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ABSTRACT

In this paper we develop a Tanimoto metric variant of the
Evolving Tree for the analysis of mass spectrometric data
of animal fur. The Evolving Tree is an extension of Self-
Organizing Maps developed to analyze hierarchical cluster-
ing problems. Together with the Tanimoto similarity mea-
sure, which is intended to work with taxonomic structured
data, the Evolving Tree is well suited for the identification
of animal hair based on mass spectrometry fingerprints. Re-
sults show a suitable hierarchical clustering of the test data
and also a good retrieval capability with a logarithmic num-
ber of comparisons.

1. INTRODUCTION

The identification of animal fur is important for verifica-
tion of authenticity of fur or for finding illegal imports or
detection of imitated fur, as recently shown in [1, 2]. The
classification of fur by visual inspection is not obvious in
some cases, e. g. for assembled products. The utiliza-
tion of mass spectrometry (MS) provides a fast and repro-
ducible way to receive a MS fingerprint of digested animal
hair. Spectra with closely related species should have simi-
lar spectra, whereas further related species should have less
similar spectra, which is well known, supported by keratin
analysis as shown in [1]. Figure 1 demonstrates the work-
flow from animal fur to MS measure.

The standard Euclidean metric does not provide this in
case of very high-dimensional data, because the data basis is
too sparsely populated [3]. Tanimoto developed a measure
that retains the taxonomic information [4]. For use in our
prototype based methods we need the continuous variant of
the Tanimoto metric [5].
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Fig. 1. Standardized workflow of MS based fur analysis

The ideal model for representing taxonomic data is hi-
erarchical. We combine the Evolving Tree (ET) [6], which
is a tree-shaped Self-Organizing Map (SOM) [7] with the
Tanimoto metric to comply with the requirements referring
to taxonomy representation. The Tanimoto coefficient win-
ner determination has been applied to SOMs before in [8],
but the update rule adaption by means of Tanimoto gradient
descent is new. In [5] the Tanimoto metric has been used
with Learning Vector Quantization and its variants.

This contribution provides new aspects for the analysis
and representation of animal fur by mass spectrometry tech-
nology using a Tanimoto variant of the Evolving Tree.

1.1. Evolving Tree

The adequate model in taxonomic questions is tree struc-
tured. The Evolving Tree [6] is a tree structured growing
variant of the Self-Organizing Map [7]. The SOM is a pro-
jection of high-dimensional vectorial data v € R"™ to a pre-
defined m-dimensional grid S with m << n. Each node 4



has an assigned weight vector w; € R™, which is called pro-
totype. The prototype w,- with the smallest distance to a pre-
sented vector v is the best matching unit (BMU), see equa-
tion (1). The distance measure usually used is Euclidean
metric.
w, = argmin |v — wj| (1)
€S

The set of data points mapped onto the same BMU is the re-
ceptive field of this prototype. The ET has a tree structured
neighborhood and appends new nodes if a certain condi-
tion is satisfied. Suppose we consider an ET 7 with nodes
r € Ry (set of nodes) and root ry which has the depth level
lr, = 0. A node r with depth level [, = k is connected to
its successors 7’ with level [, = k + 1 by directed edges
€r— with length is unit. The set of all direct successors of
the node r is denoted by S,.. If S, = @ is valid, the node
r is called a leaf. The degree of a node r is 6, = #5,.,
here assumed to be constant 4 for all nodes except the leafs.
A sub-tree 7, with node r as root is the set of all nodes
r’ € Ry, such that there exists a directed cycle-free path
Prr! = Ep—m O . 0 Eyryr Withm,...,m’ € Rz and
o as the concatenation operation. L, _ , is the length of
path p,_,,s, i.e. the number of concatenations plus 1. The
distance dr (r,r") between nodes r, r’ is defined as

dr (r,r') = Ly, + Lp,_, 2

Pi—r

with paths p;_,, and p;_,,~ in the sub-tree 7; and R, con-
tains both r and r’ and the depth level /; is maximum for
all sub-trees 77 which contain r and /. A connecting path
between a node r and a node 7’ is defined as follows: let
Pi—p and ps_.,. be direct paths such that L, , - Ly,
is dr (r,r"). Then p,_,, is the reverse path p, s « pr—,
and the node set of P is denoted by N,  ,. As for usual
SOM:s, each node r is equipped with a prototype w, € R,
provided that the data to be processed are given by v €V C
RP. Further, we assume a differentiable similarity measure
dy : RP xRP — R. The winner detection is different from
usual SOM but remains the concept of winner-take-all. For
a given subtree 7, with root r the local winner is

s7. (v) = argmin (dy (v, w,.)) 3)
reS,
If s7. (v) is a leaf then it is also the overall winner node
s (v). Otherwise, the procedure is repeated recursively for
the sub-tree 7, . The receptive field 2, of a leaf r (or its
prototype) is defined as

Q. ={veV|s(v)=r} 4)

and the receptive field of root r’ of a sub-tree 7, is defined
as
Qr’ = UT”ERTT, Qr” (5)

The adaptation of the prototypes w,. takes place only for
those prototypes, where the nodes r of are leafs. The other

nodes remain fixed. This learning for a randomly selected
data point v €V is neighborhood-cooperatively as in usual
SOM:

AWT = Ehsojy[ (’I“7 S (V)) (V — W,-) (6)

with s (v) being the overall winner and € > 0 a small learn-
ing rate. The neighborhood function hgoas (r, r') is defined
as a function depending on the tree distance d; usually of
Gaussian shape

— (dr (r,7"))* )
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hson (r,r') = exp( @)
with neighborhood range o.

Unlike for the SOM we cannot guarantee that s(v) is
the true best matching unit (BMU), because the tree model
is subject of a stochastic optimization process.

The whole ET learning is a repeated sequence of adap-
tation phases according to the above mentioned prototype
adaptation and tree growing beginning with a minimum tree
of root g and its & successors as leafs. The decision, which
leafs become roots of sub-trees at a certain time can be spec-
ified by the user. Subsequently for each node r a counter b,
is defined. This counter is increased if the corresponding
node becomes a winner and the node is branched if a given
threshold 6 € N, 6 > 0 is reached.

Possible criteria might be the variance of the receptive
fields of the prototypes or the number of winner hits during
the competition. The prototypes of the new leafs should be
initialized in a local neighborhood of the root prototype ac-
cording to dy . Hence, the ET also can be taken as a special
growing variant of SOM as it is known for example from
[9].

Since ETs are extended variants of usual SOM one can
try to transfer evaluation methods known from SOMs to
ETs. Unknown samples can be identified using the ET in
the following way. The ET is fully labeled by assignment
of a label to each node by an analysis of the receptive fields
of the corresponding sub-trees. The root node remains un-
labeled. For each receptive field a common label is deter-
mined by a majority voting of the contained samples and
their labels. An unknown, new item is preprocessed as de-
scribed later on. For this item the BMU in the tree is deter-
mined in accordance to Equation (3) and s(v) is calculated.
The label of the receptive field of s(v) defines the label of
the item.

1.2. Evolving Tree with Tanimoto metric

The standard Euclidean metric for BMU search (3) in the
Evolving Tree is now replaced with the Tanimoto metric in
the continuous case (8) [5].

(v, w)

®)

dy, (v, w) = (v,v) + {(w,w) — (v, w)
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Fig. 2. Plots of Tanimoto distance through time with differ-
ent update functions

The original tanimoto coefficient was defined for v,w €
{0, l}D. The continuous case is hence restricted to v, w €
[0, 1]D. The weight update function (6) is replaced by the
gradient (11) with

¢C=(v,v)+ (w,w) — (v,w) 9)
and
¢
= 10
0 W) (10)
L1+ 0)v—2w) (11
Co ¢ '

This leads to the new weight update (12).

t
Aw = ehaacf;/ (v,w) (12)

The gradient descent of the weights points in some case out
of the hypercube [0, 1]D, then it is appropriate to clip the
vector back to the hypercube. Figure 2 shows examples of
three update functions and the effect on the tanimoto dis-
tance. We recognize an explicit difference between the up-
date functions in speed and dynamic of the process. The
data used for this experiment were vectors a, b € {0, 1}1000
and a randomized distribution of 0/1.

2. APPLICATION ON MASS SPECTRA OF
SOLUTED ANIMAL HAIR

The introduced Tanimoto TreeSOM is now applied on mass
spectra of animal hair in solution. The spectra are prepro-
cessed to aligned line spectra as shown in [10]. The prepro-
cessing procedure includes smoothing, baseline reduction,
peak picking and the alignment on a global mass axis. The
measurements are cross-validated regarding to the respec-
tive higher taxonomic level to provide a meaningful evalua-
tion.

Parameter Value
Threshold 4848
Branching 3
Iterations 331851
Neighborhood width 2.0
Learning rate 0.1

Table 1. Parameter configuration for Tanimoto TreeSOM
experiments

2.1. Data

The data used in the experiments are MS-spectra from 46
different animals, 27 canoidae and 19 feloidea. We have
about 35 spectra from every animal and a total of 1651 mea-
surements. The dimensionality of the dataset is 1974. The
intensities of the peaks are recalculated according to equa-

tion (13).
_ 1 v4>0
Ya = { 0 else (3)

Most of the data points within a specific species are mul-
tiple measurements from the same individual. Hence they
become either completely included or completely excluded
in the tests.

2.2. Experiments

The settings for the tests are shown in Table 1. They are
calculated according to equations motivated by [10]. Two
species were excluded from the experiment, because they
are unique, a crossvalidation experiment would be useless
here. Figure 3 shows a typical tree with Tanimoto distance
for the given animal hair MS data. The discrimination of
higher taxonomic differences becomes clearly visible. A
false assignment occurs at node number 113 with ursidae.
In the first level one can observe a good discrimination of
dog-like, cat-like and other animals (bears, martens, seals).
The tree in Figure 4 is a visualization of a standard Evolving
Tree with the same data and parameter settings like the one
in Figure 3, but with Euclidean metric. Obviously the tax-
onomic representation is worse than the on from Tanimoto
TreeSOM.

Table 2 shows the result of the crossvalidation experi-
ment. We excluded one complete species per tree build and
made a retrieval search with all measures of the excluded
species and counted the correct and incorrect assignments.
In the Table 2 the first column shows the family of the ex-
cluded animal and the second column its taxonomic place-
ment (here: the genus). The two last columns provide the
ratio how often the correct taxonomic placement was found.
In each case the Tanimoto measure performs better than the
Euclidean one. For the genus of Procynoidae the euclidean
model is unable to generalize. This is reflected by the very
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Fig. 3. Tanimoto TreeSOM visualization of the different animals with labeled leafs

Family Genus Samples (Tan)  (Euc)
Canoidae | Canini 244 67.7% 52.2%
Canoidae | Vulpini 292 T71.1% 65.3%
Canoidae | Mustelidae 180 95.0% 85.6%
Canoidae | Phocidae 72 100.0% 50.0%
Canoidae | Procyonidae 72 45.9% 1.4%
Canoidae | Ursidae 100 66.7% 43.3%
Feloidea | Felidae 552 100.0% 65.5%

Table 2. Result of the crossvalidation of the second-lowest
taxonomic order. The first and third column show the la-
bel and number of the measurements, the second column
the respective taxonomic classification. The fourth and fifth
column shows the percentage of correct classification for
tanimoto and euclidean updates, respectively.

low accuracy. The overall result using the Tanimoto mea-
sure is 84.8% in contrast to only 60.5% using the euclidean
Tree-SOM. 100% correct classification rate is found for Fe-
lidae (different cat-likes) and Phocidae (different seals) us-
ing the Tanimoto distance. The classification result in third-
lowest taxonomic level (Canoidae and Feloidae) is always
100%. A classification in the highest taxonomic order, i.e.
the species or even subspecies level might be possible, but
the data basis is not wide enough to make valid experiments.

3. CONCLUSIONS

A method for an unsupervised analysis of animal hair data
from MS has been presented. We compared two different
distance measures. It could be shown, that for the family

level both measures perform very well, but for the genus
level the Tanimoto measure outperforms the euclidean dis-
tance. The approach is capable to reflect the underlying hi-
erarchical structure in the of data and allows a retrieval of
new data, providing a taxonomic placement, even if no mea-
surement of the particular animal species is in the database
an assignment to the most similar taxonomic branch be-
comes possible!.
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Fig. 4. Euclidean Evolving Tree visualization of the different animals with labeled leafs
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