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Abstract. In the life sciences, short time series with high dimensional
entries are becoming more and more popular such as spectrometric data
or gene expression profiles taken over time. Data characteristics rule out
classical time series analysis due to the few time points, and they pre-
vent a simple vectorial treatment due to the high dimensionality. In this
contribution, we successfully use the generative topographic mapping
through time (GTM-TT) which is based on hidden Markov models en-
hanced with a topographic mapping to model such data. We propose an
extension of GTM-TT by relevance learning which automatically adapts
the model such that the most relevant input variables and time points
are emphasized by means of an automatic relevance weighting scheme.
We demonstrate the technique in two applications from the life sciences.

1 Introduction

Due to improved sensor technology, many data sets occurring in the biomedical
domain are very high dimensional such as mass spectra or gene expression pro-
files. At the same time, more and more data display a temporal characteristics
e.g. when investigating the development of an organism over time or the success
of a therapy. In these scenarios, classical time series analysis cannot be applied
due to comparably few time points (often less than 10). In addition, a direct
vectorial treatment is prohibited by the high dimensionality of the data.

A few machine learning techniques exist to investigate high dimensional time
series: Topographic mapping such as the self-organizing map (SOM) is extended
by a recursive context which accounts for the temporal dynamics in the approach
[15]. A probabilistic counterpart is offered by the Generative Topographic Map-
ping Through Time (GTM-TT) which combines hidden Markov models with a
constraint mixture model induced by a low dimensional latent space. This ap-
proach is extended to better take the relevance of the feature components into
account in [13], but relying on an unsupervised model. A supervised relevance
weighting scheme which singles out relevant features in a wrapper approach
based on hidden Markov models has been proposed in [12]. In [6] a similar
approach introducing class-wise constraints in the hidden Markov model. The
approach [5] deals with time series data and feature selection relying on support
vector machines in combination with a Kalman filter. In [12], applications to life
science data are presented resulting in 85% prediction accuracy on a multiple
sclerosis (MS) data set, but the approach relies on strong assumptions about the
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underlying HMM structure. The approach in [5] improves this result by about
3% but it results in a black box scenario without feature selection. The approach
[6] is evaluated in the same scenario achieving improved performance for the MS
data set. There is further ongoing work in this field, reflecting the high demand
for effective methods to deal with short high dimensional time series data. The
application field is not limited to the bio-medical domain [12,6,8] but covers a
broader field of applications in industry and geo-science [13,15].

GTM and SOM crucially rely on the Euclidean distance which becomes more
and more meaningless for high dimensional data and which suffers from an in-
appropriate scaling of the dimensions [11]. Because of this observation, distance
based learning has been extended to automatic relevance adaptation which auto-
matically adapts metric parameters according to given auxiliary information, see
e.g. [9,7]. In this contribution, we are interested in the question how relevance
learning can be transferred to the temporal domain, thereby weighting both,
features and time points of the model according to their relevance as specified
by given auxiliary information. The identification of relevant dimensions is very
important as outlined e.g. in [13,12] to obtain a better understanding of the data,
to reduce the processing complexity, and to improve the overall prediction accu-
racy. We propose a relevance learning scheme for GTM-TT and we demonstrate
the suitability of this approach in two applications from the life sciences.

2 Generative Topographic Mapping Through Time

The Generative Topographic Mapping (GTM) as introduced in [4] models a data
set X with xi ∈ RD, i = 1, . . . , N by means of a mixture of Gaussians induced
by a lattice of K points wi in a low dimensional latent space which can be used
for visualization.

The lattice points are mapped via wi 7→ ti = y(wi,W) to the data space,
where the function is parametrized by W ∈ Rm×D; usually, a generalized linear
regression model is chosen y(w) = Φ(w) ·W with K fixed, m dimensional
base functions Φ given by equally spaced Gaussians. The resulting prototypes
y(wi,W) should represent the data space as accurately as possible.

Every latent point induces a Gaussian

p(x|wi,W, β) =

(
β

2π

)D/2
exp

(
−β

2
‖x− y(wi,W)‖2

)
(1)

with variance β−1. This gives the data distribution as a mixture of K modes

p(x|W, β) =
∑K
i=1 1/K·p(x|wi,W, β). Training optimizes the data log-likelihood

ln
(∏N

n=1

(∑K
i=1 p(w

i)p(xn|wi,W, β)
))

by means of an expectation maximiza-

tion (EM) approach with respect to the parameters W and β.
The GTM through time (GTM-TT) [3] extends the topographic mapping to

time series data of the form x = (x(1), . . . ,x(T )) ∈ (RD)∗ where T ≥ 1 is the
length of the time series. A data point of the training set is referred to by xi.
Consecutive entries xi(t) and xi+1(t+1) are strongly correlated. While the space
of observations over time is represented by a topographic mapping as before, the
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temporal dependencies are modeled by a hidden Markov model (HMM) with
hidden states characterized by the lattice points wi.

The HMM is parametrized by initial state probabilities π = (πj)
K
j=1 where πj =

p(z(1) = wj) and transition probabilities P = (pij)
K
i,j=1 where pij = p(z(t) =

wj |z(t − 1) = wi). The data probability is p(x|Θ) =
∑

z∈{w1,...,wK}T p(x, z|Θ)

with parameters Θ = (W, β, π,P), the conditional probability p(x(t)|z(t)) :=

p(x(t)|z(t),W, β) as before (1), and p(x, z|Θ) = p(z(1))
∏T
t=2 p(z(t)|z(t−1),W, β)∏T

t=1 p(x(t)|z(t)) for any sequence z of hidden states [4].
As for HMMs, a forward-backward procedure allows to determine the hidden

parameters, the responsibilities of states for a given sequence, in an efficient way
[16], based on which the parameters W and β can be determined as before.
We obtain the probability of being in state wk at time t, given the observation
sequence xn:

rkn(t) = p(z(t) = wk|xn, Θ) =
AktBkt
p(xn|Θ)

(2)

with forward variables Akt = p(xn(1) . . .xn(t), z(t) = wk|Θ) and backward vari-
able Bkt = p(xn(t+ 1) . . .xn(tn), z(t) = wk|Θ).

For an input time series xn(1) . . .xn(T ), GTM-TT gives rise to a time series
of responsibilities rkn(1) . . . rkn(T ) of neuron k. Based on these responsibilities,
a winner can be determined for every time step t as neuron argmaxkr

kn(t).
Based on this observation, a supervised variant of GTM-TT (SGTM-TT) can
be determined as follows: Assume that the time series x is equipped with label
information l which is element of a finite set of different labels 1, . . .L. Then, we
train a separate GTM-TT for every class, whereby the models are coupled by
choosing the same bandwidth β and the same underlying topological structure
in the latent space, i.e. the same base functions Φ and prototypes wi. The pa-
rameters Wl are trained individually for every model representing label l. The
same holds for the initial state probability πl and the transition probabilities Pl.

When processing a novel time series x we thus obtain L time series of re-
sponsibilities according to the labels. We denote the responsibilities of model l
for input x at time point t by rkl (x(t)). This gives rise to an aggregated value of

responsibilities rl(x) :=
∑K
k=1

∑T
t=1 r

k
l (x(t))/(KT ). One can pick the label as

the value l for which this quantity is largest. However, to take optimum prior
class probabilities into account, we use an additional linear classifier with inputs
given by the vectors (rl(x))Ll=1 which is trained using a standard SVM.

3 Relevance learning for SGTM -TT

The principle of relevance learning has been introduced in [9] as a particularly
simple and efficient method to adapt the underlying metric of prototype based
classifiers according to the given situation at hand. Besides an improved data
representation, it allows to interpret the relevance of the considered features
to the given task. Here, we propose two different relevance weighting schemes:
relevance learning of the input dimensions to change the topographic mapping
according to the given class labels, and relevance learning of the time points to
improve the interpretability of the results.
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Relevance adaptation of the features: The squared Euclidean metric used
to describe the data is substituted by the weighted form

dλ(x, t) =

D∑
d=1

λ2d(xd − td)2 . (3)

Relevance learning for GTM has been introduced in [7] for i.i.d. data. For SGTM-
TT, a few modifications are necessary. We use the weighted metric (3) to define
the Gaussians (1). This gives rise to a data log-likelihood which takes into ac-
count the dimensions according to their relevance and, hence, a topographic
mapping which mirrors the relevance weighting scheme.

The question is how to set relevance parameters λ in a such way that the clas-
sification accuracy of the resulting mapping is as high as possible. We proceed
as in [7] and train the relevance parameters based on priorly given class informa-
tion in a separate step which is interleaved with the standard adaptation of the
SGTM-TT. We rely on the cost function as introduced in generalized learning
vector quantization which refers to the hypothesis margin of the classifier [14]:

E(λ) =
∑
n

sgd

(
dλ(xn, t+)− dλ(xn, t−)

dλ(xn, t+) + dλ(xn, t−)

)
(4)

where t+ corresponds to the closest prototype with a correct label, whereas t−

corresponds to the closest prototype with an incorrect label, given input xn. sgd
is the logistic function. For SGTM-TT, both, data points xn and prototypes t are
time series, the latter given by the winning prototypes of the GTM-TT model per
time step. Therefore, we use a metric dλ which constitutes a sum of the functional
metric of time series components as proposed by Lee and Verleysen in [10], taking
the relevance weights as parameters. Since this metric is differentiable, we can
optimize this objective by means of a gradient technique.

Relevant time points: Since SGTM-TT relies on HMMs, every time point
depends on its predecessor only. Thus, it is not reasonable to adapt the relevance
of time points to obtain a better representation of data in the GTM-TT models.
However, it is reasonable to judge the relevance of time points resulting from
the GTM-TT models for the final classification, in particular if time series are of
the same or a similar length. This method offers insights into which time points
are particularly discriminative for the given task at hand.

We obtain a relevance profile in the following way: Denote by rl(x(t)) :=∑K
k=1(rkl (x(t)))/K the accumulated responsibility of the GTM-TT model l for

data point xn at time point t. Based on this value, a classification can be based
on the maximum responsibility rl(x(t)) in time point t. For every time point
t, we simply count the number of data points which are classified correctly as
belonging to class l based on the classification for time point t only, averaged
over all data. A global relevance profile results thereof as sum over all labels.

4 Experiments

We consider two data sets from the biomedical domain:
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Fig. 1. Relevance profile as obtained using SGTM-TT with relevance learning. The
plot shows the average relevance (blue/dark), minimal relevance (green/bright) and
the standard deviation, flipped to the negative part of the relevance axis.

Multiple sclerosis data: The multiple sclerosis (MS) data set is taken from
[2] (IBIS) in the prepared form, given in [6]. The data are taken from a clinical
study analyzing the response of MS patients to the treatment. Blood sample en-
trenched with mono-nuclear cells from 52 relapsing-remitting MS patients were
obtained 0, 3, 6, 7, 12, 18 and 24 months after initiation of IFNβ therapy. This
resulted in 7 measurements over 2 years on average. Expression profiles were ob-
tained using one-step kinetic reverse-transcription PCR over 70 genes selected
by the specialists to be potentially related to IFNβ treatment. Overall, 8% of
the measurements were missing due to patients missing the appointments. After
the two year endpoint, patients were classified as either good or bad responders,
depending on strict clinical criteria. Bad responders were defined as having suf-
fered two or more relapses or having a confirmed increase of at least one point on
the expanded disability status scale (EDSS). From 52 patients, 33 were classified
as good and 19 as bad responders, see [2].

We use a SGTM-TT with 9 hidden states and 4 basis functions. A 4 fold cross-
validation with 5 repetitions is used. We compare the results with the general
HMM classifier (HMM-Lin) and the discriminative HMM classifier (HHM-Disc-
Lin) proposed in [12]. We also included the results of [2] who originally proposed
the MS study, the analysis of [1], employing a Kalman Filter combined with
an SVM approach and [6] proposing a semi-supervised analysis coupled with a
wrapper and cut-off technique to identify discriminating features.

In Table 1 we summarize the prediction results for the MS data set in com-
parison to the results given in [2]. As expected, results improve by integration of
relevance learning compared to the full feature set. Overall the SGTM-TT with
relevance learning achieves results of 93.43% accuracy which is comparable to
the best reported model but relies on a smaller number of necessary features.
Further the integrated relevance learning avoids multiple time consuming runs
within a wrapper approach like for the techniques used in [12,6]. The obtained
relevance profile is depicted in Figure 1 and provides direct access to an inter-
pretation of the relevant features, or marker-candidates, pruning irrelevant or
noisy dimensions. The five most significant genes found by relevance learning
cover three genes found by [2] and four genes found by [12,6].
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Fig. 2. Time points relevance profile for the ms data (top) and the insect data set
(bottom). For the insect profile one can clearly identify a peak in the first third of the
experiment, which is when insects climbed the first of two steps. The MS data indicate
the most relevant time points are at t = 2, t = 7 with a relevance of ≈ 0.75 and ≈ 0.87
this may support a prognosis for the therapy outcome already at the second time point.

Analyzing the relevance of time points (Fig. 2) for the MS data, we observe
a peak at time point two, indicating that a partial prognosis of the therapy
outcome is possible already at an early stage of the therapy.

Insect locomotion data: We investigated motion-captured whole-body kine-
matics of insect locomotion, using data from stick insects (Carausius morosus).
69 sequences where recorded in two walking conditions: a straight walk (class 1,
36% of the data), and a climbing task (class 2, 64% of the data, climbing consists
of two consecutive steps of 48 mm height each). Every time step is characterized
by 36 joint angles expressed in local coordinate systems of 18 leg- and 3 thorax-
segments. Sequences were down-sampled from 200 Hz to 20 Hz and normalized
to a standard length of 800 time steps per sequence.

An analysis of the insects data with SGTM-TT with relevance learning, 9
latent points and 4 basis functions results in a prediction accuracy of 91% percent
in a 4-fold cross-validation. Relevance learning enables a 3% increase of the
accuracy as compared to simple SGT-TT with 88% accuracy. The most relevant
features are shown in Figure 3.

It is clearly visible that the pitch angle of the first thorax segment T1 − y
and the levation angles of the left legs are emphasized (cox − y and fem − y
act synergistically). These angles display a much stronger variance when consid-
ering the climbing condition (class 2). The relevance profile of time points (see

Method Number of genes Test accuracy (%)

SGTM-TT 70 85.66 ± 8.3
SGTM-TT-R 7 93.43 ± 5.8
IBIS 3 74.20
Kalman-SVM - 87.80
Lin-Best 7 85.00
Costa-Best 17 92.70 ± 6.1

Table 1. Prediction accuracies (test data) for different models using the MS data.
Improved prediction accuracy employing relevance learning is observed.
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Fig. 3. Relevance profile of the joint angle features of the insect data.

Fig. 2) indicates that the most relevant time-range occurs in the first third of
the dynamics, corresponding to the first ascension.

5 Conclusion

We have presented a novel approach for the analysis of short temporal sequences.
It is based on the idea to introduce supervision and relevance learning into
Generalized Topographic Mapping through time. Our results show that we are
able to achieve improved or similar performance to alternative methods in the
literature for a typical biomedical data set. In addition, the prototype concept
of the underlying method permits a direct inspection of the model and extended
visualization performance. We also obtain a direct ranking of the individual
features employing the relevance profile as well as a ranking of the relevance of
time points. This information opens the way towards a more detailed analysis
of relevant parts of the data set and the resulting model.
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