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Abstract. Clustering approaches constitute important methods for un-
supervised data analysis. Traditionally, many clustering models focus on
spherical or ellipsoidal clusters in Euclidean space. Kernel methods ex-
tend these approaches to more complex cluster forms, and they have
been recently integrated into several clustering techniques. While lead-
ing to very flexible representations, kernel clustering has the drawback
of high memory and time complexity due to its dependency on the full
Gram matrix and its implicit representation of clusters in terms of fea-
ture vectors. In this contribution, we accelerate the kernelized Neural
Gas algorithm by incorporating a Nyström approximation scheme and
active learning, and we arrive at sparse solutions by integration of a spar-
sity constraint. We provide experimental results which show that these
accelerations do not lead to a deterioration in accuracy while improving
time and memory complexity.

1 Introduction

The dramatic growth in data generating applications and measurement tech-
niques has created many high-volume data sets. Most of them are stored digitally
and need to be efficiently analyzed to be of use. Clustering methods are very im-
portant in this setting and have been extensively studied in the last decades [9].
Challenges are mainly in time and memory efficient and accurate processing of
such data with flexible and compact data analysis tools. The Neural Gas vector
quantizer [13] (NG) constitutes a very effective prototype based clustering ap-
proach with a wide range of applications and extensions [21, 10, 1, 23]. It is well
known for its initialization insensitivity, making it a valuable alternative to tra-
ditional approaches like k-means. It suffers, however, from its focus on spherical
or ellipsoidal clusters such that complex cluster shapes can only be represented
based on an approximation with a very large number of spherical clusters. Al-
ternative strategies dealing with more complex data manifolds or novel metric
adaptation techniques in clusterings are typically still limited, unable to employ
the full potential of a complex modeling [7, 2]. The success of kernel methods
in supervised learning tasks [20, 19] has motivated recent extensions of unsuper-
vised schemes to kernel techniques, see e.g. [22, 3, 17, 5, 6].

Kernelized neural gas (KNG) was proposed in [17] as a non-linear, kernel-
ized extention of the Neural Gas vector quantizer. While this approach is quite
promising it has been used only rarely due to its calculation complexity which
is roughly in O(N2), with N as the number of points. Drawbacks are given by
the storage of a large kernel matrix and the update of a combinatorial coefficient
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matrix, representing the prototypes implicitly. This makes the approach time
and memory consuming already for small data sets.

Modern approaches in discriminative learning try to avoid the direct storage
and usage of the full kernel matrix and restrict the underlying optimization
problem to subsets thereof, see e.g. [16, 20]. For unsupervised kernel methods
comparably few work has been done so far to overcome the memory and time
complexity for large data sets [12]. For the KNG approach no such strategy has
been proposed at all up to our knowledge.

In this contribution, we extend KNG towards a time and memory efficient
method incorporating a variety of techniques: The Nyström-Approximation of
Gram matrices constitutes a classical approximation scheme [25, 11], permitting
the estimation of the kernel matrix by means of a low dimensional approximation.
Further speedup can be achieved by using the explicit margin information to
arrive at an active learning scheme. The high memory requirement which is
caused by the implicit representation of prototypes in terms of feature vectors
which, unlike for the supervised support vector machine, are usually not sparse,
can be dealt with by incorporating sparsity constraints. Sparsity is a natural
concept in the encoding of data [15] and can be used to obtain compact models.
This concept has already been used in many machine learning methods [10, 8]
and different measures of sparsity have been proposed [15, 8]. We integrate such
a sparsity constraint into KNG.

In Section 2 we present a short introduction into kernels and give the no-
tations used throughout the paper. Subsequently we present the KNG algo-
rithm and the approximated variant, accelerated KNG (AKNG) by means of
the Nyström approximation, active learning, and the additional sparsity con-
straint. We show the efficiency of the novel approach by experiments on several
data sets. Finally, we conclude with a discussion in Section 4.

2 Preliminaries

We consider vectors vj ∈ Rd, d denoting the dimensionality, n the number of
samples. N prototypes wi ∈ Rd induce a clustering by means of their receptive
fields which consist of the points v for which d(v,wi) ≤ d(v,wj) holds for all
j 6= i, d denoting a distance measure, typically the Euclidean distance.

A kernel function κ : Rd×Rd → R is implicitly induced by a feature mapping
φ : Rd → F into some possibly high dimensional feature space F such that

κ (v1,v2) = 〈φ (v1) , φ (v2)〉F (1)

holds for all vectors v1 and v2, where the inner product in the feature space is
considered. Hence κ is positive semi-definite. Using the linearity in the Hilbert-
space, we can express dot products of elements of the linear span of φ of the
form

∑
i αiφ(vi) and images φ(v) via the form

∑
i αiκ (vi,v). This property is

used in [17], to derive a kernelization of Neural Gas.

3 Neural Gas Algorithm

The Neural Gas (NG) algorithm is a type of vector quantizer providing a compact
representation of the underlying data distributions [14]. Its goal is to find pro-
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totype locations wi such that these prototypes represent the data v, distributed
according to P, as accurately as possible, minimizing the energy function:

ENG (γ) =
1

C (γ,K)

N∑
i=1

∫
P (v) · hγ (vi,W) · (v −wi)

2
dv (2)

with neighborhood function of Gaussian shape: hγ (vi,W) =
exp (−ki (v,W)/γ). ki (v,W) yields the number of prototypes wj for
which the relation d (v,wj) ≤ d (v,wi) is valid, i.e. the winner rank. C (γ,K)
is a normalization constant depending on the neighborhood range γ. The NG
learning rule is derived thereof by stochastic gradient descent:

4wi = ε · hγ (vi,W) · (v −wi) (3)

with learning rate ε. Typically, the neighborhood range γ is decreased during
training to ensure independence of initialization and optimization of the quan-
tization error. NG is a simple and highly effective algorithm for data clustering.

3.1 Kernelized Neural Gas

We now briefly review the main concepts used in Kernelized Neural Gas (KNG)
as given in [17]. KNG optimizes the same cost function as NG but with the Eu-
clidean distance substituted by a distance induced by a kernel. Since the feature
space is unknown, prototypes are expressed implicitly as linear combination of
feature vectors wi =

∑n
l=1 αi,lφ(vl), αi ∈ Rn is the corresponding coefficient

vector. Distance in feature space for φ(vj) and wi is computed as:

d2i,j = ‖φ(vj)−wi‖2 = ‖φ(vj)−
n∑
l=1

αi,lφ(vl)‖2 (4)

= k(vj ,vj)− 2

n∑
l=1

k(vj ,vl) · αi,l +

n∑
s,t=1

k(vs,vt) · αi,sαi,t (5)

The update rules of NG can be modified by substituting the Euclidean distance
by the formula (4) and taking derivatives with respect to the coefficients αi,l.
The detailed equations are available in [17].

3.2 Nyström Approximation of the Kernel Matrix

As pointed out in [25] different strategies have been proposed to overcome the
complexity problem caused by the kernel matrix in modern machine learning
algorithms. One promising approach is the Nyström approximation.

It originates from the numerical treatment of integral equations of the form∫
P(y)k(x, y)φi(y)dy = λiφi(x) where P(·) is the probability density function,

k is a positive definite kernel function, and λ1 ≥ λ2 ≥ . . . ≥ 0 and φ1, φ2, . . .
are the eigenvalues and eigenfunctions of the integral equation. Given a set of
i.i.d. samples {x1, . . . , xq} drawn from P(·), the basic idea is to approximate the
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integral by the empirical average 1/q
∑q
j=1 k(x, xj)φi(xj) ≈ λiφi(x) which can

be written as the eigenvalue decomposition: Kφ = qλφ where Kq×q = [Ki,j ] =
[k(xi, xj)] is the kernel matrix defined on X, and φ = [φi(xj)] ∈ Rq. Solving this
equation we can calculate φi(x) as φi(x) ≈ 1/(qλ)

∑q
j=1 k(x, xj)φi(xj) which is

costly. To reduce the complexity, one may use only a subset of the samples which
is commonly known as the Nystöm method.

Suppose the sample set V = {vi}ni=1, with the corresponding n × n ker-
nel matrix K. We randomly choose a subset Z = {zi}qi=1 of landmark points
and a corresponding kernel sub matrix Qq×q = [k(zi, zj)]i,j . We calculate the
eigenvalue decomposition of this sub matrix: Qφz = qλzφz and obtain the corre-
sponding eigenvector φz ∈ Rq and the eigenvalue qλz. Subsequently we calculate
the interpolation matrix K̂n×q = [k(vi, zj)]i,j to extend the result to the whole
set V . We approximate the eigen-system of the full KφK = φKλK by [24]:

φK ≈
√
q

n
K̂φZλ

−1
Z , λK ≈

n

q
λZ

K can be subsequently reconstructed as

K ≈
(√

q

n
K̂φZλ

−1
Z

)(
n

q
λZ

)(√
q

n
K̂φZλ

−1
Z

)′
= K̂Q−1K̂′

To integrate the Nyström approximation into KNG we only need to modify the
distance calculation between a prototype wi and a data point φ(vj) accordingly.
The original update equation for the coefficient matrix in KNG reads as:

αt+1
j,l =

{
[1− ε · hγ(kj(φ(vi),W))] · αtj,l if vi 6= vl
[1− ε · hγ(kj(φ(vi),W))] · αtj,l + ε · hγ(kj(φ(vi),W)) if vi = vl

with t+1 indicating the time step and wk ∈W defined as in Eq. 4. The distance
calculation using the Nyström approximation is done as follows: (6):

d·,j = K(j, j)− 2 · T·,j + diag(ψ · T ′) (6)

with Ti,· = ((αi · K̂) ·Q−1) · K̂′ (7)

where diag provides the main diagonal elements of the associated matrix. With
Nyström-approximation the complexity is reduced to O(q2N) [24].

3.3 Sparse Coefficient Matrix

In [15] sparsity has been found to be a natural concept in the visual cortex of
mammals. This work motivated the integration of sparsity concepts into many
machine learning methods to obtain sparse but efficient models. Here we will
integrate sparsity as an additional constraint on the coefficient matrix α such
that the amount of non-zero coefficients is limited. This leads to a compact
description of the prototypes by means of sparse linear mixture models. We use
the sparsity measure given in [15]. The sparsity S of a row of α is measured as

S(αi) = −
∑
l

S
(αi,l
σ

)
(8)
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Fig. 1. Effect of the sparsity constraint for DS2 shown by means of the γ-matrix
(normalized for better comparison) showing point weights (x-axis) for each prototype
(y-axis). With sparsity left and without right. Dark values (1) indicated high loaded
or high lighted data points for the considered prototype in the γ matrix. Data points
with very low values (0) over all prototypes can be safely removed from the model.

with σ as a scaling constant. The function S can be of different type, here we
use S(x) = log(1 + x2). We change the energy function of the KNG as follows

EKNG (γ) =
1

C (γ,K)

N∑
i=1

∫
P (φ(v) · hγ (φ(vi),W) · ‖φ(v)−wi‖2 dφ(v)

−β · S(αi)

The updates for the coefficients of wi are exactly the same as for the standard
KNG using the Nyström formula to approximate the Gram matrix and including
the additional term caused by the sparsity constrained

∂S
∂αi,l

= − 2/σ2 · αi,l
1 + (αi,l/σ)

2

In addition, we enforce the constrained αi,l ∈ [0, 1] and
∑
l αi,l = 1 for better

interpretability. The effect of the sparsity constraint on the UCI iris data is shown
in Figure 3.3 with 1 prototype per class. The sparse model has an accuracy of
≈ 90% whereas the original solution achieves only 86%.

3.4 Active Learning

The sparse coefficients α give rise to an active learning scheme in a similar
manner as proposed in [18], leading to faster learning. The matrix α encodes
a weighting of the data-points. We take the column-wise mean of α as ᾱ and
calculate a threshold δ for each data-point indicating its relative importance for
the learning. The average weight for a data-point in α is given as δ∗ = αi,j =
1/N , due to the normalization constraint. Weights close to this point are not
sufficiently learned, such that they have not been deleted or emphasized so far.
We transfer these weights to a skip probability for each data-point using:

δ = 1/2 · exp

(
− (ᾱj − δ∗)2

(2 · std(ᾱ)2)

)
with std - as the standard deviation (9)
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Fig. 2. Ring data set (left), post-labeled KGLVQ model (middle), the outer ring is red
(’o’), the inner ring is blue (?). The plot on the right shows the cluster boundaries of
the model from the middle plot. The model was calculated without sparsity. It can
be clearly seen that the A-KNG with an rbf kernel sucessfully separated these two
clusters, with good cluster boundaries and a large margin between the two rings.

This denotes the probability of the data-point to be skipped during learning. It
should be noted, that at the beginning of the learning α is initialized randomly
such that the probability of a data-point to be skipped is random; during learning
only those points are likely to be skipped which are either not or most relevant
for the model. In this line we roughly learn the model by considering an ε-tube
around the cluster centers. However, by taking the probability concept all points
are taken into account albeit with probably small probability.

4 Experiments

As a proof of concept, we start with a toy data set (DS1) and an RBF kernel. The
data consist of 800 data points with 400 per ring in 2 dimensions (x/y) as shown
in Figure 2. The first ring has a radius of r = 10 and the second r = 4, points
are randomly sampled in [0, 2π]. The data set has been normalized in N(0, 1).
We also analyzed the ring data using the additional sparsity constraint. In the
original model 53% of the weights, averaged over the prototypes are almost 0
(values ≤ 1e − 5). In the sparsity approach we used σ2 as the variance of the
data scaled by 0.01 and β = 1 and obtained a model with about 75% of the
points close to zero.

Following the work given in [12] we analyze several UCI benchmarks. We
consider the well known iris data set (DS2), the Wisconsin Breast cancer data
(WBC) (DS3), the Spam database (DS4), and Pima diabetes (DS5). Details
about the data can be found in [4]. DS2 consists of 150 instances in three groups
and is known to be almost linear separable by two hyperplanes. DS3 consists of
683 items. For this dataset non-linear supervised learning methods have been
found to be very effective whereas linear approaches are not so effective. This
motivates the assumption that kernelization might prove beneficial. The data set
DS4 contains 1534 samples, and classification is difficult. The fifth data set (DS5)
contains 768 samples. For each data set we used one prototype per expected
group. The results are shown in Table 4.

All results are obtained using 10 cycles with a Nyström approximation of
1−10% of the original kernel matrix, β ∈ [0.001, 10], and the sparsity σ ∈ [1, 100]
determined on an independent test set. The value of the Nyström approximation
is not very critical for the accuracy and mainly influences the runtime perfor-
mance, whereas a too sparse solution can lead to a decrease in accuracy. Dataset
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Table 1. Post labeled accuracy vs. runtime over 10 runs. For AK-NG and K-NG 10
cycles are calculated, each. Best results in bold, ∗-ed results are taken from [12]

Algorithm Iris data WBC Spam Pima diabetes
NG 91.7%/n.a.∗ 96.1%/n.a.∗ 68.4%/n.a. ∗ 70.31%/7s
K-NG 90.0%/2.6s 91.7%/5.77s 86.5%/350s 71.74%/21s
AK-NG 92.6%/0.14s 92.1%/0.73s 84.42%/2.9s 73.05%/0.94s
K-Grower 94.7%/12.95s∗ 97.0%/807.17s∗ 81.3%/� 1000s∗ n.a.
SUK-Grower 93.4%/47.95s∗ 96.8%/22.85s∗ 80.2%/44.83s∗ n.a.

D2,D3, and D5 are analyzed using an RBF kernel with a σ2 = {1, 0.01, 0.1}
respectively, for DS4 we used a linear kernel. The other experimental settings
have been chosen in accordance to [12] for compatibility. We also report two
alternative state of the art clustering methods by means of core sets provided
in [12], referred to as K-Grower and SUK-Grower. Analyzing the results given
in Table 4 the AK-NG is significantly faster in calculating the clustering models
than all other approaches with the same or only slightly less accuracy. Analyzing
the optimizations separately for DS3−DS5 we find: sparsity leads to a reduced
memory consumption of ≈ 25%(DS3),≈ 30%(DS4) and ≈ 41%(DS5) with re-
spect to the unoptimized approach; Nyström approximation leads to a speedup
of ≈ 1.6(DS3), ≈ 6.8(DS4) and ≈ 2(DS5) and the active learning strategy
behaves similar. The effect of these optimizations has almost no effect on the
accuracy, giving appropriate parameters as pointed out before.

5 Conclusions

In this paper we proposed an extension of kernelized neural gas with a sig-
nificantly reduced model complexity and time complexity by incorporating the
Nyström approximation and a sparsity constraint. We compared the efficiency
of our approach with alternative state of the art clusterings with respect to clus-
tering accuracy as well as efficiency. We found the AK-NG is similarly effective
and significantly faster with respect to the considered approaches. So far, we
tested the algorithm on UCI benchmarks, its application to real life very large
data sets being the subject of ongoing work.
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