The interpretation of the obtained shifts over time with the
best model allows an in depth analysis of the optimization, revealing potentially unreliable
fits. This provides initial guidance for the expert to focus further manual improvement
of the obtained fit where necessary, reducing the demand for extensive shift corrections
in order to generate correct uncertainty estimates. Furthermore, the approach also allows
the manual, specification of concentration values in the fit for known concentrations, by
additional constraints. Overall the combined approach can improve the identification and
quantification accuracy of NMR based targeted profiling to allow a semi-automatic high
throughput analysis. Further improvements are to be expected from improved preprocessing
of the spectra. Variations in the baseline and slightly incorrect lineshapes being the main
sources of error in the automatic identification and quantification of metabolites in NMR
measurements.
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Chapter 4

Large scale models

4.1 Efficient kernelized prototype based classification

The article Efficient kernelized prototype based classification by F.-M.Schleif, T. Villmann,
B. Hammer and P. Schneider was published by Neural Systems 21 (6), p. 443 - 457, in 2011 In
the article an extension of Kernelized Generalized Learning Vector Quantization (KGLVQ)
is proposed employing a sparsity and approximation technique to reduce the learning com-
plexity. Generalization error bounds and experimental results on different real world image
processing tasks are shown. I derived the theoretical extensions and implemented the al-
gorithms. B. Hammer supported the error bound analysis. P. Schneider and T. Villmann
provided relevant suggestions in early discussions about this work and the initial conference
contribution. I wrote the article. All authors discussed the general article.

Additional publications in international conferences where I am co-author and which
cover a similar or related topic include:

1. F.-M. Schleif, A. Gisbrecht and B. Hammer, Accelerating Kernel Neural Gas, Proceed-
ing of ICANN’2011, 150-158, 2011 (Content: The kernelized Neural Gas is extended
by the Nystrém approximation to obtain memory and runtime efficient behavior for
large scale problems)

2. A. Gisbrecht, F.-M. Schleif, X. Zhu and B. Hammer, Linear Time Heuristics for
Topographic Mapping of Dissimilarity Data, In Proceedings of Intelligent Data En-
gineering and Automated Learning (IDEAL)’2011, 25-33, 2011 (Content: Relational
topographic mapping is extended by different approximation techniques to improve
efficiency for large scale problems.)

3. A. Gisbrecht, B. Hammer, F.-M. Schleif and X. Zhu, Accelerating kernel clustering for
biomedical data analysis, In Proceedings of IEEE Symposium on Computational In-
telligence in Bioinformatics and Computational Biology (CIBCB)’2011, 154-161, 2011
(Content: Some clustering algorithms for dissimilarity learning have been extended by
approximation strategies)
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Abstract

Prototype based classifiers are effective algorithms in modeling classification prob-
lems and have been applied in multiple domains. While many supervised learning
algorithms have been successfully extended to kernels to improve the discrimination
power by means of the kernel concept, prototype based classifiers are typically still
used with Euclidean distance measures. Kernelized variants of prototype based classi-
fiers are currently too complex to be applied for larger data sets. Here we propose an
extension of Kernelized Generalized Learning Vector Quantization (KGLVQ) employing
a sparsity and approximation technique to reduce the learning complexity. We provide
generalization error bounds and experimental results on real world data, showing that
the extended approach is comparable to SVM on different public data.

1 INTRODUCTION

The dramatic growth in data generating applications and measurement techniques has
created many high-volume and high-dimensional data sets. Most of them are stored
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digitally and need to be efficiently analyzed to be of use. Clustering and classification
methods are very important in this setting and have been extensively studied in the
last decades [17, 35, 33, 1, 24, 36, 10]. Challenges are mainly in the timely, memory
efficient and accurate processing of such data also in the case of non linearly separable
data with multiple thousand items.

Kernelized learning vector quantization (KGLVQ) was proposed in the approach|[28]
as an extended approach of Generalized Learning Vector Quantization (GLVQ) [29]
with the goal to provide modeling capabilities for learning vector quantizers and to
improve the performance in classification tasks. While the approach was quite promis-
ing it has been used only rarely due to its complexity. One challenge is the storage
of a large kernel matrix and additionally the storage and update of a combinatorial
coefficient matrix ¥, implicitly representing the prototypes. This makes the approach
inapplicable already for data with a comparably small number of items.

Data analysis using kernel methods is an active field of research [3, 6, 25] offering
solutions for the analysis of complex problems. The involved kernel matrix needs, in its
original form, quadratic space with the number of samples and involves usually cubic
time complexity which can be quite demanding for large problems. This pose a big
challenge on practical applications.

Modern approaches in discriminative kernel based learning like Sequential Minimal
Optimization[27] and other try to avoid the direct storage and usage of the full kernel
matrix or restrict the underlying optimization problem to subsets thereof[27, 35, 37].
For the KGLVQ approach such a strategy has not been proposed so far.

The Nystrom-Approximation of Gram matrices constitutes a classical approxima-
tion scheme [41, 22], permitting the estimation of the kernel matrix by means of a low
dimensional approximation. We will employ this method for the approximation of the
distance calculations based on the kernel matrix as the key element of our accelerated
kernelized GLVQ (AKGLVQ). A further issue with kernel methods is the model com-
plexity by means of the stored data points. In case of the well known support vector
machine (SVM) [38], these are the so called support vectors (SV). The number of SVs
can become quite large for complex problems. Novel learning methods for the SVM
try to shrink this value [19].

In case of KGLVQ the prototypes are implicitly modeled by a coefficient matrix
over all data points which is typically dense. This however is not necessary for most
data sets.

Sparsity is a natural concept in the encoding of data [26] and can be used to obtain
compact sparse models. This concept has been used in many machine learning methods
[21, 16] and different measures of sparsity have been proposed [26, 16]. Taking this into
account we propose to integrate a sparsity constraint into KGLVQ allowing the explicit
control of the sparsity of the coefficient matrix.

Both optimization concepts, Nystrom and sparsity, are used to improve the com-
plexity of KGLVQ such that it becomes applicable for large data sets.

In Sec. 2 we present a short introduction into kernels and give the notations used
throughout the paper. Subsequently we present the KGLVQ algorithm and its approx-
imated variant AKGLVQ by means of the Nystrém approximation and the additional
sparsity constraint. We show the efficiency of the novel approach for experiments on
artificial and real life data. Finally, we conclude with a discussion.

2 PRELIMINARIES

We consider a set of vectors v; € X” with X® C RP, D denoting the dimensionality
and |X| = N the number of samples. Further we introduce prototypes w; € WP, with
|[WP| = M which induce a clustering of X” by means of their receptive fields consisting
of the points v for which d(v,wj) < d(v,w;) holds for all j # [ and d denoting a



distance measure, typically the Euclidean distance. Further we introduce ¢(v) € L as
the label of input v, and ¢(w) as the label of the prototype w, respectively. £ denotes
the set of labels (classes) with #L£ = N.. Let W.= {wi|c(w;) = ¢} be the subset of
prototypes assigned to class ¢ € L.

We also introduce two special notations for the prototype which is closest to a given
point v; with the same label: w™ or a different label: w™~. The corresponding distance
df, d;:

df = dw",v;) withwt € W, ¢ = c¢(vi), 1)

wh = wy: d(vi,wy) < d(vi,w;), {w;,wi;} € W, (2)
di = d(w,vi) withw™ & W, = c(vi) ®)
wo = owy s d(vi,wr) < d(vi,wy), {ws, wik € We

Equation (2) is sometimes also referred as the winner takes all (wta) rule restricted to
the w of the same class as v.

Complex data are often not linearly separable in the Euclidean space and it was
suggested to map the data X into a high dimensional Hilbert space H using a mapping
function ¢ : X — H to separate the data in a linear manner [33]. The explicit definition
of an appropriate mapping ¢ can be complex for the high-dimensional feature space.
As pointed out in [33] this explicit formulation is often not necessary, if we are able
to express the calculation in our learning algorithm by means of inner products. If
we have a positive semi-definite inner product function & (v, v’), fulfilling the Mercer
conditions we can expand it by means of its eigenvalues and eigenfunctions:

K (v,v) = Z_ Xipi(V)$i(v') = (¢ (v), 0 (V') - (4)

Now we can express the inner products in the feature space based on the kernel function
k calculated in the Euclidean space using e.g. a Gaussian kernel « (v, v') = exp(—||v —
v'||?/o?) [8]. The calculation in the GLVQ can be done based on inner products such
that (4) is applicable as used to derive the KGLVQ[28].

3 ALGORITHM

Learning vector quantization (LVQ) is a supervised learning scheme. It was introduced
as a generic concept for intuitive prototype-based classification algorithms [20]. Sev-
eral variants were developed to improve the standard algorithms [13, 29, 34]. LVQ
algorithms are based on the empirical risk minimization (ERM) principle and describe
the data space by means of prototypical representants (vectors), which are in general
elements of the original data space. The main benefit, beside of its good generaliza-
tion performance [14], is the direct access to the model constituents by means of the
prototypes. The prototypes can be directly inspected and provide human interpretable
information about typical aspects of the represented data classes.

Generalized Learning Vector Quantization (GLVQ) is an extension of the standard
LVQ providing a cost function [29] recently extended in two kernelized variants [28, 31].
It is a margin optimization method [7] and can inherently deal with multi class data.
Moreover, it is effective also under different distance measures and objectives [11].
The kernelized variants of GLVQ, namely KGLV(Q and differentiable kernelized GLVQ
(D-KGLVQ) are effective extensions of the original GLVQ concept but suffer from its
high complexity or limitations regarding the kernel choice [31]. Subsequently, we briefly
review the concepts of GLVQ and KGLVQ which will be extended, by two optimization
techniques, yielding AKGLVQ later on.



3.1 Standard GLVQ

The cost function for GLVQ is given as

N

dF —dT
E = Costarvg = y_p(vi) p(vi) =

P 5
d+ +d; ®)
which is optimized with respect to the free parameters (here the prototypes), by stochas-
tic gradient descent. Note that the classifier function u(v) is positive if the vector v is
misclassified and negative otherwise.

The learning rule of GLV(Q is obtained taking the derivatives of the above cost

function with respect to the parameters w. Using 8” ‘”) f+ and % =
_ ad;
5 BW_
2-d; —2.df
+ i - 4
= —_——_— 6
ST Wrdy C T Wy ©
one obtains for the weight updates [12]:
Awt =gt —ad;r Aw™ =€ & - 0d, (7)
B ow+ - ow—

with €'/~ as learning rates, which are typically in the range of 1072,

3.2 Kernelized GLVQ

We now briefly review the main concepts used in Kernelized GLVQ (KGLVQ) as given
in the paper of Qin[28]. The KGLVQ makes use of the same cost function as GLVQ
but with the distance calculations done in the kernel space. Under this setting the
prototypes cannot explicitly be expressed as vectors in the feature space due to lack
of knowledge about the feature space. Instead Qin[28] models the feature space as a
linear combination of all images ¢(v) of the datapoints v. Thus a prototype vector may
be described by some linear combination of the feature vectors: w; = S ¥;1¢(v1),
¥; € RY is the corresponding coefficient vector. The distance in feature space for a
given ¢(v;) and w; is computed as:

N
& = le(vi) = will* = |é(va) Zwmvz

k(vi,vi) — QZ k(vi, vi) - (8)

=1

M=

+ k)(Vs,Vt) : wjys"/’j,t

s,t=1

The update rules of GLV(Q can be modified by substituting the Euclidean distance
by Equation (8) and taking derivatives with respect to the coefficients ;;. The de-
tailed equations are available in [28], a simplified version for the coefficient update is
given later on. The final model consists of the pre-calculated kernel matrix and the
combinatorial coefficient matrix for the v coefficients.

2Divisions including vectors are used element-wise throughout the paper.



3.3 Approximation of the kernel matrix by Nystrom

As pointed out in the paper of Zhang[41], different strategies have been proposed to

overcome the complexity problem caused by the kernel matrix K in modern machine

learning algorithms. One promising approach is the Nystrom approximation.

It originates from the numerical treatment of integral equations of the form [ P(y)k(z,y)¢:(y)dy =

Aidi(x) where P(-) is the probability density function, k is a positive definite kernel

function, and A1 > A2 > ... > 0 are the eigenvalues with ¢1, ¢2, . .. the respective eigen-

functions of this integral equation. Given a set of i.i.d. samples {z1, ..., x4} drawn from

P(+), the basic idea is to approximate the integral by the empirical average

1/q Z k(z,z;)¢i(z;) ~ Xigi()

which can be written as the eigenvalue decomposition: K¢ = ghgp. Kgxq = [Ki ;] =
[k(zi,x;)] is the kernel matrix defined on X, and ¢ = [¢:(z;)] € R?. Solving this
equation we can calculate ¢;(x) as

i(a) = 1/(aN) Y k(z, 2;)¢i(x;)

j=1

which is costly. To reduce the complexity, one may use only a subset of the samples
which is commonly known as the Nystom method.

Suppose the sample set V = {Vi}fil, with the corresponding N x N kernel matrix
K. We randomly choose a subset Z = {z;}{_,,Z C V,q << N of landmark points and
a corresponding kernel sub matrix Qgxq = [k(2i,2;)]i,;. We calculate the eigenvalue
decomposition of this sub matrix: Q¢. = gA.¢. and obtain the corresponding eigen-
vector ¢, € R? and the eigenvalue g\.. Subsequently we calculate the interpolation
matrix Kyxg = [k(vi,2;)]i,; to extend the result to the whole set V. We approximate
the eigen-system of the full K¢x = dxAx by [39]:

q v -1 N
o = | =KozAz Ak = —z.
K N PzAz  AK 7 z

K can be subsequently reconstructed as

() () ()

— KQ*lK/

K

%

To integrate the Nystrom approximation into KGLVQ we only need to modify the
distance calculation between a prototype w; and a data point v; which can be expressed
using the Nystrom approximation. In KGLVQ the prototypes are expressed by means
of a linear combination of the datapoints in the feature space as shown in [28]. Hence
it is sufficient to update the coefficients of this linear combination. The original update
equation for the coefficient matrix in KGLVQ read as:

4.dF .
[1¥E W] .’(pti,r’ if Vs #Vz
t+1 4-df
Vi =qlFe: W] Py

I 4-dFf i o

€ W 1L Vor = V5
with ¢ 4+ 1 indicating the coefficient 1) after the update. A single prototype update
has a complexity of O(N?), due to the double sum in (8). The index or superscript +
corresponds to the prototype with the same (+) or different (—) label as the data point



v; as already defined previously. The point v; is the current point used in the iterative
gradient descend optimization. The index r’ refers to the considered datapoint in the
linear combination (the column index of ¥). The KGLVQ update above is almost
identical for the AKGLVQ but the distance calculations are done using the Nystrom
approximation with Equation (9):

di = K(i,i)—2 T ;+diag(¥-T") (9)

)

with T;. = ((;-K)- Q') K (10)

where diag provides diagonal elements of the associated matrix. Using Nystrom-
approximation, the complexity in AKGLVQ is reduced to O(q3 + ¢N), caused by the
SVD (for some recent work on SVD see[18]) to calculate the inverse of the matrix in
the Nystrom-approximation and the remaining distance calculation costs [39].

3.4 Sparse coefficient matrix

In the paper of Olshausen[26], sparsity has been found to be a natural concept in the
visual cortex of mammals. This work motivated the integration of sparsity concepts
into many machine learning methods to obtain sparse and efficient models. Here we will
integrate sparsity as an additional constraint on the coefficient matrix ¥ such that the
amount of non-zero coefficients is limited. This leads to a more compact descriptions of
the prototypes, by means of a smaller linear mixture model. The used sparsity measure
is the one as given in Olshausen[26]. The sparsity S of a row of « is measured as

S(v;) = —iS(w;l) (11)

=1

with o as a scaling constant. The function S can be of different type, here we use
S(z) = log(1 + z%). We extend the energy function of the KGLVQ by an additional
term:

Eakcrve (v) = Ekcrvag (v) — BS(¢) (12)

The updates for the coefficients of w; are structurally similar to those given in the
standard KGLVQ using the Nystrom formula to approximate the Gram matrix but
include the additional term

oS _ 2/0% -4
i1 L+ (W50/0)*

we restrict the coefficients to be 9;,; € [0,1] and bound them by >", v = 1.

The effect of the sparsity constraint in AKGLVQ on the UCI iris data [4] with one
prototype per class is shown in Figure 1. Both models achieve an accuracy of ~ 90%
using a linear kernel. The sparsity constraint effectively helps to reduce the necessary
memory of the matrix W. Yet, the associated parameters have to be chosen adequately
to balance sparsity and classification accuracy. The sparsity constraint could also be
used to speed up the algorithm, by explicit omit operations involving multiplications
with zero. This, however, requires a very careful and efficient implementation of the
sparsity handling which is not easily accessible within the used runtime Matlab. During
the classification step a sparse matrix ¥ can significantly limit the number of distance
calculations necessary to map a new item in the feature space and to calculate the dis-
tance to a prototype. In the worst case with a dense matrix ¥ we get linear complexity
O(M x N) to calculate the inner products for a new point, whereas a sparse matrix ¥
will typically scale in constant complexity O(k x M), assuming e.g. a k-approximation
of the prototypes.
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Figure 1: Effect of the sparsity constraint for the UCI iris data shown by means of the
U-matrix (normalized for better comparison). With sparsity (left), without sparsity right.
Dark values indicated high loaded or high lighted data points for the considered prototype
in the ¥ matrix. Data points with very low values over all prototypes can be safely removed
from the model.

3.5 Generalization ability of KGLVQ

It has been shown in the approaches [7, 32] that generalization bounds for LVQ schemes
can be derived based on the notion of the hypothesis margin of the classifier u, inde-
pendently of the input dimensionality. Rather the margin, i.e. the difference of the
distance of points to its closest correct and wrong prototype, determine the general-
ization ability. This fact makes the algorithm particularly suitable for kernelization:
essentially, the generalization ability transfers directly to the kernel version because
of the fixed implicit embedding into the feature space. Thereby, large margin bounds
are of particular interest due to the usually high dimensionality of the feature space.
Bounds which depend on the number of free parameters would likely yield very weak
bounds in such cases. For GLVQ as a large margin approach, a straightforward transfer
of the bounds as provided in the approaches [7, 32] based on techniques as given in the
article [2] is possible.

For convenience, we shortly review the setting as formalized e.g. in the derivation
[32]. For simplicity, a classification by a kernelized prototype-based network into two
classes is considered. We label prototypes corresponding to the two classes with + and
—, respectively. Classification takes place by a winner takes all rule (2), i.e., taking the
kernel into account, a data point is mapped to the class

v sen (smin [9(v) = | = min [9(v) - w ) ) (13)

where sgn selects the sign of the term. A trainable KGLVQ network corresponds to a
function f in this class with M prototypes. We can assume that data v are bounded
in size. Thus, also the images ®(v) and the possible location of prototype vectors are
bounded in size, we refer to the bound by B.

As usual, generalization bounds aim at limiting the generalization error Ep(f) =
P(f(v) # c(v)) where P refers to a (probably unknown) probability distribution P.
The margin of the classification is obtained by dropping the sign in (13) leading to the
related function M. For a fixed positive value of the margin p and the associated loss

1 ift<o0
L:R—>Rit—< 1—t/p if0<t<p
0 otherwise

a connection of the generalization error and the empirical error on m samples

m

En(f) = Llev - M;(v))/m (14)

=1



can be established with probability § > 0 simultaneously for all functions f using
techniques of [2]:
In(4/4)

2m

Ep(f) < BE(f) + %Rm(MF) +

R, (MF) denotes the so-called Rademacher complexity of the class of functions im-
plemented by KLVQ networks with function My. The quantity can be upper bounded,
using techniques of [32] and structural properties given in [2], by a term

o <N2/3B3 + 1n(1/6)>

Jm

The quantity B depends on the kernel and can be estimated depending on the data
distribution. Thus, generalization bounds for KGLVQ with arbitrary kernel result
which are comparable to generalization bounds for GLVQ. Note that the only difference
as compared to the derivation as provided in [32] consists in the fact that data are
implicitly embedded in the feature space such that B depends on the given data points
and the kernel.

4 EXPERIMENTS

We analyze our approach using artificial and real life data. The simulated data shall
be considered as a toy data set to show the possibility to deal with non-linear separable
data distributions, which is a typical application field of kernel methods. Subsequently
we provide some analysis for very well known standard test data, followed by more
complicated data sets which can not be processed by KGLVQ under reasonable time
and memory settings. It should be pointed out that KGLV(Q can be applied to very
different types of problems, ranging from life-science data [40] to e.g. image processing
tasks [23], as long as a valid kernel can be provided.

4.1 Simulated data

We start with the non-linear separable ring data set (DS1) and an RBF kernel in the
distance measure. The data consist of 800 data points with 400 per ring in 2 dimensions
as shown in Figure 2. The first ring has a radius of » = 10 and the second r = 4, points
are randomly sampled in [0, 27]. The data set has been normalized in N (0, 1). We also
analyzed the ring data using the additional sparsity constraint. In the original model
53% of the weights, averaged over the prototypes are almost 0 (values < le —5). In the
sparsity approach we used o2 as the variance of the data scaled by 0.01 and a § = 1
and obtained a much sparser model with now 75% of the points close to zero.

4.2 Small sample size data

Now we present a comparison for 3 benchmark datasets taken from the UCI repository
[4], namely the breast cancer data (wdbc), a diabetes study (pima) and the heart data
set, used to predict a heart disease. All these data sets are two class examples with
N < 1000, details are given in Table 1.

We analyze the performance of KGLVQ, AKGLVQ and SVM using the recently
proposed Extreme Learning Kernel (ELM) [9]. The ELM kernel is actually a defacto
parameter free kernel with the same classification performance as the RBF kernel with
optimal o [9], it has been fixed to 1el0 in this study. SVM models are obtained by use
of a Sequential Minimization Optimization (SMO) optimizer as proposed in [27] and
the ELM kernel.
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Figure 2: Ring data set (1st plot), KGLVQ model (2nd plot), the outer ring is shown in
red and using ’o’ while the inner ring is plotted in blue x. The 3rd plot shows the cluster
boundaries of the model from the 2nd plot. The model was calculated without sparsity. It
can be clearly seen that the AKGLV(Q with an rbf kernel successfully separated these two
clusters and also the cluster boundaries are very well approximated with a large margin
between the two rings.

All AKGLVQ and KGLVQ models are obtained with 1 prototype per class, using
C =100 cycles and with a nystrom approximation of ¢ = 0.1 X IV of the original kernel
matrix for the AKGLV(Q variant, sparsity was switched off. The value of the nystrém
approximation is not so critical but should be not lower than 10% to keep sufficient

approximation accuracy.

long as the data space is sufficiently densely sampled.

It has mainly an influence on the runtime performance as

Dim | Size KGLVQ AKGIVQ SVM
| #PT | #PT | #SV
Breast Cancer | 32 [ 569 [ 92.97+01.87 [ 2 [ 92.27+03.43 [ 2 [ 97.71+01.45 [ 512
Diabetes 8 | 768 | 71.88+04.79 | 2 71.56+06.19 | 2 76.42404.20 | 691
Heart 13 | 270 | 81.85+05.91 2 | 81.11406.16 2 | 84.07+08.38 | 243

Table 1: Generalization accuracy and model complexity (averaged) for the datasets. The
AKGLVQ makes use of the Nystrom approximation with 10% of the distances, sparsity has
been switched off. The memory used to store the kernel matrix for AKGLVQ is & 95% less
then for KGLVQ and a speedup of 2 to 7 could be observed in average. The generalization
of AKGLVQ is almost the same like for KGLVQ and is also quite good compared to SVM.
#PT refers to the number of prototypes, whereas #SV provides the number of support
vectors in the final model.

The results of AKGLVQ compare favorable in comparison to KLVQ or SVM but
especially the runtime is significantly improved with respect to KGLVQ see Table 1.
We find that the prediction performance of AKGLVQ and KGLV(Q are quite similar,
and both are competitive to SVM. KGLVQ however is not really applicable for larger
data sets due to the costly distance calculations using the full kernel.

4.3 Complexity and runtime analysis

The original KGLV(Q algorithm employs a full, quadratic kernel matrix in the distance
calculations and is optimizing the M x N coefficient matrix ¥. The selected underlying
iterative optimization scheme is gradient descend. The optimization is done for C' cycles
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Figure 3: Runtime analysis of AKGLVQ using an extended ring data set for different values
of ¢ in the Nystrom approximation. The number of samples is changed within 100 — 3000
on the x-axis, with the relative runtime given on y. The different curves are obtained by
changing the Nystrom approximation from 10% - 100%. The KGLVQ curve is given with o
on the sampling points.

as an upper limit and often independent of the data chosen as C = 100. The number
of prototypes is typically chosen independent to the real data set size and in general
much smaller than N, such that the memory complexity of ¥ is linear in O(M X N).
Taking this into account KGLVQ has a memory complexity of roughly O(N?). Each
distance calculation involves matrix/vector operations with a N? matrix which has to
be done for all N data point and for C' cycles. Hence the runtime complexity is in the
range of O(N?).

The AKGLVQ algorithm provides two approaches to optimize runtime and memory
complexity, namely the Nystrom approximation and the sparsity constraint as pointed
out before. Using the Nystrom approximation the memory complexity of the kernel
matrix is reduced to O(¢ x N). Hence the necessary memory to store the kernel
matrix as well as the number of matrix operation is directly reduced depending on q.
For most data sets it is reasonable to set ¢ to a small fraction of N e.g. 10%. The
memory complexity of the matrix ¥ is unaffected. This leads to an estimated linear
memory consumption of O((¢ + M) x N). To obtain the two matrices of the Nystrom
approximation a (pseudo) inverse has to be calculated and for the Nystrom based
distance calculation additional multiplications by a ¢ X N matrix from both sides are
necessary. This leads to a linear runtime complexity of O(¢* 4+ ¢N). The full runtime
complexity of AKGLVQ is however quadratic because the operations have to be done
for all N data points, so we finally get a quadratic setting of O(N?). A runtime analysis
of the ring data set with a maximum number of 3000 point is depicted in Figure 3.

By employing the new sparsity measure it is also possible to reduce the complexity
of the model and to reduce the amount of memory necessary to store W. The associated
parameter [ can be estimated by a cross-validation scheme on a sub set of the data
using a grid search within a reasonable range of [0,...,50]. In Figure 4 the effect of
the sparsity approach with respect to prediction accuracy on a test set and the time
complexity is shown. The accuracy and memory complexity is given in % whereas for
the time complexity the maximal necessary time is normalized to 1 to allow for better
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Figure 4: Complexity analysis of AKGLVQ using the sparsity constraint for the heart data
set (profiles are similar for the other data sets). The measures are calculated from the
observed training model, the memory consumption refers to the matrix ¥ only.

comparison. Using the sparsity constraint and sparse matrices the initial amount of
necessary memory is higher than without sparsity due to the overhead caused by the
management of sparse matrices. The sparsity constraint is not a hard control parameter
for the memory complexity of the model hence it is not possible to provide theoretical
guarantees of the memory consumption.

Analyzing Figure 4 we observe that the prediction accuracy is smoothly decreasing
with increased . The optimal 8 value is around 8 = 19 with around 79% accuracy
and 40% less consumed memory. An analysis of the other data sets showed that, as
expected, the 8 parameter is data set specific. It should be optimized based on an
independent test set and used to balance accuracy and model complexity.

As an overall observation we found that the runtime of the algorithm is increased
by around 20% using the sparsity measure due to additional normalization steps and
the effort to manage the sparse matrices. Considering the prior analysis it is obvious
that the sparsity constraint can not directly used to speedup the learning time or to
reduce (continuously) the consumed memory. Instead it should be used to simplify the
final model. This is especially relevant if we focus on interpretable models and a small
number of non-vanishing coefficients provides easier access to the interpretation of the
prototypes, analyzing the linear combination.

4.4 Medium sample size data

In a further study we analyze the accelerated KGLVQ and SVM on medium and large
data sets with multiple thousand samples. Thereby we make use of the UCI spam-
data set[4] which contains measurements to predict if a obtained email is to classify
as spam. Further we use the usps-data set, containing 16 x 16 gray-scale images of
handwritten digits, provided in[15] and the CMU faces-data from the UCI database
[4], which contains 640 b/w images of people taken with varying pose, expression, eyes
presentation and size. The later two are multiclass data sets. The standard KGLVQ can
not any longer be applied for these data under valid settings, without significant sub-
sample selections on the training data, which has a negative impact on the results. For
the USPS data we took a commonly used subset of 2000 samples randomly sampled. All
results are obtained in a 10-fold cross validation using the ELM kernel with 100 cycles
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for AKGLVQ. Multiclass classification for SVM was done using a 1 vs rest scheme.
Results are shown in Table 2.

T | #PT o-T |

#C | Dim Size AKGLVQ AKGLVQ-Compl. SVM SVM-Compl.

@-#SV

Spam
USPS

Faces

2 57 4601 | 86.57 +02.64 | 130.73 | 0.43% (2) | 91.92 4 02.01 | 00.56
10 256 2000 | 81.70 £01.55 | 18.95 | 2.22% (40) | 91.35£02.46 | 00.32
20 | 15360 | 640 | 81.09 £06.39 | 01.20 | 3.47% (20) | 94.84 +03.83 | 00.67

33.13% (469)
100% (1800)
10.95% (63)

Table 2: Generalization accuracy and model complexity (averaged) for the small datasets.
¢ — T refers to the mean runtime in minutes, #PT denotes the number of prototypes and
#SV the number of support vectors, respectively. Note that the complexity values are
calculated with respect to the training data.

We observe that the AKGLV(Q was quite efficient in modeling the given problems
but the prediction performance is significantly lower than the one obtained by SVM
also the overall runtime is worse than that of SVM which is typically a magnitude
faster than AKGVLQ. However we would like to point out again that our objective
is to improve kernel based prototype methods, namely KGLV(Q rather to compete
directly with SVM. The most interesting property of prototype classifiers may not be the
prediction accuracy, although it is quite good in general, but more the interpretability
and other aspect as shown in the following.

The higher runtime complexity of AKGVLQ is expected because it is an online
learning algorithm in contrast to SVM. AKGLVQ still scales quadratic as pointed out
before, if no additional techniques like active learning [30] are employed, which however
does not provide guarantees. On the other hand this also allows an easy retraining in
case of novel data which is not directly accessible using SVM approaches. Interestingly
the quite good prediction results of AKGLVQ are already obtained with very few pro-
totypes leading to compact models. An increase of the number of prototypes up-to a
factor of 10 does not change the prediction accuracy significantly. SVM however has
used at least 10% of the data or like for the USPS data the whole training data set,
making the model very complex.

The KGLVQ and its approximated variant are prototype based methods and the
prototypes are constructed by means of a linear combination of the data points in the
coefficient matrix ¥. By analyzing the coefficient matrix ¥ of the models shown in Table
2, it is possible to identify items from the original data set which are considered to be
most characteristic and important for the voronoi cell generated by a specific prototype,
this is in contrast to SVM models because their model parameters are extreme points
rather prototypes. For the USPS dataset which consists of digit images and the faces
data set with images of faces it is possible to obtain direct reconstructions of the
prototypes which can be easily visualized and interpreted. In Figure 6 the visualizations
of the digits ‘0", 2’,’ 8" are shown using either the median of the class, the prototype
reconstruction or the median support vector reconstruction for support vectors of the
corresponding class.

Figure 5 shows different digits of the USPS data set [5]. The Figure has been
regenerated as described in [5] for the public available USPS data set using the NeXOM
algorithm, which is a specific variant of neighborhood embedding, comparable e.g. to
Multi-Dimensional Scaling (MDS)[15]®. Analyzing the USPS data for the digits '2’
and '8’ we find that the crossings of the arcs are quite well defined independent of the
specific writer but the position of the arcs in the outer regions of the digit differ. This
is reflected by the median reconstructions, plots (a) which show holes for these regions.
In contrast the learned prototypes for ‘2" and '8’ do not suffer from this error but show

3The picture is not identical but similar due to random effects in the initialization of NeXOM
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Figure 5: Different USPS symbols in a two dimensional projection using the NeXOM
algorithm.

® O G

Figure 6: Reconstruction of digit representants. The first row shows reconstructions of the
digit '0’, the second of the digit ‘2" and the last of the digit ‘8. The plot (a) is always the
median image of the corresponding class, (b) the learned prototype representation, (c) the
support vector reconstruction.
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Figure 7: Reconstruction of faces representants for one of the faces classes. The plot (a) is
the median image of the corresponding class, (b) the learned prototype representation, (c)
the support vector reconstruction.

a more realistic, prototypical representation of the digit. For the SVM we would expect
that the items at the decision borders are pronounced most, such that the most atypical
items are represented. Indeed the plots (¢) appear to be quite blurred and are hard to
interpret. For the digit ‘0’ one observes that the median and prototype reconstruction
are almost identical, which is caused by a strong homogeneity in the data. The rare
abnormal ‘0’s in the data are either wrong oriented, with an open loop, very tight or
almost without the hole, appearing as a bold blot. These examples are selected by the
SVM as the model parameters and hence the reconstruction in (c) is hard to interpret
as well*.

For the faces data, exemplary results are shown in Figure 7. The shown person
moved the head in the different recordings, so more or less only the background and
the body shape are stable. This is reflected by all reconstructions. The median plot (a)
shows the raw shape of the person but the face is blurred. The prototype reconstruction
(b) is less blurred and reflects also the movement of the head, showing also traces of
the turned heads in the image. The prototype is actually so accurate that also the
sun-glasses and the lips, nose and ears can be identified. The reconstruction of the
SVM (c) is again hard to interpret. The raw shape is preserved but the shown picture
is clearly not representative but more a mixture of the abnormal cases in the data, as
expected.

Considering the model complexity we find that with very few prototypes for all
datasets the AKGLV(Q performs quite well. Using the Nystréom approximation the
memory consumption of the kernel matrix can be substantial reduced such that AKGLVQ
becomes an interesting, efficient and prototype based complement to SVM. This is es-
pecially interesting if an interpretable prototype of a class is needed like for image
retrieval systems to label the underlying data by a typical image. Also in other cases of
interpretable data like clinical recordings, the prototypical model parameters are much
easier accessible for the domain expert. It also helps to get a better understanding
of the information encoded in the model. If the model fails to classify specific items
in the data or assigns them constantly to one wrong class, the prototype can help to
interpret the reason for this. In that way the system can be improved by incorporating
additional knowledge in an user interactive manner.

Overall we found that AKGLVQ is now capable to learn also very complex data sets
with multiple 1000 of items and due to the Nystrom approximation and the integrated
sparsity constraint the memory complexity of the model is quite low. AKGLVQ allows,
like all prototype methods, explicit control over the model complexity by specifying the
number of prototypes. For the considered data the prediction accuracy of AKGLVQ
was similar to that of KGLVQ but with a significant reduced model complexity and a
substantial speed up in the calculations. In comparison to SVM the AKGLVQ mod-

4The SVM model of the USPS data contains all points, because all a-weights are significant different
from 0, but the extreme symbols have the largest o weights.

14



els are very compact but were less efficient in prediction for the large data set while
comparable effective for the experiments with the more simple data. The obtained
prototypes of the KGLVQ- and AKGLVQ-model are much easier to interpret, whereas
for SVM the model is less informative.

5 CONCLUSIONS

In this paper we proposed an extended variant of kernelized learning vector quantizer
with a significantly reduced model complexity through the integration of the Nystrém
method and sparse learning. The obtained models use much less memory due to a com-
pact, approximated kernel representation and a sparse coefficient matrix ¥. Further we
compared the efficiency of our new approach with KGLVQ and SVM considering predic-
tion accuracy, model complexity and interpretability. We found that the generalization
capability of AKGLVQ is similar to those of KGLVQ and less to SVM. AKGLVQ is
much quicker than KGLVQ and needs markable less memory. AKGLVQ and KGLVQ
provides interpretable models in contrast to SVM. If not only prediction accuracy but
also compactness and interpretability matters AKGLV(Q provide an interesting alter-
native to the considered standard kernel learning methods and is now applicable for
medium-sized sets of data, which was not possible before. One very important subject
of future works will be to further decrease runtime and memory requirements while
parallel increase the prediction efficiency for extremely large data sets.
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4.2 Linear time relational prototype based learning

The article Linear time relational prototype based learning by A. Gisbrecht, B. Mokbel,
F.M.Schleif and X. Zhu and B. Hammer appeared in the Journal of Neural Systems 22(5),
online 2012 Generalized Learning Vector Quantizers (GLVQ) are extended by relational
learning and coupled with the Nystrom approximation to keep linear learning complexity also
for very large data sets. All authors contributed equally to the article. A. Gisbrecht provided
initial work on Nystrom approximations for dissimilarity data and an implementation of the
relational GTM, I derived and implemented GLVQ for relational learning and integrated
the Nystrom approximation. B. Mokbel and X. Zhu run the experiments and prepared the
data. B. Hammer supervised the project and all authors discussed the general article.

Additional publications in international conferences and journal publications where I am
co-author and which cover a similar or related topic include:

1. F.-M. Schleif and A. Gisbrecht, Data analysis of (non-)metric proximities at linear
costs, Proceedings of SIMBAD 2013, accepted, 2013 (Content: Our main contribu-
tion is an efficient linear technique, to convert (potentially non-metric) large scale
dissimilarity matrices into approximated psd kernel matrices.)

2. B. Hammer, D. Hofmann, F.-M. Schleif, X. Zhu, Learning vector quantization for
(dis-)similarities, NeuroComputing, accepted, 2013 (Content: Proposal of a general
framework for dissimilarity based learning, including kernel generalized relevance LVQ),
relational generalized relevance LVQ, kernel robust soft LVQ and relational robust soft
LVQ. Also unsupervised prototype based techniques which are based on a cost function
can put into this framework.)

3. F.-M. Schleif, X. Zhu, A. Gisbrecht, B. Hammer, Fast approximated relational and
kernel clustering, In Proceedings of the International Conference on Pattern Recog-
nition ICPR 2012, 1229-1232, 2012 (Content: The approach combines similarity and
dissimilarity learning for very large datasets in a common framework. Additionally a
fast batch kernel prototype classifier is proposed.)

4. F.-M. Schleif, X. Zhu, B. Hammer, Soft Competitive Learning for large data sets, In
Proceedings of ADBIS 2012, 141-151, 2012 (Content: The article presents a core based
approach of soft competitive learning, as a novel clustering algorithm for large scale
problems)

5. X. Zhu, A. Gisbrecht, F. - M. Schleif, B. Hammer, Approzimation techniques for
clustering dissimilarity data, NeuroComputing 90, 72-84, 2012. (Content: The article
presents an unsupervised patch-processing approach for relational data learning)

6. X. Zhu, F.-M. Schleif and Barbara Hammer, Patch Processing for Relational Learning
Vector Quantization, In Proceedings of ISNN, 2012, 55-63, 2012. (Content: A patch
strategy is introduced for supervised proximity learning)

7. B. Hammer, B. Mokbel, F.-M. Schleif, X. Zhu, Prototype-Based Classification of Dis-
stmilarity Data, In Proceedings of Intelligent Data Analysis (IDA)’2011, 185-197, 2011
(Content: Prototype-based classification is extended towards general dissimilarities)
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Abstract

Prototype based learning offers an intuitive interface to inspect large quantities
of electronic data in supervised or unsupervised settings. Recently, many techniques
have been extended to data described by general dissimilarities rather than Euclidean
vectors, so-called relational data settings. Unlike the Euclidean counterparts, the tech-
niques have quadratic time complexity due to the underlying quadratic dissimilarity
matrix. Thus, they are infeasible already for medium sized data sets. The contribution
of this article is twofold: on the one hand we propose a novel supervised prototype
based classification technique for dissimilarity data based on popular learning vector
quantization, on the other hand we transfer a linear time approximation technique,
the Nystrom approximation, to this algorithm and an unsupervised counterpart, the
relational generative topographic mapping. This way, linear time and space methods
result. We evaluate the techniques on three examples from the biomedical domain.
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1 INTRODUCTION

In many application areas such as bioinformatics, technical systems, or the web, electronic
data sets are increasing rapidly with respect to size and complexity. Machine learning
has revolutionized the possibility to deal with large electronic data sets in these areas by
offering powerful tools to automatically extract a regularity from given data. Popular ap-
proaches provide diverse techniques for data structuring and data inspection. Visualization,
clustering, or classification still constitute one of the most common tasks in this context
[3, 12, 37, 30].

Topographic mapping such as offered by the self-organizing map (SOM) [18] and its
statistic counterpart, the generative topographic mapping (GTM) [6] provide simultaneous
clustering and data visualization. For this reason, topographic mapping constitutes a pop-
ular tool in diverse areas ranging from remote sensing or biomedical domains up to robotics
or telecommunication [18, 21]. As an alternative, learning vector quantization (LVQ) rep-
resents priorly given classes in terms of labeled prototypes [18]. Learning typically takes
place by means of Hebbian and anti-Hebbian updates. Original LVQ is based on heuristic
grounds while modern alternatives are typically derived from an underlying cost function
[33]. Similar to its unsupervised counterpart, LVQ has been successfully applied in diverse
areas including telecommunication, robotics, or biomedical data analysis [18, 2].

Like many classical machine learning techniques, GTM and LVQ have been proposed for
FEuclidean vectorial data. Modern data are often associated to dedicated structures which
make a representation in terms of Euclidean vectors difficult: biological sequence data, text
files, XML data, trees, graphs, or time series, for example [31, 34]. These data are inherently
compositional and a feature representation leads to information loss. As an alternative, a
dedicated dissimilarity measure such as pairwise alignment, or kernels for structures can be
used as the interface to the data In such cases, machine learning techniques which can deal
with pairwise similarities or dissimilarities have to be used [24].

Also kernel methods like the Support Vector Machine (SVM) (see e.g.[9]) can be used
for dissimilarity data, but complex preprocessing steps are necessary as discussed in the
following. Kernel methods are known to be very effective, with respect to the generalization
ability and, using modern approximation schemes, are also reasonable effective for larger
data sets. In contrast to prototype methods the cost function is formulated typically by
means of a convex problem, such that standard and effective optimization techniques can
be used. Often they automatically adapt the model complexity, e.g. by means of support
vectors for SVM, in accordance to the given supervised problem, which is often not the
case for prototype methods. This strong framework however, requires a valid positive semi-
definite kernel as an input, which is often not directly available for dissimilarity data. In
fact, as discussed in the work of Pekalska[25], dissimilarity data can encode information in
the euclidean and non-euclidean space and transformations to obtain a valid kernel may be
inappropriate[32].

Quite a few extensions of prototype-based learning towards pairwise similarities or dis-
similarities have been proposed in the literature. Some are based on a kernelization of ex-
isting approaches [7, 39, 29], while others restrict the setting to exemplar based techniques
[10, 19]. Some techniques build on alternative cost functions and advanced optimization
methods [35, 15]. A very intuitive method which directly extends prototype based cluster-
ing to dissimilarity data has been proposed in the context of fuzzy clustering [17] and later
been extended to topographic mapping such as SOM and GTM [16, 14]. Due to its direct
correspondence to standard topographic mapping in the Euclidean case, we will focus on the
latter approach. We will exemplarily look at this relational extension of GTM to investigate
the performance of unsupervised prototype-based techniques for dissimilarity data. In this
contribution, we will propose, as an alternative, a novel supervised prototype based classi-
fication scheme for dissimilarity data, with initial work given in [28]. Essentially, a modern
LVQ formulation which is based on a cost function will be extended using the same trick to
assess relational data.



One drawback of machine learning techniques for dissimilarities is given by their high
computational costs: since they depend on the full (quadratic) dissimilarity matrix, they
have squared time complexity; further, they require the availability of the full dissimilarity
matrix, which is even the more severe bottleneck if complex dissimilarities such as e.g.
alignment techniques are used. This fact makes the methods unsuitable already for medium
sized data sets.

Here, we propose a popular approximation technique to speed up prototype based meth-
ods for dissimilarities: the Nystrom approximation has been proposed in the context of
kernel methods as a low rank approximation of the matrix [38]. In [13], preliminary work
extends these results to dissimilarities. In this contribution, we demonstrate that the tech-
nique provides a suitable linear time approximation for GTM and LVQ for dissimilarities.

Now we first shortly recall the classical GTM and a variant of LVQ. Then we introduce
the general concept underlying relational data representation, and we transfer this principle
to GTM (shortly summarizing the results already presented in [14]) and to LVQ. The latter
gives the novel algorithm relational generalized learning vector quantization. We recall the
derivation of the low rank Nystrom approximation for similarities and transfer this principle
to dissimilarities. Linear time techniques for relational GTM and relational LVQ result. We
demonstrate the behavior of the techniques in applications from the biomedical domain.

2 TOPOGRAPHIC MAPPING

Generative Topographic Mapping (GTM) has been proposed in [6] as a probabilistic coun-
terpart to SOM. It models given data x* € R™ by a constraint mixture of Gaussians induced
by a low dimensional latent space. More precisely, regular lattice points w are fixed in latent
space and mapped to target vectors w — t = y(w, W) in the data space, where the function
y is typically chosen as generalized linear regression model y : w — ®(w) - W. The base
functions ® could be chosen as any set of nonlinear functions. Typically, equally spaced
Gaussians with bandwidth o are taken.

These prototypes in data space give rise to a constraint mixture of Gaussians in the
following way. Every latent point induces a Gaussian

w9 = ( ) e (~ D, w2 o

A mixture of K modes p(x|W, ) = Ele %p(x\wk,w,ﬁ) is generated. GTM training
optimizes the data log-likelihood with respect to W and . This can be done by an EM
approach, iteratively computing responsibilities
3 p(xl|wk7w76)
Rk:i Waﬂ :pwkxl7w76 = ; 7 2
W) =p W) = o wi W ) )

of component k for point x?, and optimizing model parameters by means of the formulas

BTG PWE  =dTR 14X (3)
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for W, where ® refers to the matrix of base functions ® evaluated at the lattice points
wF, X refers to the data points, R to the responsibilities, and G is a diagonal matrix with
accumulated responsibilities G = Y. Rii(W, 3). The bandwidth is given by
1 _
/BHQW

]_ .
b Y Rii(Wod, Bowa) [|0(WF) Wiy, — x| (4)
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where D is the data dimensionality and N the number of points. GTM is initialized by
aligning the lattice image and the first two data principal components.



3 LEARNING VECTOR QUANTIZATION

As before, data x* € R” are given. Here we consider the crisp setting. That means, pro-
totypes w/ € R",j = ,K in the data space decompose data into receptive fields
R(w?) = {x! : Vk d(x W]) < d(x',wk)} based on the squared Euclidean distance
d(x', w?) = [|x" — w7|]%.

For supervised learning, data x® are equipped with class labels c¢(x?) € {1,...,L} = L.
Similarly, every prototype is equipped with a priorly fixed label ¢(w7). Let W, = {w1|c(wl) = c}
be the subset of prototypes assigned to class ¢ € £. A data point is classified according to
the class of its closest prototype. The classification error of this mapping is given by the
term > . > i riwd) 5(c(x?) # c(w’)) with the delta function §. This cost function cannot

easily be optimized explicitly due to vanishing gradients and discontinuities. Therefore, LVQ
relies on a reasonable heuristic by performing Hebbian updates of the prototypes, given a
data point [18]. Recent alternatives derive similar update rules from explicit cost functions
which are related to the classification error, but display better numerical properties such
that efficient optimization algorithms can be derived thereof [33, 26, 36].

We introduce two special notations for the prototype which is closest to a given point x*
with the same label: w™ or a different label: w~. The corresponding distance d;, d; :

df = dwT,x") withw' e W,, c=c(x"),
wt = wlid(w') <d@w),{wl,wl} e W,
di = dw ,x")withw™ ¢ W,, c¢=c(x")
wo o= wlid(aw') <d@h ), {wl,wl} ¢ W,

Generalized LVQ [26] is derived from a cost function which can be related to the gener-
alization ability of LVQ classifiers [33]:

EGLVQZf(d++Z ) (5)

where f is a differentiable monotonic function such as the hyperbolic tangent. Hence, for
every data point, its contribution to the cost function is small if and only if the distance to
the closest prototype with a correct label is smaller than the distance to a wrongly labeled
prototype, resulting in a correct classification of the point and, at the same time, aiming at
a large hypothesis margin of the classifier, i.e., a good generalization ability.

A learning algorithm can be derived thereof by means of standard gradient techniques.
After presenting data point x‘, its closest correct and wrong prototype, respectively, are
adapted according to the prescription:

AwT(x") ~ —fl(u (X ) -t (x') - Vg (xiydyf
Aw™(x") ~ f(u(x") - pT (X)) - V- i) dy
where
(Xi) _ dz+ _dz_
. dF +d;
. 9. d-
+ 7\ __ 7
SR s
iy = 24
8 (df +d7)



For the squared Euclidean norm, the derivative yields
Vwid(x!, wi) = —2(x' — w),

leading to Hebbian update rules of the prototypes which take into account the priorly known
class information.

GLVQ constitutes one particularly efficient method to adapt the prototypes according to
a given labeled data sets. Alternatives can be derived based on a labeled Gaussian mixture
model, see e.g. [36]. Since the latter can be highly sensitive to model meta-parameters [5],
we focus on GLVQ.

4 DISSIMILARITY DATA

Due to improved sensor technology or dedicated data formats, for example, data are becom-
ing more and more complex in many application domains. To account for this fact, data
are often addressed by a dedicated dissimilarity measure which respects the structural form
of the data such as alignment techniques for bioinformatics sequences, functional norms for
mass spectra, or the compression distance for texts [8]. The work in [25] is focused on the
theoretical analysis of dissimilarity data and pseudo-euclidean data spaces and motivated
our proposed method.

Prototype-based techniques such as GLVQ are restricted to Euclidean vector spaces such
that their suitability for complex non-Euclidean data sets is highly limited. Here we propose
an extension of GLVQ to general dissimilarity data.

We assume that data x%,4 = 1,..., N are characterized by pairwise dissimilarities dij =
d(x%,x7). N denotes the number of data points. D refers to the corresponding dissimilarity
matrix in RV*N. We assume symmetry di; = dj; and zero diagonal d;; = 0. However, D
need not correspond to Euclidean data vectors, i.e. it is not guaranteed that data vectors x*
can be found with d;; = ||x* — x7 2.

For every dissimilarity matrix D of this form, an associated similarity matrix is induced
by S = —JDJ/2 where J = (I — 117 /N) with identity matrix I and vector of ones 1. D is
Euclidean if and only if S is positive semi-definite (pdf). In general, S displays eigenvectors
with p positive eigenvalues, ¢ negative eigenvalues, and N —p—q eigenvalues 0, (p, ¢, N—p—q)
is referred to as the signature.

For kernel methods such as SVM, a correction of the matrix .S is necessary to guarantee
pdf. Three different techniques are very popular: the spectrum of the matrix S is changed,
possible operations being clip (negative eigenvalues are set to 0), flip (absolute values are
taken), or shift (a summand is added to all eigenvalues) [8]. Interestingly, some operations
such as shift do not affect the location of local optima of important cost functions such as
the quantization error [20], albeit the transformation can severely affect the performance
of optimization algorithms [16]. As an alternative, data points can be treated as vectors
which coefficients are given by the pairwise similarity. These vectors can be processed
using standard, e.g. linear or Gaussian kernels. In [8] an extensive comparison of these
preprocessing methods in connection to SVM is performed for a variety of benchmarks.

Alternatively, one can directly embed data in the pseudo-Euclidean vector space deter-
mined by the eigenvector decomposition of S. Pseudo-Euclidean space is a vector space
equipped with a (possible indefinite) symmetric bilinear form which can be used to com-
pute similarities and dissimilarities of data points. More precisely, a symmetric bilinear
form is induced by (x,y)pq = x'1,,y where I,, is a diagonal matrix with p entries 1
and ¢ entries —1. Taking the eigenvectors of S together with the square root of the ab-
solute value of the eigenvalues, we obtain vectors x’ in pseudo-Euclidean space such that
dij = (x* —x7,x" — x7), 4 holds for every pair of data points. If the number of data is not
limited a priori, a generalization of this concept to Krein spaces which similarly decompose
into two possibly infinite dimensional Hilbert spaces is possible [25].



Vector operations can be directly transferred to pseudo-Euclidean space, i.e. we can
define prototypes as linear combinations of data in this space. Hence we can perform tech-
niques such as GLVQ explicitly in pseudo-Euclidean space since it relies on vector operations
only. One problem of this explicit transfer is given by the computational complexity of the
embedding which is O(N?), and, further, the fact that out-of-sample extensions to new data
points characterized by pairwise dissimilarities are not immediate. Because of this fact, we
are interested in efficient techniques which implicitly refer to this embedding only. As a side
product, such algorithms are invariant to coordinate transforms in pseudo-Euclidean space.

The key assumption is to restrict prototype positions to linear combinations of data

points of the form
wl = Zajixi with Zaﬁ =1.
i i

Since prototypes are located at representative points in the data space, it is a reasonable
assumption to restrict prototypes to the affine subspace spanned by the given data points.
In this case, dissimilarities can be computed implicitly by means of the formula

S 1
d(Xl,W]) = [D . Oéj]i — 5 . a?Daj (6)

where o; = (j1,...,a;y) refers to the vector of coefficients describing the prototype w
implicitly, as shown in [16]. Neither the prototypes nor the original points, related to the
dissimilarity matrix, are expected to exist in a vectorial space. This observation constitutes
the key to transfer GTM and GLVQ to relational data without an explicit embedding in
pseudo-Euclidean space.

5 RELATIONAL GENERATIVE TOPOGRAPHIC MAP-
PING

GTM has been extended to general dissimilarities in [14]. We shortly recall the approach for
convenience. As before, targets t* in pseudo-Euclidean space induce a mixture distribution
in the data space based on the dissimilarities. Targets are obtained as images of points w*
in latent space via a generalized linear regression model where, now, the mapping is to the
coefficient vectors a which implicitly represent the targets:

y:wea=dw) W

with images in RY according to the dimensionality of the coefficients a.

The restriction
D [@(wk) - W= ap =1

K3
is automatically fulfilled for optima of the data log likelihood. Hence the likelihood function
can be computed based on (1) and the distance computation can be performed indirectly
using (6). An EM optimization scheme leads to solutions for the parameters 5 and W, and
an expression for the hidden variables given by the responsibilities of the modes for the data
points. Algorithmically, Eqn. (2) using (6) and the optimization of the expectation

Z sz (Wold7 ﬂold) IHP(Xi|Wk; Wnew, 6new)
ki

with respect to W and  take place in turn. The latter yields model parameters which can
be determined in analogy to (3,4) where, now, functions ® map from the latent space to
the space of coefficients o and X denotes the unity matrix in the space of coefficients. We
refer to this iterative update scheme as relational GTM (RGTM). Initialization takes place
by referring to the first MDS directions of D. See [14] for details.



6 RELATIONAL LEARNING VECTOR QUANTIZA-
TION

We use the same principle to extend GLVQ to relational data. Again, we assume a symmetric
dissimilarity matrix D with zero diagonal is given. We assume that a prototype w7 is
represented implicitly by means of the coefficient vectors o;. Then we can use the equivalent
characterization of distances (6) in the GLVQ cost function (5) leading to the costs of
relational GLVQ (RGLVQ):

DT — ()T = (1) i~
Brova = Y f(g&c() £0)” + () )

§Z+ [Daﬂz
&i)” = [Dal;
(@)t = (@)Dt
(i) = 5-(a)Da”

where as before the closest correct and wrong prototype are referred to, corresponding to
the coefficients at and a—, respectively. A simple stochastic gradient descent leads to
adaptation rules for the coefficients ™ and o~ in relational GLVQ: component k of these
vectors is adapted as

Aor L =) 9 (Do) — §(*) Do)
k (M+<Xi )—1 80%

Ao o @) 9([Dai — j(a7) Da”)
§ (n=(x1))~1 Oy,

where p(x?), ut(x?), and p~(x?) are as above. The partial derivative yields

Naturally, alternative gradient techniques such as line search can be used in a similar way.

After every adaptation step, normalization takes place to guarantee ) . cj; = 1. This
way, a learning algorithm which adapts prototypes in a supervised manner similar to GLVQ is
given for general dissimilarity data, whereby prototypes are implicitly embedded in pseudo-
Euclidean space. The prototypes are initialized as random vectors, i.e we initialize a;; with
small random values such that the sum is one. It is possible to take class information into
account by setting all a;; to zero which do not correspond to the class of the prototype.

For both, RGTM and RGLVQ, out-of-sample extension of the model to new data is
possible immediately. It can be based on an observation made in [16]: given a novel data
point x characterized by its pairwise dissimilarities D(x) to the data vectors x' used for
training, the dissimilarity of x to a prototype represented by «; is

. 1
d(x,w’) = D(x)" - a; — 3 al Doy

This can be directly used to compute responsibilities for RGTM or the closest prototype for
RGLVQ, respectively.



7 THE NYSTROM APPROXIMATION

Both techniques, RGTM and RGLV(Q depend on the full dissimilarity matrix D. This
is of size N2, hence the techniques have quadratic complexity with respect to the given
number of data points. This is infeasible for large N: restrictions are given by the main
memory (assuming double precision and 12 GB main memory, the limit is currently at about
30,000 data points), and the time necessary to compute dissimilarities and train the models
based thereon (assuming lms for one dissimilarity computation, which is quite reasonable
for complex dissimilarities e.g. based on alignment techniques, a matrix of less than 10,000
data points can be computed in 12 h on a dual core machine.) Therefore, approximation
techniques which reduce the effort to a linear one would be very desirable.

7.1 Nystrom approximation for similarity data

Nystrom approximation technique has been proposed in the context of kernel methods in
[38]. Here, we give a short review of this technique.

One well known way to approximate a N x N Gram matrix, is to use a low-rank
approximation. This can be done by computing the eigendecomposition of the kernel
K = UAU7, where U is a matrix, whose columns are orthonormal eigenvectors, and A
is a diagonal matrix consisting of eigenvalues A1; > Ags > ... > 0, and keeping only the m
eigenspaces which correspond to the m largest eigenvalues of the matrix. The approximation
is K = Upn,mAm, mUn, N, where the indices refer to the size of the corresponding subma-
trix. The Nystrom method approximates a kernel in a similar way, without computing the
eigendecomposition of the whole matrix, which is an O(N?) operation.

By the Mercer theorem kernels k(x,y) can be expanded by orthonormal eigenfunctions
1; and non negative eigenvalues A; in the form

k(x,y) = Z Aithi(X)i(y)-
i=1

The eigenfunctions and eigenvalues of a kernel are defined as the solution of the integral
equation

/ Ky, ) (p()dx = A (y),

where p(x) is the probability density of x. This integral can be approximated based on the
Nystrém technique by sampling x* i.i.d. according to p(x):

m

% D k(y, xF )i (xF) & Aiti(y).

k=1
Using this approximation and the matrix eigenproblem equation
Kmyum — glm A(m)

of the corresponding m x m Gram sub-matrix K(™ we can derive the approximations for
the eigenfunctions and eigenvalues of the kernel k

A VI m
Ai & ——, i(y) = (™) kyuz(‘ )7 (7)

m

where uEm is the ith column of U, Thus, we can approximate v; at an arbitrary point
y as long as we know the vector k, = (k(x!,y), ..., k(x™,y))".



For a given N x N Gram matrix K we randomly choose m rows and respective columns.
The corresponding indices are also called landmarks, and should be chosen such that the
data distribution is sufficiently covered. A specific analysis about selection strategies was
recently discussed in [40]. We denote these rows by K,,, x. Using the formulas (7) we obtain
K=", 1/Alm -K%Nugm)(ugm))TKm,N, where A" and u{™ correspond to the m x m
eigenproblem. Thus we get, K,’n}m denoting the Moore-Penrose pseudoinverse,

K=K K. Knn. (8)

m,m

as an approximation of K. This approximation is exact, if K, ,, has the same rank as K.

7.2 Nystrom approximation for dissimilarity data

For dissimilarity data, a direct transfer is possible, see [13] for preliminary work on this topic.
According to the spectral theorem, a symmetric dissimilarity matrix D can be diagonalized
D = UAUT with U being a unitary matrix whose column vectors are the orthonormal
eigenvectors of D and A a diagonal matrix with the eigenvalues of D, which can be negative
for non-Euclidean distances. Therefore the dissimilarity matrix can be seen as an operator

N
d(x,y) = Z Aiti ()i (y)

where \; € R correspond to the diagonal elements of A and ; denote the eigenfunctions.
The only difference to an expansion of a kernel is that the eigenvalues can be negative. All
further mathematical manipulations can be applied in the same way.

Using the approximation (8) for the distance matrix, we can apply this result for RGTM.
It allows to approximate dissimilarities between a prototype w* represented by a coefficient
vector a and a data point x? in the way

d(xi,wk) =~ [D,Tn’N (D;Jm (Dm,Nak:))]i 9)
1
-5 (afDﬁyN) .

(D} D va))

with a linear submatrix of m rows and a low rank matrix D,, ,,. Performing these matrix
multiplications from right to left, this computation is O(m?N) instead of O(N?), i.e. it is
linear in the number of data points N, assuming fixed approximation m.

We use this approximation directly in RGTM and RGLVQ by taking a random sub-
sample of m points to approximate the dissimilarity matrix. The percentage m is differed
during training showing the effect of the approximation on the percentage used for the
approximation.

A benefit of the Nystrom technique is that it can be decided priorly which linear parts
of the dissimilarity matrix will be used in training. Therefore, it is sufficient to compute
only a linear part of the full dissimilarity matrix D to use these methods. A drawback of
the Nystrom approximation is that a good approximation can only be achieved if the rank
of D is kept as much as possible, i.e. the chosen subset should be representative. We will
see that the method can be used in many (though not all) settings leading to a considerable
speed-up.

8 EXPERIMENTS

We evaluate the techniques on three benchmarks from the biomedical domain:



e The Copenhagen Chromosomes data set constitutes a benchmark from cytogenetics
[22]. A set of 4,200 human chromosomes from 21 classes (the autosomal chromosomes)
are represented by grey-valued images. These are transferred to strings measuring the
thickness of their silhouettes. These strings are compared using edit distance with
insertion/deletion costs 4.5.

e The vibrio data set consists of 1,100 samples of vibrio bacteria populations charac-
terized by mass spectra. The spectra encounter approx. 42,000 mass positions. The
full data set consists of 49 classes of vibrio-sub-species. The mass spectra are prepro-
cessed with a standard workflow using the BioTyper software [23]. According to the
functional form of mass spectra, dedicated similarities as provided by the BioTyper
software are used [23].

e Similar to an application presented in [19], we extract roughly 11,000 protein sequences
of the SwissProt data base according to 32 functional labels given by PROSITE [11].
Sequence alignment is done using local alignment by means of the Smith-Waterman
algorithm.

We compare the two different prototype-based methods, RGTM and RGLV(Q and the
Nystrom approximations thereof. The following parameters are used:

e Evaluation is done by means of the generalization error in a ten fold repeated cross-
validation with ten repeats. (Only two-fold cross-validation and five repeats for Swis-
sProt.) For RGTM, posterior labeling on the test set is used.

e The number of prototypes is chosen roughly following the number of priorly known
classes. For RGLVQ, we use 63 prototypes for the Chromosomes data set, 49 pro-
totypes for the Vibrio data set, and 64 prototypes for the SwissProt data set. For
RGTM, to account for the topological constraints which result in prototypes outside
the convex hull of the data, we use lattices of size 20 x 20 for Chomosomes and Vibrio
and 40 x 40 for SwissProt. 10 x 10 base functions are used in both cases.

e Training takes place until convergence which is 50 epochs for the small data sets and
5 epochs for SwissProt.

e For the Nystrom approximation, we report the results obtained when sampling 1%
and 10% of the data.

e For the SwissProt data set, the speed up of the method can clearly be observed due to
the large size of the data set. We also report the CPU time in seconds taken for one
cross-validation run on a 24 Intel(R) Xeon X5690 machine with 3.47GHz processors
and 48 GB DDR3 1333MHz memory. The experiments are implemented in Matlab.

The results of the techniques are collected in Tab. 1. The transformations for the SVM
are done in accordance to [8] with results taken form [27] 2. Since there is not yet a best way
to do this eigenvalue correction, all approaches have to be tried on the training data and the
best results is chosen. Most of these transformation require a singular value decomposition
of the similarity matrix, with a complexity of (O(N?)). In contrast the proposed relational
methods do not require any kind of preprocessing but can be applied directly on the given,
symmetric, dissimilarity matrices.

For both data sets, Chromosomes and Vibrio, the classification accuracy of RGLVQ
is better as compared to the unsupervised RGTM which can be attributed to the fact
that the primal can take the priorly known class information into account during training.
Interestingly, the results of the Nystrom approximation are quite diverse. In some cases, the

2SVM results are obtained by a standard C++ implementation, while the other experiments are done in
pure matlab, hence the CPU time is not comparable here.
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Chromosome Vibrio SwissProt CPU
RGTM 88.10 (0.7) 94.70 (0.5) 69.90 (2.5) 9656
RGTM (Ny 0.01) | 87.80 (2.70) 54.70 (3.10) || 74.40 (2.70) 786
RGTM (Ny 0.10) | 51.60 (6.60) 93.90 (0.70) || 82.20 (4.50) 1631
RGLVQ 92.70 (0.20) 100.00(0.00) || 82.30(0.00) 24481
RGLVQ (Ny 0.01) | 78.40 (0.10) 99.10(0.10) 87.00(0.00) 4179
RGLVQ (Ny 0.10) | 78.20 (0.40) 99.20(0.20) 83.40(0.20) 9696
SVM* 92.50 (3.30) 100.00(0.00) || 98.40(0.10) -
SVM* (Ny 0.01) 95.60 (1.30) 85.27(4.32) 86.30(0.10) -
SVM* (Ny 0.1) 68.80 (1.90) 99.82(0.57) 63.00(1.50) -

Table 1: Results of the methods on the three data sets, the generalization error is reported,
the standard deviation is given in parentheses. For SwissProt, we also report the CPU time
for one run in seconds.

classification accuracy is nearly the same as for the original method, in others, the accuracy
even increases when taking the Nystrom approximation. In some cases, the result drops
down by more than 40%. Interestingly, the result is not monotonic with respect to the size
used to approximate the data, and it is also not consistent for the two algorithms. While
Nystrom approximation is clearly possible for RGLVQ and the Vibrio data set, the quality
depends very much on the approximation parameters for RGTM.

Thus it seems that the quality of the approximation is not necessarily better the larger the
fraction of the data taken for approximation, and it seems that the techniques are affected
to a different degree by this approximation quality.

To shed some light on this aspect, we directly evaluate the quality of the Nystrom
approximation as follows: we repeatedly sample a different fraction of the data set and
evaluate the distance of the approximated matrix and the original one. Since both methods
do not depend on the exact size of the dissimilarities, but rather the ranking induced by
the values is important, we evaluate the spearman correlation of the resulting columns. The
results are depicted in Fig. 1,2. Interestingly, the resulting quality is not monotonic with
respect to the size of the subsample taken for the approximation. Rather, the spearman
correlation drops down for all settings and larger percentage of the subsample for all three
cases. This can probably be attributed to the fact that, for larger values, noise in the
data accounts for random fluctuations of the ranks rather than an approximation of the
underlying order. Hence it can be advisable to test different, on particular also comparably
small subsamples to arrive at a good approximation.

The speed-up of the techniques by means of the approximation has been evaluated for
the SwissProt data set as a comparably large data set. Note that the current limit regard-
ing memory restrictions for a standard memory size of 12 GB would allow at most 30,000
samples, hence the SwissProt data data also in the order of magnitude of this limit. Inter-
estingly, the speed-up is more than 2.5 if 10% are taken and close to six if only 1% is chosen
for RGLVQ. Hence the Nystrém approximation can contribute to a considerable speed-up
in these cases, while not deteriorating the quality for RGLVQ or RGTM.

9 CONCLUSIONS

Relational GTM offers a highly flexible tool to simultaneously cluster and order dissimilarity
data in a topographic mapping. It relies on an implicit pseudo-Euclidean embedding of data
such that dissimilarities become directly accessible. We have proposed a similar extension

11
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Figure 1: Quality of the Nystrom approximation as evaluated by the Spearman correlation
of the rows of the approximated matrix and the original one. The approximation is based
on a different fraction of the data set as indicated by the x-axis. The graphs show the result
for the Chromosomes (left) and Vibrio (right).
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Figure 2: Quality of the Nystrom approximation as evaluated by the Spearman correlation
for SwissProt.
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of supervised prototype based methods, more precisely GLVQ, to obtain a high quality
classification scheme for dissimilarity data.

Due to the dependency on the full matrix, both methods requires squared time complex-
ity and memory to store the dissimilarities. We have proposed a speed-up techniques which
leads to linear effort: the Nystrom approximation. Using three examples from the biomedi-
cal domain, we demonstrated that already for comparably small data sets the technique can
largely enhance speed while not loosing too much information contained in the data.

Interestingly, the quality of the Nystrom technique does not scale monotonously with
the sample size taken for the approximation. Rather, depending on the data characteristics,
smaller samples might lead to a better job. Therefore, it is always worthwhile to test different
sample sizes to achieve the optimum balance of accuracy and speed.
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