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Abstract. Proximity matrices like kernels or dissimilarity matrices provide non-
standard data representations common in the life science domain. Here we extend
fast soft competitive learning to a discriminative and vector labeled learning al-
gorithm for proximity data. It provides a more stable and consistent integration
of label information in the cost function solely based on a give proximity matrix
without the need of an explicite vector space. The algorithm has linear computa-
tional and memory requirements and performs favorable to traditional techniques.

1 Introduction

The amount of digital data doubles roughly every 20 months often given by non-
vectorial data formats such as XML, graph structures, sequence data or others. Such
data is getting more and more frequent, leading to large proximity data sets. Classical
cluster methods, like k-means process Euclidean data only. Also kernel approaches like
kernel-k-means or kernel soft competitive learning (KSCL) [1] are often limited, due to
the lack of a valid kernel. More recently indefinite kernel techniques were proposed [2]
but often with high complexity or by optimizing an aligned kernel matrix.

A further efficient alternative is given by dissimilarity learners like the relational soft
competitive learning [3] (R-SCL), a clustering algorithm for arbitrary dissimilarity data.
R-SCL is an extension of soft-competitive learning (SCL) [4]. It replaces the Euclidean
distance function of a data point v to a cluster representant or prototype w by an implicit
representation which refers to the dissimilarity matrix D € RV>*¥ only with N as the
number of samples and d;; = |v; — v;|? denotes the underlying dissimilarities induced
by an arbitrary symmetric bilinear form. While standard R-SCL has squared complexity
a linear cost algorithm can be obtained by using the Nystrom approximation [5].

In [6] the author has shown that arbitrary proximity matrices can be used by the R-
SCL algorithm by integrating simple transformation rules in the original formulation.
The obtained fast soft competitive learning algorithm (FSCL) is an effective approach
to analyze large proximity datasets for unsupervised problems. Often the given data
may also contain partial or full label information and especially in the life science do-
main those labels may be probabilistic in contrast to crisp labels. Considering such data
sets, standard supervised or even semi-supervised learning algorithm are not applica-
ble in general. To apply a standard support vector classifier (SVM) we would need to
defuzzify the labels making them crisp which in general can degenerate accuracy.

Here we extend batch FSCL to take this label information into account, leading to a
new formulation of FSCL called supervised FSCL (S-FSCL) which is a discriminative



clustering approach. In contrast to the former approaches also partial labeling is permit-
ted and even more important the labels need not to be crisp such that probabilistic or
fuzzy labeled data can be analyzed.

In section 2 we briefly review related work on proximity learning focusing on
discriminative clustering approaches. We present the supervised fast soft competitive
learning in section 3 and summarize the results of our empirical studies in section 4.

2 Related work

Clustering analysis has found a wide range of application [7] and with the advent of
large proximity data sets also proximity clustering has been studied by different au-
thors, e.g. in the line of large scale kernel clustering [8] and relational or dissimilarity
clustering [3]. The availability of label information may help to improve current cluster
approaches by guiding the optimization process. This is also interesting if data are only
partially labeled or fuzzy labeled and fully supervised approaches are inaccessible or
semi-supervised techniques are limited e.g. to two class scenarios [9].

In the last years different clustering approaches were proposed using partial label
information, some of them also supported fuzzy-labeled data. In [10] an online SCL
clustering approach was coupled with an additive label error term in the cost function
to allow for fuzzy-labeled data [11], but this approach is sensitive to the balancing
parameter in the cost function. In [12] this online approach was changed to a product
based label-error leading to a more stable behavior. Both former approaches were found
to be efficient but do not scale well to larger problems and consider vectorial datasets
only. A batch SCL clustering method using the additive label error was proposed in [13]
motivating also a relevance learning strategy for vectorial data, but also this approach
is sensitive to the parameters. More recently also an online supervised Learning Vector
Quantizer for multivariate class labels! was proposed in [14] which was found to be
very efficient and which we will use as our baseline method. Other recent methods to
incorporate label information for kernel clustering were proposed e.g. in [15] and for
vectorial data in [16]. All these approaches focus either on vectorial data or do not scale
to larger problems. Although some of the methods are online, and theoretically of linear
complexity, the repetitive calculation of distances for high dimensional data and the
used gradient descent learning makes them slow in practice whereas batch methods are
known for quick convergence. Our proposal is a batch approach for fuzzy labeled data
which is efficient for larger scale proximity matrices. Hence it keeps a lot of flexibility
regarding the data encoding, e.g. by a dedicated kernel or distance function.

To address large scale problem in proximity clustering a multitude of contributions
have been made in the last years e.g. by means of core set clustering [17], the Nystrom
approximation [8, 6] or patch learning approaches [18]. We will use a Nystrom strategy
as given in [6]. Subsequently, we will briefly introduce soft competitive learning as the
basic method for multiple related approaches [13, 10-12, 6] mentioned above followed
by the derivation of a (semi-)supervised extension of FSCL.

! Not to mix-up with multi labels, where an object can fully belong to multiple classes



2.1 Soft Competitive Learning

In contrast to regular k-means, soft competitive learning (SCL) [4] extends the
quantization error to incorporate data induced neighborhood cooperation: Egcr, =
>ij ho(rij)d(vi, w;) where ho(t) = exp(—t/o) exponentially scales the neighbor-
hood range, and r;; denotes the rank of prototype w; with respect to v;, i.e. the number
of prototypes wy, with & # j which are closer to v; as measured by the Euclidean
distance d. SCL optimizes the prior cost function Escr, by means of a stochastic gra-
dient descent, annealing the neighborhood range ¢ during training such that, in the
limit, the standard quantization error is approximated [4]. The iterative adaptation rule
is w; := wj + 1 - ho(ri;)(vi — w;) where 77 denotes the learning rate. There exists
a faster (euclidean) batch optimization scheme as introduced in [19] which optimizes
prototype locations and assignments as:

Wy = Zha(ﬁj)vi/zha(ﬁj) )

with r;; based on d(v;, w;). The online kernelized SCL was proposed in [1], replacing
the original distance calculation by a kernel expansion and a batch version was implic-
itly proposed in the FSCL [6].

2.2 Relational Soft Competitive Learning

Relational soft competitive learning (R-SCL) as introduced in [3] assumes that a sym-
metric dissimilarity matrix D with entries d;; describing pairwise dissimilarities of data
is available. In principle, it is very similar to KSCL. There are two differences: R-SCL
is based on dissimilarities rather than similarities, and it solves the resulting cost func-
tion using a batch optimization with quadratic convergence as compared to a stochastic
gradient descent.

As shown in [20], there always exists a so-called pseudo-Euclidean embedding of
a given set of points characterized by pairwise symmetric dissimilarities by means
of a mapping @, i.e. a real vector space and a symmetric bilinear form (with proba-
bly negative eigenvalues) such that the dissimilarities are obtained by means of this
bilinear form. As before, prototypes are restricted to convex combinations w; =
> 0i®@(vy) with >, oy = 1 Dissimilarities are computed as:

1
d(@(vi)7wj) = [Dtaj]i — 5 . Ol;.Dij (2)

where [-]; refers to component 4 of the vector. This allows a direct transfer of batch SCL
to general dissimilarities by the following iterations derived from (1)

aji = he(rjn)/ > ho(rs) 3)
l

with r;; based on d(®(v;), w;). This algorithm is soft competitive learning in pseudo
Euclidean space for every symmetric dissimilarity matrix D. If negative eigenvalues are
present convergence is not always guaranteed, but observed in general[3].



3 Supervised fast soft competitive learning

Let Y be the label matrix of the training points with entries y; € R and C the number
of classes. For each y; we expect entries y;. € [0,1] and chzl Yic = 1. Further we
introduce a vector label 1; for each prototype w; following the same constraints.

To integrate supervised information in the FSCL approach we extend the original
distance calculation? by a multiplicative error term similar as suggested for online, vec-
torial SCL in [12].

Former approaches using an additive or multiplicative label error were found to be
sensitive to the used weighting or offset parameter to rescale the different error contri-
butions. This problem is addressed subsequently by application of the softmax function
on the individual distance errors and the label error of each data point such that both
error functions provide values in a range [0, 1]. In this way we avoid additional control
parameters and obtain a stable learning behavior .

Accordingly the original distance function Eq. (2) is adapted to:

d(P(vi),yi), (W), 1)) = 1= (f(d(P(vi), w;)) - f(d*(yi,1;))) 4)
(s)

with f being a softmax function and d* the squared Euclidean distance. If only partial
label information is given we can just ignore the label part in Eq 4. The initial label 1;
of the prototypes are determined by post labeling and are updated as:

II=a; Y 5)
being the mean label of all data points weighted by the contribution of each point to
this prototype. It should be noted that the distance in Eq. (4) is always non-negative and
symmetric but may be non-metric as easily shown by counter examples, this however is
not a severe problem for the underlying R-SCL as discussed in [3]. For test data points
the distance calculation remains unchanged following the winner takes all scheme. The
formulation given in Eq. (4) can be interpreted as the probability that a data point was
generated by a Gaussian distribution centered on the prototype under the condition of
similar labeling of the data point and the prototype. The obtained similarity (s) is sub-
sequently mapped back into a dissimilarity by 1 — (s) to keep the distance interpretation
of the remaining optimization function.

To address the problem of large input proximity matrices we use the Nystrom ap-
proximation [21,22]. The practical idea is to select m landmark indices and the corre-
sponding rows and columns from the matrix .S to obtain the landmark matrix S, ,,. The
original gram matrix S can then be approximated as S = SN,mS;l}mSm, ~ which is
of complexity O(m?N) instead of O(N?), i.e. it is linear if the approximation quality
m is fixed. In [22] it was shown that the same strategy can also be applied to sym-
metric dissimilarity matrices. For R-SCL, this yields the approximation of the distance

% Either based on a kernel expansion or on a dissimilarity expansion, as shown e.g in Eq. (2)

3 The softmax parameter o is fixed to ¢ = 1 and is insensitive with respect to the data, assuming
that the data representation is reasonable expressive. It can be subsumed by the given distance
if we assume o to be equal for each prototype.



computation (2)
1
d(vi, w;)? = [Dnm(Dy (D, na))i — 3 (@D m) - (D) (D v as))

which is O(m?3N). Again, the approximation is exact if the number of samples m is
chosen according to the rank of D. For similarity data we transform the similarity matrix
S to a dissimilarity matrix D using Equations from [20].

d(vi,vj)2 = s(vi, vi) + s(vj, vj) — 2s(vy, vj) 6)

which can be coupled with the Nystrom approximation, avoiding the full calculation of
the matrix S [22]. S-FSCL is a wrapper around a modified R-SCL using the distance
function Eq. (4) followed by a subsequent update of the prototype labels using Eq.
(5) details on the implementation of the original R-SCL are given in [3]. The runtime-
complexity of S-FSCL is dominated by the distance calculations with O(m?3N). R-SCL
and hence S-FSCL shows fast convergence (see [3]) due to the batch approach. The
memory complexity is dominated by the m x N dis-/similarity matrix and is O(mN).

4 Experiments

We compare the efficiency of supervised fast SCL (S-FSCL) with its unsupervised fast
SCL (FSCL) and the online Robust Soft-LVQ for multivariate (MRSLVQ) labels as
proposed in [14], for very large data sets we use the core vector machine (CVM) [23].
Initially we show the usefulness of the introduced supervision concept and the effective-
ness of the batch approach by use of the classical checkerboard data set. The data form
a b x 5 checkerboard with each cluster consisting of 200 Gaussian distributed points, so
we have N = 5000 points. To represent the data we use an rbf kernel which is approxi-
mated in the FSCL method by a Nystrém approximation with N /10 landmarks. We use
2 prototypes which is theoretically sufficient to represent the checkerboard data in a su-
pervised learning task. We apply the supervised FSCL and the unsupervised FSCL and
obtain prototype assignments as shown in Figure 1. For both methods the prototypes are
finally located in the center of the data. The supervised FSCL achieves an accuracy of

Fig. 1: Checkerboard data (left) supervised FSCL, (right) unsupervised FSCL. The predicted la-
bel is given by color (gray shade) and the true label by the shape of the objects.

95.12%, whereas the unsupervised FSCL got 52.96%. For this test data the supervised



|[FSCL |S-FSCL [MRSLVQ
Checkerboard (rbf) 44.14 £ 3.51/0.52 £3.77 |0.40 £0.05
Plant-Tissue (rbf) 42.76 £1.19(32.23 £1.00|37.62 + 2.13
Remote-Sensing (euclidean)|40.86 + 0.94|39.95 +1.09|44.27 £+ 1.61

Table 1: Results of the fuzzy labeled data with mean and standard deviation of the test error.

information is clearly needed to achieve a good classification result since the data dis-
tribution is not sufficient to estimate the prototype labels. To get a fair comparison the
only difference between the supervised and unsupervised FSCL is the distance function
as discussed before with respect to Eq. (4).

In the further experiments we used fuzzy labeled data sets, all represented by means
of dissimilarity matrices using either the Euclidean distance or an underlying rbf kernel
so all data are metric but as already shown in [6] more generic data formats can be used.
All data matrices have been approximated with a constant number of 100 randomly
chosen landmarks. (1) Plant tissue data: The data are 4418 points of 22 dimensional
image features in 11 classes of a serial transverse section of barley grains taken from
[24]. The different tissue regions are hard to discriminate such that for a substantial part
of this datasets items are labeled by fuzzy labels. (2) Remote sensing data: is a multi-
spectral LANDSAT TM satellite image of the Colorado area taken from [25] with 6
different spectral bands. There are 14 labels describing different vegetation types and
geological formations. The size of the original image is 1907 x 1784 pixels*. Fuzzy
labels were obtained by a downsampling of this data set to 12650 points where the
original image was cut to 1840 x 1760 pixel. The fuzzy labels were derived from the
histograms of the averaged pixel areas.

For comparison to other alternative methods we also analyze different medium scale
standard datasets using either a linear kernel or a defacto parameter-free extreme learn-
ing machine (elm) kernel [26] compared with a core vector machine classifier [23]. The
MNIST data 3 contains 70000, 719-dimensional binary images from 10 digit classes.
We used a neural kernel k(vi, vj) = tanh(av,” v; + b) with a = 0.0045 and b = 0.11
acc. to [8]. The USPS ¢ contains 11000, 256-dimensional character feature vectors from
10 classes analyzed by a parameter free elm kernel. The SPAM database 7, contains
4601, 57-dimensional feature vectors, processed by a linear kernel. All matrices have
been Nystrom approximated and converted to a distance matrix at linear costs[22].

The model complexity for (supervised) FSCL and MRSLVQ has to be determined
in advance, although one prototype per class if often sufficient it is beneficial to spend
some extra prototypes to address potential sub-populations. Unused prototypes are re-
moved either during learning (FSCL) or in the final model (MRSLVQ). For the Plant-
Tissue data we use 2 prototypes per class, for the Checkerboard data 1 per class and
for the remaining data sets we used 10 prototypes per class. All data are analyzed in a
5-fold crossvalidation. The results are shown in Table 1 and Table 2. For Table 1 we
observe that the additional supervised information is in general helpful to improve the

* Thereby 9 pixel have an unknown label and have been removed.
> http://yann.lecun.com/exdb/mnist/

® http://www.cs.nyu.edu/ roweis/data.html

7 http://archive.ics.uci.edu/ml/datasets



[FSCL S-FSCL CVM
MNIS T|20.83 £+ 1.05[22.16 & 7.61 |40.04 £ 3.54
USPS  |15.62+1.01 |14.33 £ 1.10(18.77 +1.01
SPAM |17.26 +1.79 |12.06 + 1.20|27.67 + 1.08

Table 2: Test set error (mean/std) of medium to large scale standard data set.

model with respect to the classification task®. The proposed approach is in parts better
or competitive to the MRSLVQ but substantially faster under practical settings due to
the batch strategy, avoiding repetitive calculations of distance or gradients as needed
in MRSLVQ. The general runtime for S-FSCL for a single model is in the range of
seconds whereas the MRSLVQ is most often slower by two magnitudes. In Table 2 we
observe again that the supervision is in general helpful although often the effect is not so
substantial. The results in Table 2 are again quite good compared to a CVM result. Due
to the pre-calculation of the approximated kernel the actual model calculation can be
done within seconds to minutes. Note that e.g. for the SPAM database fuzzy labels are
not given but likely to observe in practical applications because multiple users will con-
sider almost identical emails as spam or non-spam. Hence, the S-FSCL model would
be more appropriate in these cases than the crisp CVM approach.

5 Conclusions

Here we proposed a supervised version of the batch FSCL algorithm. The algorithm
permits the usage of fuzzy labeled input data by means of a dissimilarity matrix rep-
resentation. The given dissimilarity data can be of large scale due to the underlying
Nystrom approximation such that data with multiple 1000 points can be handled easily.
The obtained supervised clustering approach provides probabilistic class assignments
and was found to be quite robust and achieved better or competitive results to alternative
approaches. Using the suggested transformation and Eq. (6) also kernel representation
are available. In this way S-FSCL can be used for a wide range of problem settings.
Considering the very limited and restricted amount of classifiers for fuzzy labeled data
the FSCL is an effective solver for medium to large scale problems in this line. In fu-
ture work we will focus on further improvements for very large scale problems using
e.g. random approximation strategies as suggested in [27] and analyze the efficiency for
practical problems with unsafe label information in the life sciences. Acknowledgment:
Marie Curie Intra-European Fellowship (IEF): FP7-PEOPLE-2012-1EF (FP7-327791-ProMoS)
is greatly acknowledged.
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