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Abstract. In this paper we present a comparison of multiple cluster
algorithms and their suitability for clustering text data. The clustering
is based on similarities only, employing the Kolmogorov complexity as a
similiarity measure. This motivates the set of considered clustering algo-
rithms which take into account the similarity between objects exclusively.
Compared cluster algorithms are Median kMeans, Median Neural Gas,
Relational Neural Gas, Spectral Clustering and Affinity Propagation.
keywords: cluster algorithm, similarity data, neural gas, spectral clus-
tering, message passing, kMeans, Kolmogorov complexity

1 Introduction

In the last years a variety of vector based clustering methods like self-organizing
maps [?], neural gas (NG) [?] and affinity propagation (AP) [?] have been de-
veloped for a wide range of areas, e.g. bioinformatics, business, and robotics.
Recent developments focus on algorithms which are purely based on the anal-
ysis of similarities between data. Beside AP respective algorithms are Median
k-Means, Median and Relational NG [?,?] or spectral clustering [?] for example.
These approaches have in common that they relax the condition that the objects
of interest have to be embedded in a metric space. Instead, the only informa-
tion used in these algorithms are the pairwise similarities. This ability provides
greater flexibility of the algorithm if an embedding of data is impossible but a
similarity description is available, for instance by external expert rating.

In this paper we compare the above mentioned algorithms in two experi-
mental settings of text clustering. We consider two types of text sources: the
first data are taken from the Multilingual Thesaurus of the European Union
Eurovoc1. This database consists of laws and regulations in different categories
whereas each text is available in multiple languages. It can be expected that the
data should be clustered according to language specific features on the one hand
side. On the other hand, contents specific features should also provide structural
information for clustering. The second data set is a series of psychotherapy ses-
sion transcripts of a complete psychodynamic psychotherapy with a respective
clinical assessment of the session [?]. Here, it is known that narrative constructs
provide information about the therapy state and, hence, should also be appear-
ing in cluster structures. Both data sets are clustered by means of the priorly
1 Obtained from: http://europa.eu/eurovoc/sg/sga doc/eurovoc dif !SERVEUR/
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given methods. The results are compared in terms of cluster agreement and the
relation to the external description. As a measure for the cluster agreement we
employ the Cohens-Kappa and variants.

The paper is organized as follows: first the encoding of the data is explained.
After a short overview of the algorithms, the data sets are briefly described and
finally the experimental results are presented and discussed.

2 Theoretical Background

Appropriate embedding of text data into metric spaces is a difficult task [?]. An
approach is the analysis of textural data based on their Kolmogorov-Complexity
[?]. It is based on the minimal description length (MDL) Zx of a single document
x and pairwise combined documents Zx,y. The respective normalized information
distance is given by:

NIDx,y =
Zxy −min(Zx, Zy)

max(Zx, Zy)
(1)

The normalized information distance is a similarity measure (distance metric)
[?]. In particular, it is positive definite, i.e. NIDx,y ≥ 0 with NIDx,x = 0, and
symmetric NIDx,y = NIDy,x. Usually, the MDL is estimated by the compres-
sion length z according to a given standard compression scheme or algorithm.
Then the NID is denoted as normalized compression distance (NCD) [?]. Due
to technical reasons NCDx,y is non-vanishing in general but takes very small
values [?]. Further, it violates usually the symmetry property in the sense that
NCDx,y −NCDy,x = δ with 0 < δ � 1. Therefore, the symmetrized variant is
frequently applied NCDs

x,y = (NCDx,y+NCDy,x)
2 .

To estimate NCD, we used the Lempel-Ziv-Markow-Algorithm (LZMA) pro-
vided by the 7-Zip file archiver for the compression of the text data. zx and zy are
the lengths of the compressed data sets Tx and Ty respectively. To obtain zxy the
two texts Tx and Ty are first concatenated to Txy and subsequently compressed.
In this way for all data pairs (xi, xj) the similarity (distance) dij = NCDxi,xj

is calculated in both data sets (separately).

3 Algorithms

The role of clustering is to decompose a given data set X = {x1, . . . , xn} into
clusters C1, . . . , Ck ⊂ X such that the clusters are as homogeneous as possible.
For crisp clustering as considered in the following, the sets Ci are mutually
disjoint, and they cover the set X. We assume that data are characterized by
pairwise dissimilarities dij specifying the dissimilarity of the data points xi and
xj . For euclidean data, dij could be given by the squared euclidean metric,
however, in general, every symmetric square matrix is appropriate. However,
we assume here that only the distances are known but not the data objects
itself. This restricts the set of applicable cluster algorithms. Following, we briefly
describe recently developed approaches as well as classical ones which will later
be compared.



3.1 Median k-Means

Median k-means (MKM) is a variant of classic k-means for discrete settings. The
cost function for MKM is given by

E =
n∑

i=1

p∑
j=1

XI(xj)(i) · d
(
xj , wi

)
(2)

where n is the cardinality of the set W =
{
wk

}
of the prototypes and p the

number of data points. XI(xj)(i) is the characteristic function of the winner
index I(xj), which refers to the index of the prototype with minimum distance
to xj (winner).

E is optimized by iteration through the following two adaptation steps until
convergence is reached.

1. determine the winner I(xj) for each data point xj

2. Since for proximity data only the distance matrix is available the new pro-
totype i has to be chosen from the set X of data points with wi = xl where

l = argmin
l′

p∑
j=1

XI(xj)(l) · d(xj , xl′) (3)

3.2 Median Neural Gas

A generalization of MKM incorporating neighborhood cooperativeness for faster
convergence and better stability and performance is the Median Neural Gas
(MNG). The respective cost function is

EMNG =
n∑

i=1

p∑
j=1

hλ(ki(xj ,W )) · d(xj , wi) (4)

with hλ(ki(xj ,W )) being the Gaussian shaped neighborhood function hλ(t) =
exp(−t/λ) ( λ < 0) and

ki(xj ,W ) = #
{
wl|d(xj , wl) < d(xj , wi)

}
(5)

the winning rank. Then EMNG can be optimized by iterating the following pro-
cedure:

1. kij = ki(xj ,W )

2. and assuming fixed kij the prototype i is chosen as the data point with
wi = xl where

l = argmin
l′

p∑
j=1

hλ(kij) · d(xj , xl′)



3.3 Relational neural gas

Relational neural gas as proposed in [?] is based on a similar principle as MNG,
whereby prototype locations can be chosen in a more general way than in MNG.
Standard batch neural gas [?] has been defined in the euclidean setting, i.e.
xi ∈ Rm for some m. It optimizes the cost function 1

2

∑
ij exp(−kij/σ2)‖xi−wj‖2

with respect to the prototypes wj where kij as above but using the Euclidean
distance. σ > 0 denotes the neighborhood cooperation. For vanishing neighbor-
hood σ → 0, the standard quantization error is obtained. This cost function can
be optimized in batch mode by subsequent optimization of prototype locations
and assignments. Unlike k-means, neighborhood cooperation yields a very robust
and initialization insensitive behavior of the algorithm.

The main observation of relational clustering is that optimum prototypes
fulfill the relation wj =

∑
i αjix

i with
∑

i αji = 1. Therefore, the distance
‖xi − wj‖2 can be expressed solely in terms of the parameters αji and the
pairwise distances D = (d2

ij)ij of the data as

‖xi − wj‖2 = (D · αj)i − 1/2 · αt
j ·D · αj . (6)

Therefore, it is possible to find a formulation of batch NG which does not rely
on the explicit embedding of data in a vector space:

init αji with
∑

i αji = 1
repeat

– compute the distance ‖xj − wi‖2
– compute optimum assignments kij based on this distance matrix
– compute parameters α̃ij = exp(−kij/σ2)
– normalize αij = α̃ij/

∑
j α̃ij

Obviously, this procedure can be applied to every symmetric dissimilarity
matrix D, resulting in relational neural gas (RNG). The algorithm can be related
to the dual cost function of NG:∑

i

∑
ll′ exp(−kil/σ2) · exp(−kil′/σ2) · dll′

4
∑

l exp(−kil/σ2))

Since prototypes of RNG are represented virtually in terms of weighting
factors αij , the algorithm yields a clustering rather than a compact description
of the classes in terms of prototypes. However, it is possible to approximate
the clusters by substituting the virtual prototypes wj by its respective closest
exemplar xi in the data set X. We refer to this setting as 1-approximation of
RNG.

3.4 Spectral clustering

Spectral clustering (SC) offers a popular clustering method which is based on
a graph cut approach, see e.g. [?]. The idea is to decompose the vertices of
the graph into clusters such that the resulting clusters are as close to con-
nected components of the graph as possible. More precisely, assume vertices
are enumerated by 1, . . . , n corresponding to the data points xi and undirected
edges i − j weighted with pij indicate the similarity of the vertices. We choose



pij = −dij + minij dij , but alternative choices are possible, as described in [?].
Denote the resulting matrix by P , D denotes the diagonal matrix with vertex
degrees di =

∑
i pij . Then normalized spectral clustering computes the smallest

k eigenvectors of the normalized graph Laplacian D−1 ·(D−P ). The components
of these eigenvectors constitute n data points in Rk which are clustered into k
classes using a simple algorithm such as k-means. The index assignment gives
the clusters Ci of X.

The method is exact if the graph decomposes into k connected components.
As explained in [?], it constitutes a reasonable approximation to the normal-
ized cut optimization problem 1

2

∑
i W (Ci, C

c
i )/vol(Ci) for general graphs, where

W (A,Ac) =
∑

i∈A,j /∈A pij denotes the weights intersected by a cluster A and
vol(A) =

∑
j∈A dj the volume of a cluster A. Further, for normalized SC, some

form of consistency of the method can be proven [?].

3.5 Affinity propagation

Affinity propagation (AP) constitutes an exemplar-based clustering approach
as proposed in [?]. Given data points and pairwise dissimilarities dij , the goal
is to find k exemplars xi such that the following holds: if data points xi are
assigned to their respective closest exemplar by means of I(i), the overall quan-
tization error 1

2

∑
i di,I(i) should be minimum. This problem can be alterna-

tively stated as finding an assignment function I : {1, . . . , n} → {1, . . . , n}
such that the costs − 1

2

∑
i di,I(i) +

∑
i δi(I) are maximum. Thereby, δi(I) ={

−∞ if I(i) 6= i, ∃jI(j) = i
0 otherwise punishes assignments which are invalid, because

exemplar i is not available as a prototype but demanded as exemplar by some
point j. Note that, this way, the number of clusters is not given priorly but it
is automatically determined by the overall cost function due to the size of self-
similarities −dii. These are often chosen identical for all i and as median value
or half the average similarities. Large values −dii lead to many clusters whereas
small values lead to only a few or one cluster. By adjusting the diagonal dii, any
number of clusters in {1, . . . , n} can be reached. AP optimizes this cost function
by means of a popular and efficient heuristics. The cost function is interpreted
as a factor graph with discrete variables I(i) and function nodes δi(I) and di,I(i).
A solution is found by the max-sum-algorithm in this factor graph which can be
implemented in linear time based on the number of dissimilarities dij . Note that
−dij can be related to the log probability of data point i to choose exemplar j,
and δi(I) is the log probability of a valid assignment for i as being an exemplar
or not. Thus, the max-sum algorithm can be interpreted as an approximation to
compute assignments with maximum probability in the log-domain.

While spectral clustering yields decompositions of data points into clusters,
affinity propagation also provides a representative exemplar for every cluster.
This way, the clustering is restricted to specific types which are particularly
intuitive. Further, unlike spectral clustering, the number of clusters is specified
only implicitly by means of self-similarities.



4 Experiments and results

4.1 Measures for comparing results

To measure the agreement of two different cluster solutions we applied Cohen’s
Kappa κC [?]. Fleiss’ Kappa κF as an extension of Cohen’s Kappa is suitable
for measuring the agreement of more than two classifiers [?]. For both measures
yields the statement that if they are greater than zero the cluster agreements are
not random but systematic. The maximum value of one is perfect agreement.

4.2 ’Eurovoc’ documents

The first data set consists of a selection of documents from the multilingual The-
saurus of the European Union ”‘Eurovoc”’. This thesaurus contains thousands of
documents which are available in up to 21 languages each. For the experiments
we selected a set of 600 transcripts in 6 different languages - 100 transcripts with
the same contents in English, German, French, Spanish, Finnish and Dutch re-
spectively. These transcripts can roughly be sorted into 6 different categories:
International Affairs, Social Protection, Environment, Social Questions, Educa-
tion and Communications, and Employment and Working Conditions.

First the distances between data are calculated according to dij =
NCDxi,xj for the whole data set giving a large 600 × 600 matrix and, for each
language set separately, yielding 6 small 100× 100 matrices.

The first calculations in this section are based on the 600 × 600 matrix: As
a first step the complete set containing all 600 documents was clustered into
six groups using the above mentioned algorithms to investigate whether the
language structure influences the clustering. It can be observed that all clus-
ter solutions of the different methods are identical and exactly separating the
data set according to the languages. In the second step we initialized a cluster-
ing into 12 clusters to examine the content based information for clustering. It
can be observed that again a clean separation regarding to the languages was
achieved. Yet, the segmentation within a single language was more or less irregu-
lar. For some languages there was no further break down at all, while others were
separated into up to four different clusters. Hence, it seems that the language
specifics dominate the clustering. Thereby, this behavior was shown more or less
by all cluster algorithms. This fact is emphasized by the similarity of the cluster
solutions judged in terms of Fleiss’ Kappa (overall agreement) κF = 0.6072 re-
ferred as a substantial agreement. The the agreements of every two algorithms
are estimated by Cohen’s Kappa κC which also show a clear match:

MNG RNG SC AP
k-Means 0.56 0.50 0.59 0.73
MNG — 0.58 0.54 0.73
RNG — — 0.57 0.63
SC — — — 0.66

Noticeable is the clustering obtained by AP. Each language is separated
into two clusters, which are almost identical with respect to the language sets.
Measuring the similarity of the clusters between the different languages gives
κF = 0.8879, a perfect agreement.

In the next step we examined each language separately using the 100× 100
matrices. According to the given 6 text categories, we performed each clustering
into 6 clusters. At first, we have to mention that the resulted cluster solutions



do not reflect the category system. This is observed for all languages and all
algorithms. However, within each language the behavior of the different cluster
approaches is more or less similar, i.e. comparing the cluster solutions gives high
Kappa values above 0.4123 (moderate agreement). As an example, for English
the solutions are depicted in Fig1a). with Fleiss’ Kappa κF = 0.5324 (moderate
agreement).

Fig. 1. (left) Comparison of the cluster solutions (six clusters) for the different algo-
rithms. A moderate agreement can be observed.(right) Cluster solutions for the differ-
ent languages obtained by AP-clustering. The similarity of the cluster results is high.

However, the averaged performance of the several algorithms according to the
different languages varies. Despite AP and RNG, all algorithms show an instable
behavior. AP and RNG offer similar cluster assignments independent from the
language giving κF = 0.5766 and κF = 0.3454, respectively (see Fig.1b). This
leads to the conclusion that the contents of the text can be clustered adequately
in each language.

4.3 Psychotherapy transcripts

The second data set was a set of text transcripts of a series of 37 psychotherapy
session dialogs of a psychodynamic therapy. Clustering these texts, using the
NCD-distance as above, was again accomplished by applying all algorithms,
here preferring a two-cluster solution according to the fact that the therapy was
a two-phase process with the culminating point around session 17 [?]. The latter



fact is based on the evaluation of several clinical therapy measures [?]. Except SC,
all algorithms cluster the data in a similar way such that the two process phases
are assigned to separate clusters (κF = 0.77). This coincides with the hypothesis
that narratives of the psychotherapy can be related to the therapeutic process.

4.4 Conclusions

In this paper we investigated the behavior of different cluster algorithms for text
clustering. Thereby we restricted ourself to such algorithms, which only take
the distances between data into account but not the objects to be clustered it-
self. As distance measure we used the information distance. It can be concluded
that, if texts from different languages are available (here ’Eurovoc’-documents),
this language structure dominates the clustering, independent from the cluster
algorithm. An overall moderate agreement between the different approaches is
observed. Content specific clustering (separated in each language) is more dif-
ficult. The overall agreement is good as well but with instable results for the
different languages depending on the approaches. Here, AP and RNG (with cur-
tailments) show the most reliable results. The content specific discrimination
ability is also verified for a text data base of psychotherapy session transcripts,
which can be related to different therapy phases. This phase structure is nicely
verified by the text clustering by almost all cluster algorithms.2
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