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Abstract. While state-of-the-art classifiers such as support vector ma-
chines offer efficient classification for kernel data, they suffer from two
drawbacks: the underlying classifier acts as a black box which can hardly
be inspected by humans, and non-positive definite Gram matrices re-
quire additional preprocessing steps to arrive at a valid kernel. In this
approach, we extend prototype-based classification towards general dis-
similarity data resulting in a technology which (i) can deal with dissimi-
larity data characterized by an arbitrary symmetric dissimilarity matrix,
(ii) offers intuitive classification in terms of prototypical class represen-
tatives, (iii) and leads to state-of-the-art classification results.

1 Introduction

Machine learning has revolutionized the possibility to deal with large electronic
data sets by offering powerful tools to automatically extract a regularity from
given data. Rapid developments in modern sensor technologies, dedicated data
formats, and data storage continues to pose challenges to the field: on the one
hand, data often display a complex structure and a problem-specific dissimilar-
ity measure rather than the Euclidean metric constitutes the interface to the
given data. Examples include biological sequences, mass spectra, or metabolic
networks, where complex alignment techniques, background information, or gen-
eral information theoretical principles, for example, drive the comparison of data
points [21, 18, 12]. These complex dissimilarity measures cannot be computed
based on an Euclidean embedding of data, and they often do not even fulfill the
properties of a metric. On the other hand, the learning tasks become more and
more complex, such that the specific objectives and the relevant information are
not clear a priori. This leads to increasingly interactive systems which allow hu-
mans to shape the problems according to human insights and expert knowledge
at hand and to extract the relevant information on demand [26]. This principle
requires intuitive interfaces to the machine learning technology which enable hu-
mans to interact with the system and to interpret the way in which decisions are
taken by the system. Hence these requirements lead to an increasing popularity
of visualization techniques and the necessity that machine learning techniques
provide information which can directly be displayed to the human observer.

Albeit techniques such as the support vector machine (SVM) or Gaussian
processes provide efficient state-of-the-art techniques with excellent classification
ability, it is often not easy to manually inspect the way in which decisions are
taken. Hence, though a highly accurate classifier might be available, it is hardly
possible to visualize its decisions to domain experts in such a way that the results
can be interpreted and relevant information can be inferred based thereon by a
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human observer. The same argument, although to a lesser degree, is still valid
for alternatives such as the relevance vector machine or sparse models which,
though representing decisions in terms of sparse vectors or class representatives,
typically still rely on complex nonlinear combinations of several terms [27, 4].

Dissimilarity or similarity based machine learning techniques such as nearest
neighbor classifiers rely on distances of given data to known labeled data points.
Hence it is usually very easy to visualize their decision: the closest data point
or a small set of closest points can account for the decision, and this set can
directly be inspected by experts in the same way as data points. Because of this
simplicity, (dis)similarity techniques enjoy a large popularity in application do-
mains, whereby the methods range from simple k-nearest neighbor classifiers up
to advanced techniques such as affinity propagation which represents a clustering
in terms of typical exemplars [14, 8].

(Dis)similarity based techniques can be distinguished according to different
criteria: (i) The number of data points used to represent the classifier ranging
from dense models such as k-nearest neighbor to sparse representations such
as prototype based methods. To arrive at easily interpretable models, a sparse
representation in terms of few data points is necessary. (ii) The degree of super-
vision ranging from clustering techniques such as affinity propagation to super-
vised learning. Here we are interested in classification techniques, i.e. supervised
learning. (iii) The complexity of the dissimilarity measure the methods can deal
with ranging from vectorial techniques restricted to Euclidean spaces, adaptive
techniques which learn the underlying metrics, up to tools which can deal with ar-
bitrary similarities or dissimilarities [24, 22]. Typically, Euclidean techniques are
well suited for simple classification scenarios, but they fail if high-dimensionality
or complex structures are encountered.

Learning vector quantization (LVQ) constitutes one of the few methods to
infer a sparse representation in terms of prototypes from a given data set in
a supervised way [14], such that it offers a good starting point as an intuitive
classification technique which decisions can directly be inspected by humans.
Albeit original LVQ has been introduced on somewhat heuristic grounds [14],
recent developments in this context provide a solid mathematical derivation of
its generalization ability and learning dynamics: explicit large margin general-
ization bounds of LVQ classifiers are available [6, 24]; further, the dynamics of
LVQ type algorithms can be derived from explicit cost functions which model
the classification accuracy referring to the hypothesis margin or a statistical
model, for example [24, 25]. Interestingly, already the dynamics of simple LVQ
as proposed by Kohonen provably leads to a very good generalization ability in
model situation as investigated in the framework of online learning [2].

When dealing with modern application scenarios, one of the largest draw-
backs of LVQ type classifiers is their dependency on the Euclidean metric. Be-
cause of this fact, LVQ is not suited for complex or heterogeneous data sets where
input dimensions have different relevance or a high dimensionality yields to ac-
cumulated noise which disrupts the classification. This problem can partially
be avoided by appropriate metric learning, see e.g. [24], or by kernel variants,
see e.g. [22], which turn LVQ classifiers into state-of-the-art techniques e.g. in
connection to humanoid robotics or computer vision [7, 13]. However, if data are
inherently non-Euclidean, these techniques cannot be applied. In modern appli-
cations, data are often addressed using dedicated non-Euclidean dissimilarities
such as dynamic time warping for time series, alignment for symbolic strings, the
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compression distance to compare sequences based on an information theoretic
ground, and similar [5]. These settings do not allow a Euclidean representation,
rather, data are given implicitly in terms of pairwise dissimilarities [20].

In this contribution, we propose an extension of a popular LVQ algorithm
derived from a cost function related to the hypothesis margin, generalized LVQ
(GLVQ) [23, 24], to general dissimilarity data. This way, the technique becomes
directly applicable for data sets which are characterized in terms of a symmetric
dissimilarity matrix only. The key ingredient is taken from recent approaches
in the unsupervised domain [11, 20]: if prototypes are represented implicitly as
linear combinations of data in the so-called pseudo-Euclidean embedding or,
more generally, a Krein space, the relevant distances of data and prototypes can
be computed without an explicit reference to a vectorial representation. This
principle holds for every symmetric dissimilarity matrix and thus, allows us to
formalize a valid objective of GLVQ for dissimilarity data, which we refer to
as relational GLVQ since it deals with data characterized by pairwise relations.
Based on this observation, optimization can take place using gradient techniques.
Interestingly, the results are competitive to state-of-the-art results, but they
additionally offer an intuitive interface in terms of prototypes [5].

Due to its dependency on the dissimilarity matrix, relational GLVQ displays
squared complexity, the computation of the dissimilarities often constituting the
bottleneck in applications. By integrating approximation techniques [28], the
effort can be reduced to linear time methods. We demonstrate the feasibility of
this approach in connection to the popular SWISSPROT protein data base [3].

2 Generalized learning vector quantization

In the classical vectorial setting, data xi ∈ Rn, i = 1, . . . ,m, are given. Proto-
types wj ∈ Rn, j = 1, . . . , k decompose data into receptive fields R(wj) := {xi :
∀k d(xi,wj) ≤ d(xi,wk)} based on the squared Euclidean distance d(xi,wj) =
∥xi −wj∥2 . The goal of prototype-based machine learning techniques is to find
prototypes which represent a given data set as accurately as possible. For su-
pervised learning, data xi are equipped with class labels c(xi) ∈ {1, . . . , L}.
Similarly, every prototype is equipped with a priorly fixed label c(wj). A data
point is classified according to the class of its closest prototype. The classifica-
tion error of this mapping is given by the term

∑
j

∑
xi∈R(wj) δ(c(x

i) ̸= c(wj))

with the delta function δ. This cost function cannot easily be optimized explic-
itly due to vanishing gradients and discontinuities. Therefore, LVQ relies on a
reasonable heuristic by performing Hebbian updates of the prototypes, given
a data point [14]. Recent alternatives derive similar update rules from explicit
cost functions which are related to the classification error, but display better
numerical properties such that efficient optimization results [24, 23, 25].

Generalized LVQ [23] is derived from a cost function which can be related to
the generalization ability of LVQ classifiers [24]:

EGLVQ =
∑
i

Φ

(
d(xi,w+(xi))− d(xi,w−(xi))

d(xi,w+(xi)) + d(xi,w−(xi))

)
where Φ is a differentiable monotonic function such as tanh, and w+(xi) refers to
the prototype closest to xi with the same label as xi, w−(xi) refers to the closest
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prototype with a different label. Hence, the contribution of a data point to these
costs is small if and only if the closest correct prototype is much closer than the
closest incorrect one, resulting in a correct classification and, at the same time,
aiming at a large hypothesis margin, i.e., a good generalization ability.

A learning algorithm can be derived thereof by means of standard gradient
techniques. After presenting data point xi, its closest correct and wrong proto-
type, respectively, are adapted according to the prescription:

∆w+(xi) ∼ − Φ′(µ(xi)) · µ+(xi) · ∇w+(xi)d(x
i,w+(xi))

∆w−(xi) ∼ Φ′(µ(xi)) · µ−(xi) · ∇w−(xi)d(x
i,w−(xi))

where

µ(xi) =
d(xi,w+(xi))− d(xi,w−(xi))

d(xi,w+(xi)) + d(xi,w−(xi))
,

µ+(xi) =
2 · d(xi,w−(xi))

(d(xi,w+(xi)) + d(xi,w−(xi))2
,

µ−(xi) =
2 · d(xi,w+(xi)

(d(xi,w+(xi)) + d(xi,w−(xi))2
.

For the squared Euclidean norm, the derivative yields ∇wjd(xi,wj) = −2(xi −
wj), leading to Hebbian update rules of the prototypes according to the class
information. GLVQ constitutes one particularly efficient method to adapt the
prototypes according to a given labeled data sets. Alternatives can be derived
based on a labeled Gaussian mixture model, see e.g. [25]. Since the latter can be
highly sensitive to model meta-parameters [2], we focus on GLVQ.

3 Dissimilarity data

Due to improved sensor technology, dedicated data formats, etc., data are be-
coming more and more complex in many application domains. To account for
this fact, data are often addressed by a dedicated dissimilarity measure which
respects the structural form of the data such as alignment techniques for bioin-
formatics sequences, functional norms for mass spectra, or the compression dis-
tance for texts [5]. Prototype-based techniques such as GLVQ are restricted to
Euclidean vector spaces such that their suitability for such data sets is highly
limited. Here we propose an extension of GLVQ to general dissimilarity data.

We assume that data xi are characterized by pairwise dissimilarities dij =
d(xi,xj). D refers to the corresponding dissimilarity matrix. We assume sym-
metry dij = dji and zero diagonal dii = 0. However, D need not be Euclidean,
i.e. it is not guaranteed that vectors xi can be found with dij = ∥xi −xj∥2. For
every such dissimilarity matrix D, an associated similarity matrix is induced
by S = −JDJ/2 where J = (I − 11t/n) with identity matrix I and vector of
ones 1. D is Euclidean if and only if S is positive semidefinite (pdf). In general,
p eigenvectors of S have positive eigenvalues and q have negative eigenvalues,
(p, q, n− p− q) is referred to as the signature.

For kernel methods such as SVM, a correction of the matrix S is necessary
to guarantee pdf. Two different techniques are very popular: the spectrum of the
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matrix S is changed, possible operations being clip (negative eigenvalues are set
to 0), flip (absolute values are taken), or shift (a summand is added to all eigen-
values). Interestingly, some operations such as shift do not affect the location
of local optima of important cost functions such as the quantization error [16],
albeit the transformation can severely affect the performance of optimization
algorithms [11]. As an alternative, data points can be treated as vectors which
coefficients are given by the pairwise similarity. These vectors can be processed
using standard kernels. In [5] an extensive comparison of these preprocessing
methods in connection to SVM is performed for a variety of benchmarks.

Alternatively, one can directly embed data in the pseudo-Euclidean vector
space determined by the eigenvector decomposition of S. A symmetric bilinear
form is induced by ⟨x,y⟩p,q = xtIp,qy where Ip,q is a diagonal matrix with p
entries 1 and q entries −1. Taking the eigenvectors of S together with the square
root of the absolute value of the eigenvalues, we obtain vectors xi in pseudo-
Euclidean space such that dij = ⟨xi − xj ,xi − xj⟩p,q holds for every pair of
data points. If the number of data is not limited a priori, a generalization of this
concept to Krein spaces with according decomposition is possible [20].

Vector operations can be directly transferred to pseudo-Euclidean space, i.e.
we can define prototypes as linear combinations of data in this space. Hence
we can perform techniques such as GLVQ explicitly in pseudo-Euclidean space
since it relies on vector operations only. One problem of this explicit transfer is
given by the computational complexity of the embedding which is O(n3), and,
further, the fact that out-of-sample extensions to new data points characterized
by pairwise dissimilarities are not immediate. Because of this fact, we are inter-
ested in efficient techniques which implicitly refer to this embedding only. As a
side product, such algorithms are invariant to coordinate transforms in pseudo-
Euclidean space. The key assumption is to restrict prototype positions to linear
combinations of data points of the form

wj =
∑
i

αjix
i with

∑
i

αji = 1 .

Since prototypes are located at representative points in the data space, this is
reasonable. Then dissimilarities can be computed implicitly by means of the
formula

d(xi,wj) = [D · αj ]i −
1

2
· αt

jDαj

where αj = (αj1, . . . , αjn) refers to the vector of coefficients describing the pro-
totype wj implicitly, as shown in [11].

This observation constitutes the key to transfer GLVQ to relational data.
Prototype wj is represented implicitly by means of the coefficient vectors αj

and distances are computed by means of these coefficients. The corresponding
cost function of relational GLVQ (RGLVQ) becomes:

ERGLVQ =
∑
i

Φ

(
[Dα+]i − 1

2 · (α+)tDα+ − [Dα−]i +
1
2 · (α−)tDα−

[Dα+]i − 1
2 · (α+)tDα+ + [Dα−]i − 1

2 · (α−)tDα−

)
,

where as before the closest correct and wrong prototype are referred to, corre-
sponding to the coefficients α+ and α−, respectively. A simple stochastic gradi-
ent descent leads to adaptation rules for the coefficients α+ and α− in relational
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GLVQ: component k of these vectors is adapted as

∆α+
k ∼ − Φ′(µ(xi)) · µ+(xi) ·

∂
(
[Dα+]i − 1

2 · (α+)tDα+
)

∂α+
k

∆α−
k ∼ Φ′(µ(xi)) · µ−(xi) ·

∂
(
[Dα−]i − 1

2 · (α−)tDα−)
∂α−

k

where µ(xi), µ+(xi), and µ−(xi) are as above. The partial derivative yields

∂
(
[Dαj ]i − 1

2 · αt
jDαj

)
∂αjk

= dik −
∑
l

dlkαjl

Naturally, alternative gradient techniques can be used. After every adaptation
step, normalization takes place to guarantee

∑
i αji = 1. This way, a learning

algorithm which adapts prototypes in a supervised manner similar to GLVQ is
given for general dissimilarity data, whereby prototypes are implicitly embedded
in pseudo-Euclidean space. The prototypes are initialized as random vectors
corresponding to random values αij which sum to one. It is possible to take
class information into account by setting all αij to zero which do not correspond
to the class of the prototype. Out-of-sample extension of the classification to new
data is possible based on the following observation [11]: for a novel data point x
characterized by its pairwise dissimilarities D(x) to the data used for training,
the dissimilarity of x to a prototype αj is d(x,wj) = D(x)t · αj − 1

2 · αt
jDαj .

Interpretability and speed-up

Relational GLVQ extends GLVQ to general dissimilarity data. Unlike Euclidean
GLVQ, it represents prototypes indirectly by means of coefficient vectors which
are not directly interpretable since they correspond to typical positions in
pseudo-Euclidean space. However, because of their representative character, we
can approximate these positions in pseudo-Euclidean space by its closest exem-
plars, i.e. data points originally contained in the training set. Unlike prototypes,
these exemplars can be directly inspected. We refer to such an approximation as
K-approximation if a prototype is substituted by its K closest exemplars, the
latter being directly accessible to humans. We will see in experiments that the re-
sulting classification accuracy is still quite good for small values K in {1, . . . , 5},
and we present an example showing the interpretability of the result. We refer
to results obtained by a K-approximation by the subscript RGLVQK .

In addition, RGLVQ (just as SVM) depends on the full dissimilarity matrix
and thus displays quadratic time and space complexity. Depending on the chosen
dissimilarity, the main computational bottleneck is given by the computation of
the dissimilarity matrix itself. Alignment of biological sequences, for example, is
quadratic in the sequence length (linear, if approximations such as FASTA are
used), such that a computation of the full dissimilarities for about 11,000 data
points (the size of the Swissprot data set as considered below) would already
lead to a computation time of more than eight days (Intel Xeon QuadCore 2.5
GHz, alignment done by Smith-Waterman or FASTA) and a storage requirement
of about 500 Megabyte, assuming double precision. The Nyström approximation
as introduced in [28] allows an efficient approximation of a kernel matrix by a
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low rank matrix. This approximation can directly be transferred to dissimilarity
data. The basic principle is to pick M representative landmarks which induce
the rectangular sub-matrixDM,m of dissimilarities of data points and landmarks.
This matrix is of linear size, assuming M is fixed. The full matrix can be approx-
imated in an optimum way in the form D ≈ Dt

M,mD−1
M,MDM,m where DM,M is

the rectangular sub-matrix of D. The computation of D−1
M,M is O(M3) instead

of O(m2) for the full matrix D. The resulting approximation is exact if M cor-
responds to the rank of D. For 10% landmarks, computing DM,M instead of D
leads to a speed-up factor 50, i.e. given 11, 000 sequences, it can be computed
in less than two hours instead of eight days. The storage capacity reduces to 4.5
Megabytes as compared to 500 Megabytes in this case. Note that the Nyström
approximation can be directly integrated into the distance computation of rela-
tional GLVQ in such a way that the overall training complexity is linear instead
of quadratic. We refer to results obtained by a Nyström approximation by the
superscript RGLVQν . We use 10% landmarks per default.

4 Experiments

We evaluate relational GLVQ for several benchmark data sets characterized by
pairwise dissimilarities. These data sets have extensively been used in [5] to
evaluate SVM classifiers for general dissimilarity data. Since SVM requires a pdf
matrix, appropriate preprocessing has been done in [5]: flip, clip, shift, and vec-
torial representation together with the linear and Gaussian kernel, respectively,
is used in conjunction with a standard SVM. In addition, we consider a few
benchmarks from the biomedical domain. The data sets are as follows:

1. Amazon47 consisting of 204 data points from 47 classes, representing books
and their similarity based on customer preferences. The similarity matrix S
was symmetrized and transferred by means of D = exp(−S), see [16].

2. Aural Sonar consists of 100 signals with two classes (target of inter-
est/clutter), representing sonar signals with dissimilarity measures according
to an ad hoc classification of humans.

3. The Cat Cortex data set consists of 65 data points from 5 classes. The data
originate from anatomic studies of cats’ brains. The dissimilarity matrix
displays the connection strength between 65 cortical areas. A preprocessed
version as presented in [10] was used.

4. The Copenhagen Chromosomes data set constitutes a benchmark from cy-
togenetics [17]. A set of 4,200 human chromosomes from 21 classes (the
autosomal chromosomes) are represented by grey-valued images. These are
transferred to strings measuring the thickness of their silhouettes. These
strings are compared using edit distance [19].

5. Face Recognition consists of 945 samples with 139 classes, representing faces
of people, compared by the cosine similarity.

6. Patrol consists of 241 data points from 8 classes, corresponding to seven
patrol units (and non-existing persons, respectively). Similarities are based
on clusters named by people.

7. Protein consists of 213 data from 4 classes, representing globin proteins com-
pared by an evolutionary measure.

8. The SwissProt data set consists of 10,988 samples of protein sequences in 32
classes taken as a subset from the SwissProt database [3]. The considered
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subset of the SwissProt database refers to the release 37 mimicking the set-
ting as proposed in [15]. The full dataset consists of 77,977 protein sequences.
The 32 most common classes such as Globin, Cytochrome a, Cytochrome b,
Tubulin, Protein kinase st, etc. provided by the Prosite labeling [9] where
taken leading to 10,988 sequences. We calculate a similarity matrix based on
a 10% Nyström approximation. These sequences are compared using exact
Smith-Waterman. This database is the standard source for identifying and
analyzing protein measurements such that an automated sparse classifica-
tion technique would be very desirable. A detailed analysis of the prototypes
of the different protein sequences opens the way towards an inspection of
typical biochemical characteristics of the represented data.

9. The Vibrio data set consists of 1,100 samples of vibrio bacteria populations
characterized by mass spectra. The spectra contain approx. 42,000 mass po-
sitions. The full data set consists of 49 classes of vibrio-sub-species. The mass
spectra are preprocessed with a standard workflow using the BioTyper soft-
ware [18]. As usual, mass spectra display strong functional characteristics
due to the dependency of subsequent masses, such that problem adapted
similarities such as described in [1, 18] are beneficial. In our case, similarities
are calculated using a specific similarity measure as provided by the Bio-
Typer software[18]. The Vibrio similarity matrix S has a maximum score of
3. The corresponding dissimilarity matrix is obtained as D = 3− S.

10. Voting contains 435 samples in 2 classes, representing categorical data com-
pared based on the value difference metric.

As pointed out in [5], these matrices cover a diverse range of different char-
acteristics such that they constitute a well suited test bench to evaluate the per-
formance of algorithms for similarities/dissimilarities. In addition, benchmarks
from the biomedical domain have been added, which constitute interesting ap-

RGLVQ AP SVM Signature # Prototypes
Aural Sonar 88.4 (1.6) 68.5 (4.0) 87.00 - 85.75∗ (54,45,1) 10
Amazon47 81.0 (1.4) 75.9 (0.9) 82.20 - 74.4 (136,68,0) 94
Cat Cortex 93.0 (1.0) 80.4 (2.9) 95.00 - 72.00 (41,23,1) 12
Chromosome 92.7 (0.2) 89.5 (0.6) 95.10 - 92.20 (1951,2206,43) 63
Face rec. 96.4 (0.2) 95.1 (0.3) 96.08 - 95.71∗ (311,310,324) 139
Patrol 84.1 (1.4) 58.1 (1.6) 61.25 - 57.81∗ (173,67,1) 24
Protein 92.4 (1.9) 77.1 (1.0) 98.84 - 97.56∗ (218,4,4) 20
SwissProt 81.6 (0.1) 82.6 (0.3) 82.10 - 78.00 (8488,2500,0) 64
Vibrio 100 (0.0) 99.0 (0.0) 100 (573,527,0) 49
Voting 94.6 (0.5) 93.5 (0.5) 95.11 - 94.48∗ (105,235,95) 20

Table 1. Results of prototype based classification by means of relational GLVQ in com-
parison to SVM with pdf preprocessing and an SMO implementation and in comparison
to AP with posterior labeling for diverse dissimilarity data sets. The classification accu-
racy obtained in a repeated ten-fold cross-validation with ten repeats is reported (only
two-fold for Swissprot), the standard deviation is given in parenthesis. SVM results
marked with ∗ are taken from [5]. The number of prototypes used for RGLVQ and
AP as well as the characteristic of the dissimilarity matrix are included. For SVM, the
respective best and worst result using the different preprocessing mechanisms clip, flip,
shift, and similarities as features with linear and Gaussian kernel are reported.
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RGLVQ RGLVQ1 RGLVQ3 RGLVQν RGLVQν
1 RGLVQν

3

Aural Sonar 88.4 (1.6) 78.7 (2.7) 86.4 (2.7) 86.4 (0.8) 79.7 (2.6) 84.3 (2.6)
Amazon47 81.0 (1.4) 67.5 (1.4) 77.2 (1.0) 81.4 (1.1) 66.2 (2.6) 77.7 (1.2)
Cat Cortex 93.0 (1.0) 81.8 (3.5) 89.6 (2.9) 92.2 (2.3) 79.8 (5.5) 89.5 (2.8)
Chromosome 92.7 (0.2) 90.2 (0.0) 91.2 (0.2) 78.2 (0.4) 84.4 (0.4) 86.3 (0.2)
Face rec. 96.4 (0.2) 96.8 (0.2) 96.8 (0.1) 96.4 (0.2) 96.6 (0.3) 96.7 (0.2)
Patrol 84.1 (1.4) 51.0 (2.0) 69.0 (2.5) 85.6 (1.5) 52.7 (2.3) 72.0 (3.7)
Protein 92.4 (1.9) 69.6 (1.7) 79.4 (2.9) 55.8 (2.8) 64.1 (2.1) 54.9 (1.1)
Vibrio 100 (0.0) 99.0 (0.1) 99.0 (0) 99.2 (0.1) 99.9 (0.0) 100 (0.0)
Voting 94.6 (0.5) 93.7 (0.5) 94.7 (0.6) 90.5 (0.3) 89.5 (0.9) 89.6 (0.9)

Table 2. Results of the relational GLVQ obtained in a repeated ten-fold cross-
validation using the full dissimilarity matrix and prototype representation and ap-
proximations of the matrix by means of Nyström and approximation of the prototype
vectors by means of K-approximations, respectively.

plications per se. All datasets are non-Euclidean, the signatures can be found in
Tab. 1. For every data set, a number of prototypes which mirrors the number of
classes was used, representing every class by only few prototypes relating to the
choices as taken in [11], see Tab. 1. The evaluation of the results is done by means
of the classification accuracy as evaluated on the test set in a ten-fold repeated
cross-validation with ten repeats (two-fold cross-validation for Swissprot).

For comparison, we report the results of a SVM after appropriate prepro-
cessing of the dissimilarity matrix to guarantee a pdf kernel [5]. In addition, we
report the results of a powerful unsupervised exemplar based technique, affinity
propagation (AP) [8], which optimizes the quantization error for arbitrary simi-
larity matrices based on a message passing algorithm for a corresponding factor
graph representation of the cost function. Here the classification is obtained by
posterior labeling. For relational GLVQ, we train the standard technique for the
full dissimilarity matrix, and we compare the result to the sparse models ob-
tained by a K-approximation with K ∈ {1, 3} and a Nyström approximation of
the dissimilarity matrix using 10% of the training data. The mean classification
accuracies are reported in Tab. 2 and Tab. 1.

Interestingly, in all cases but one (the almost Euclidean data set proteins),
results which are comparable to SVM taking the respective best preprocessing as
reported in [5] can be found. Unlike SVM, relational GLVQ makes this prepro-
cessing superfluous. In contrast, SVM requires preprocessing to guarantee pdf,
leading to divergence or very bad classification accuracy otherwise. Further, dif-
ferent preprocessing can lead to very diverse accuracy as shown in Tab. 1, no
single preprocessing being universally suited for all data sets. Thus, these results
seem to substantiate the finding of [16] that preprocessing of a non pdf Gram
matrix can influence the classification accuracy. Further, a significant improve-
ment of the classification accuracy as compared to a state of the art unsupervised
prototype based technique, affinity propagation (AP) (using the same number
of prototypes) can be observed in most cases, showing the significance to include
supervision in the training objective if classification is aimed at.

Unlike for SVM which is based on support vectors in the data set, solutions
are represented as typical prototypes. Similar to AP, these prototypes can be
approximated by K nearest exemplars representing the classification explicitly
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Fig. 1.White box analysis of RGLVQ. The prototype (straight line) represents the class
of the test spectrum (dashed line). The prototype is labeled as Vibrio Anguillarum. It
shows high symmetry to the test spectrum and the similarity of matched peaks (zoom
in) highlights good agreement by bright gray shades, indicating the local error of the
match. The prototype model allows direct identification and scoring of matched and
unmatched peaks, which can be assigned to its mass to charge (m/c) positions, for
further biochemical analysis.

in terms of few data points instead of prototypes. See Fig. 1 for an inspection
of a typical exemplar for the Vibrio data set. As can be seen from Tab. 2, a
3-approximation leads to a loss of accuracy of more than 5% in only two cases.
Interestingly, a 3-approximation of a prototype based classifier for the Swissprot
benchmark even leads to an increase of the accuracy from 81.6 to 84.0.

As a further demonstration, we show the result of RGLVQ trained to clas-
sify 84 e-books according to 4 different authors; data are taken from the
project Gutenberg (www.gutenberg.org). One prototype per class is used with
3-approximation for visual inspection. Data are compared by the normalized
compression distance. In Fig. 2, books and representative exemplars found by
RGLVQ3 are displayed in 2D using t-SNE. While SVM such as RGLVQ leads
to a classification accuracy of more than 95%, it picks almost all data points as
support vectors, i.e. no direct interpretability is possible in case of SVM.

The Nyström approximation offers a linear time and space approximation of
full relational GLVQ. The decrease in accuracy due to this approximation is doc-
umented in Tab. 2 for all except the Swissprot data set – since the computation
of the full dissimilarity matrix for the Swissprot data set would require more
than 8 days on a standard PC, we used a Nyström approximation right from
the beginning for Swissprot. The quality of the Nyström approximation depends
on the rank of the dissimilarity matrix. Thus, the results differ a lot depending
on the characteristics of the eigenvalue spectrum for the data. Interestingly, it
seems possible in more than half of the cases to substitute full relational GLVQ
by this linear complexity approximation without much loss of accuracy.

5 Conclusions

We have presented an extension of generalized learning vector quantization to
non-Euclidean data sets characterized by symmetric pairwise dissimilarities by
means of an implicit embedding in the pseudo-Euclidean space and a corre-
sponding extension of the cost function of GLVQ to this setting. As a result, a
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Fig. 2. Visualization of e-books and typical exemplars found by RGLVQ3.

very powerful learning algorithm can be derived which, in most cases, achieves
results which are comparable to SVM but without the necessity of according
preprocessing and with direct interpretability of the classification in terms of
the prototypes or exemplars in a K-approximation thereof. As a first step to
an efficient linear approximation, the Nyström technique has been tested lead-
ing to promising results in a number of benchmarks, particularly making the
technology feasible for relevant large databases such as the Swissprot data base.
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