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Abstract. Prototype based models offer an intuitive interface to given
data sets by means of an inspection of the model prototypes. Supervised
classification can be achieved by popular techniques such as learning
vector quantization (LVQ) and extensions derived from cost functions
such as generalized LVQ (GLVQ) and robust soft LVQ (RSLVQ). These
methods, however, are restricted to Euclidean vectors and they cannot
be used if data are characterized by a general dissimilarity matrix. In
this approach, we propose relational extensions of GLVQ and RSLVQ
which can directly be applied to general possibly non-Euclidean data
sets characterized by a symmetric dissimilarity matrix.

1 Introduction

Machine learning techniques have revolutionized the possibility to deal with
large electronic data sets by offering powerful tools to automatically learn a
regularity underlying the data. However, some of the most powerful machine
learning tools which are available today such as the support vector machine act
as a black box and their decisions cannot easily be inspected by humans. In
contrast, prototype-based methods represent their decisions in terms of typical
representatives contained in the input space. Since prototypes can directly be
inspected by humans in the same way as data points, an intuitive access to the
decision becomes possible: the responsible prototype and its similarity to the
given data determine the output.

There exist different possibilities to infer appropriate prototypes from data:
Unsupervised learning such as simple k-means, fuzzy-k-means, topographic map-
ping, neural gas, or the self-organizing map, and statistical counterparts such
as the generative topographic mapping infer prototypes based on input data
only [1–3]. Supervised techniques incorporate class labeling and find decision
boundaries which describe priorly known class labels, one of the most popular
learning algorithm in this context being learning vector quantization (LVQ) and
extensions thereof which are derived from explicit cost functions or statistical
models [2, 4, 5]. Besides different mathematical derivations, these learning algo-
rithms share several fundamental aspects: they represent data in a sparse way
by means of prototypes, they form decisions based on the similarity of data to
prototypes, and training is often very intuitive based on Hebbian principles. In
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addition, prototype-based models have excellent generalization ability [6, 7]. Fur-
ther, prototypes offer a compact representation of data which can be beneficial
for life-long learning, see e.g. the approaches proposed in [8–10].

LVQ severely depends on the underlying metric, which is usually chosen as
Euclicean metric. Thus, it is unsuitable for complex or heterogeneous data sets
where input dimensions have different relevance or a high dimensionality yields to
accumulated noise which disrupts the classification. This problem can partially
be avoided by appropriate metric learning, see e.g. [7], or by kernel variants,
see e.g. [11]. However, if data are inherently non-Euclidean, these techniques
cannot be applied. In modern applications, data are often addressed using dedi-
cated non-Euclidean dissimilarities such as dynamic time warping for time series,
alignment for symbolic strings, the compression distance to compare sequences
based on an information theoretic ground, and similar. These settings do not
allow a Euclidean representation of data at all, rather, data are given implicitly
in terms of pairwise dissimilarities or relations; we refer to a ‘relational data
representation’ in the following when addressing such settings.

In this contribution, we propose relational extensions of two popular LVQ
algorithms derived from cost functions, generalized LVQ (GLVQ) and robust
soft LVQ (RSLVQ), respectively [4, 5]. This way, these techniques become di-
rectly applicable for relational data sets which are characterized in terms of a
symmetric dissimilarity matrix only. The key ingredient is taken from recent
approaches for relational data processing in the unsupervised domain [12, 13]:
if prototypes are represented implicitly as linear combinations of data in the
so-called pseudo-Euclidean embedding, the relevant distances of data and proto-
types can be computed without an explicit reference to a vectorial data represen-
tation. This principle holds for every symmetric dissimilarity matrix and thus,
allows us to formalize a valid objective of RSLVQ and GLVQ for relational data.
Based on this observation, optimization can take place using gradient techniques.

In this contribution, we shortly review LVQ techniques derived from a cost
function, and we extend these techniques to relational data. We test the tech-
nique on several benchmarks, leading to results comparable to SVM while pro-
viding prototype based presentations.

2 Prototype-based Clustering and Classification

Assume data xi ∈ Rn, i = 1, . . . ,m, are given. Prototypes are elements wj ∈
Rn, j = 1, . . . , k, of the same space. They decompose data into receptive fields
R(wj) = {xi : ∀k d(xi,wj) ≤ d(xi,wk)} based on the squared Euclidean
distance d(xi,wj) = ‖xi−wj‖2 . The goal of prototype-based machine learning
techniques is to find prototypes which represent a given data set as accurately
as possible.

In supervised settings, data xi are equipped with class labels c(xi) ∈
{1, . . . , L} in a finite set of known classes. Similarly, every prototype is equipped
with a priorly fixed class label c(wj). A data point is mapped to the class of its
closest prototype. The classification error of this mapping is given by the term∑
j

∑
xi∈R(wj) δ(c(x

i) 6= c(wj)) with the delta function δ. This cost function
cannot easily be optimized explicitly due to vanishing gradients and disconti-
nuities. Therefore, LVQ relies on a reasonable heuristic by performing Hebbian



3

and unti-Hebbian updates of the prototypes, given a data point [2]. Extensions
of LVQ derive similar update rules from explicit cost functions which are re-
lated to the classification error, but display better numerical properties such
that optimization algorithms can be derived thereof.

Generalized LVQ (GLVQ) has been proposed in the approach [4]. It is derived
from a cost function which can be related to the generalization ability of LVQ
classifiers [7]. The cost function of GLVQ is given as

EGLVQ =
∑
i

Φ

(
d(xi,w+(xi))− d(xi,w−(xi))
d(xi,w+(xi)) + d(xi,w−(xi))

)
(1)

where Φ is a differentiable monotonic function such as the hyperbolic tangent,
and w+(xi) refers to the prototype closest to xi with the same label as xi,
w−(xi) refers to the closest prototype with a different label. This way, for every
data point, its contribution to the cost function is small if and only if the distance
to the closest prototype with a correct label is smaller than the distance to a
wrongly labeled prototype, resulting in a correct classification of the point and,
at the same time, by optimizing this so-called hypothesis margin of the classifier,
aiming at a good generalization ability.

A learning algorithm can be derived thereof by means of a stochastic gradient
descent. After a random initialization of prototypes, data xi are presented in
random order. Adaptation of the closest correct and wrong prototype takes place
by means of the update rules

∆w±(xi) ∼ ∓ Φ′(µ(xi)) · µ±(xi) · ∇w±(xi)d(xi,w±(xi)) (2)

where

µ(xi) =
d(xi,w+(xi))− d(xi,w−(xi))
d(xi,w+(xi)) + d(xi,w−(xi))

, µ±(xi) =
2 · d(xi,w∓(xi))

(d(xi,w+(xi)) + d(xi,w−(xi))2
.

(3)
For the squared Euclidean norm, the derivative yields ∇wjd(xi,wj) = −2(xi −
wj), leading to Hebbian update rules of the prototypes which take into ac-
count the priorly known class information, i.e. they adapt the closest prototypes
towards / away from a given data point depending on their labels. GLVQ con-
stitutes one particularly efficient method to adapt the prototypes according to
a given labeled data sets.

Robust soft LVQ (RSLVQ) as proposed in [5] constitutes an alternative ap-
proach which is based on a statistical model of the data. In the limit of small
bandwidth, update rules which are very similar to LVQ result. For non-vanishing
bandwidth, soft assignments of data points to prototypes take place. Every pro-
totype induces a probability induced by Gaussians, for example, i.e. p(xi|wj) =
K ·exp(−d(xi,wj)/2σ2) with parameter σ ∈ R and normalization constant K =
(2πσ2)−n/2. Assuming that every prototype has the same prior, we obtain the
overall probability of a data point p(xi) =

∑
wj p(xi|wj)/k and the probability

of a point and its corresponding class p(xi, c(xi)) =
∑

wj :c(wj)=c(xi) p(x
i|wj)/k .

The cost function of RSLVQ is given by the quotient

ERSLVQ = log
∏
i

p(xi, c(xi))
p(xi)

=
∑
i

log
p(xi, c(xi))

p(xi)
(4)
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Considering gradients, we obtain the adaptation rule for every prototype wj

given a training point xi

∆wj ∼ − 1
2σ2
·

(
p(xi|wj)∑

j:c(wj)=c(xi) p(xi|wj)
− p(xi|wj)∑

j p(xi|wj)

)
· ∇wjd(xi,wj) (5)

if c(xi) = c(wj) and ∆wj ∼ 1
2σ2 · p(xi|wj)P

j p(x
i|wj) · ∇wjd(xi,wj) if c(xi) 6= c(wj).

Obviously, the scaling factors can be interpreted as soft assignments of the data
to corresponding prototypes. The choice of an appropriate parameter σ can
critically influence the overall behavior and the quality of the technique, see
e.g. [5, 14, 15] for comparisons of GLVQ and RSLVQ and ways to automatically
determine σ based on given data.

3 Dissimilarity data

In recent years, data are becoming more and more complex in many applica-
tion domains e.g. due to improved sensor technology or dedicated data formats.
To account for this fact, data are often addressed by means of dedicated dis-
similarity measures which account for the structural form of the data such as
alignment techniques for bioinformatics sequences, dedicated functional norms
for mass spectra, the compression distance for texts, etc. Prototype-based tech-
niques such as GLVQ or RSLVQ are restricted to Euclidean vector spaces. Hence
their suitability to deal with complex non-Euclidean data sets is highly limited.
Prototype-based techniques such as neural gas have recently been extended to-
wards more general data formats [12]. Here we extend GLVQ and RSLVQ to
relational variants in a similar way by means of an implicit reference to a pseudo-
Euclidean embedding of data.

We assume that data xi are given as pairwise dissimilarities dij = d(xi,xj).
D refers to the corresponding dissimilarity matrix. Note that it is easily possible
to transfer similarities to dissimilarities and vice versa, see [13]. We assume
symmetry dij = dji and we assume dii = 0. However, we do not require that
d refers to a Euclidean data space, i.e. D does not need to be embeddable in
Euclidean space, nor does it need to fulfill the conditions of a metric.

As argued in [13, 12], every such set of data points can be embedded in a
so-called pseudo-Euclidean vector space the dimensionality of which is limited
by the number of given points. A pseudo-Euclidean vector space is a real-vector
space equipped with the bilinear form 〈x,y〉p,q = xtIp,qy where Ip,q is a diagonal
matrix with p entries 1 and q entries −1. The tuple (p, q) is also referred to as
the signature of the space, and the value q determines in how far the standard
Euclidean norm has to be corrected by negative eigenvalues to arrive at the given
dissimilarity measure. The data set is Euclidean if and only if q = 0. For a given
matrix D, the corresponding pseudo-Euclidean embedding can be computed by
means of an eigenvalue decomposition of the related Gram matrix, which is an
O(m3) operation. It yields explicit vectors xi such that dij = 〈xi−xj ,xi−xj〉p,q
holds for every pair of data points.

Note that vector operations can be naturally transferred to pseudo-Euclidean
space, i.e. we can define prototypes as linear combinations of data in this space.
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Hence we can perform techniques such as GLVQ explicitly in pseudo-Euclidean
space since it relies on vector operations only. One problem of this explicit trans-
fer is given by the computational complexity of the initial embedding, on the
one hand, and the fact that out-of-sample extensions to new data points char-
acterized by pairwise dissimilarities are not immediate.

Because of this fact, we are interested in efficient techniques which implicitly
refer to such embeddings only. As a side product, such algorithms are invariant
to coordinate transforms in pseudo-Euclidean space, rather they depend on the
pairwise dissimilarities only instead of the chosen embedding. The key assump-
tion is to restrict prototype positions to linear combination of data points of the
form

wj =
∑
i

αjix
i with

∑
i

αji = 1 . (6)

Since prototypes are located at representative points in the data space, it is a
reasonable assumption to restrict prototypes to the affine subspace spanned by
the given data points. In this case, dissimilarities can be computed implicitly by
means of the formula

d(xi,wj) = [D · αj ]i −
1
2
· αtjDαj (7)

where αj = (αj1, . . . , αjn) refers to the vector of coefficients describing the pro-
totype wj implicitly, as shown in [12].

This observation constitutes the key to transfer GLVQ and RSLVQ to rela-
tional data without an explicit embedding in pseudo-Euclidean space. Prototype
wj is represented implicitly by means of the coefficient vectors αj . Then, we can
use the equivalent characterization of distances in the GLVQ and RSVLQ cost
function leading to the costs of relational GLVQ (RGLVQ) and relational RSLVG
(RSLVQ), respectively:

ERGLVQ =
∑
i

Φ

(
[Dα+]i − 1

2 · (α
+)tDα+ − [Dα−]i + 1

2 · (α
−)tDα−

[Dα+]i − 1
2 · (α+)tDα+ + [Dα−]i − 1

2 · (α−)tDα−

)
, (8)

where as before the closest correct and wrong prototype are referred to, cor-
responding to the coefficients α+ and α−, respectively. A stochastic gradient
descent leads to adaptation rules for the coefficients α+ and α− in relational
GLVQ: component k of these vectors is adapted as

∆α±k ∼ ∓ Φ
′(µ(xi)) · µ±(xi) ·

∂
(
[Dα±]i − 1

2 · (α
±)tDα±

)
∂α±k

(9)

where µ(xi), µ+(xi), and µ−(xi) are as above. The partial derivative yields

∂
(
[Dαj ]i − 1

2 · α
t
jDαj

)
∂αjk

= dik −
∑
l

dlkαjl (10)

Similarly,

ERRSLVQ =
∑
i

log

∑
αj :c(αj)=c(xi) p(x

i|αj)/k∑
αj
p(xi|αj)/k

(11)
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where p(xi|αj) = K · exp
(
−
(
[Dαj ]i − 1

2 · α
t
jDαj

)
/2σ2

)
. A stochastic gradient

descent leads to the adaptation rule

∆αjk ∼ −
1

2σ2
·

(
p(xi|αj)∑

j:c(αj)=c(xi) p(xi|αj)
− p(xi|αj)∑

j p(xi|αj)

)
·
∂
(
[Dαj ]i − 1

2α
t
jDαj

)
∂αjk

(12)

if c(xi) = c(αj) and ∆αjk ∼ 1
2σ2 · p(xi|αj)P

j p(x
i|αj)

· ∂([Dαj ]i− 1
2α

t
jDαj)

∂αjk
if c(xi) 6= c(αj).

After every adaptation step, normalization takes place to guarantee
∑
i αji = 1.

The prototypes are initialized as random vectors, i.e we initialize αij with
small random values such that the sum is one. It is possible to take class infor-
mation into account by setting all αij to zero which do not correspond to the
class of the prototype. The prototype labels can then be determined based on
their receptive fields before adapting the initial decision boundaries by means of
supervised learning vector quantization.

An extension of the classification to new data is immediate based on an
observation made in [12]: given a novel data point x characterized by its pairwise
dissimilarities D(x) to the data used for training, the dissimilarity of x to a
prototype represented by αj is d(x,wj) = D(x)t · αj − 1

2 · α
t
jDαj .

Note that, for GLVQ, a kernelized version has been proposed in [11]. How-
ever, this refers to a kernel matrix only, i.e. it requires Euclidean similarities
instead of general symmetric dissimilarities. In particular, it must be possible
to embed data in a possibly high dimensional Euclidean feature space. Here we
extended GLVQ and RSLVQ to relational data characterized by a general sym-
metric dissimilarities which might be induced by strictly non-Euclidean data.

4 Experiments

We evaluate the algorithms for several benchmark data sets where data are
characterized by pairwise dissimilarities. On the one hand, we consider six data
sets used also in [16]: Amazon47, Aural-Sonar, Face Recognition, Patrol, Protein
and Voting. In additional we consider the Cat Cortex from [18], the Copenhagen
Chromosomes data [17] and one own data set, the Vibrio data, which consists
of 1,100 samples of vibrio bacteria populations characterized by mass spectra.
The spectra contain approx. 42,000 mass positions. The full data set consists
of 49 classes of vibrio-sub-species. The preprocessing of the Vibrio data is de-
scribed in [20] and the underlying similarity measures in [21, 20]. The article
[16] investigates the possibility to deal with similarity/dissimilarity data which
is non-Euclidean with the SVM. Since the corresponding Gram matrix is not
positive semidefinite, according preprocessing steps have to be done which make
the SVM well defined. These steps can change the spectrum of the Gram ma-
trix or they can treat the dissimilarity values as feature vectors which can be
processed by means of a standard kernel.

Since some of these matrices correspond to similarities rather than dissimi-
larities, we use standard preprocessing as presented in [13]. For every data set, a
number of prototypes which mirrors the number of classes was used, represent-
ing every class by only few prototypes relating to the choices as taken in [12],
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#Data Points #Labels RGLVQ RRSLVQ best SVM #Proto.
Amazon47 204 47 0.81(0.01) 0.83(0.02) 0.82* 94
Aural Sonar 100 2 0.88(0.02) 0.85(0.02) 0.87* 10
Face Rec. 945 139 0.96(0.00) 0.96(0.00) 0.96* 139
Patrol 241 8 0.84(0.01) 0.85(0.01) 0.88* 24
Protein 213 4 0.92(0.02) 0.53(0.01) 0.97* 20
Voting 435 2 0.95(0.01) 0.62(0.01) 0.95* 20
Cat Cortex 65 5 0.93(0.01) 0.94(0.01) 0.95 12
Vibrio 4200 22 1.00(0.00) 0.94(0.08) 1.00 49
Chromosome 1100 49 0.93(0.00) 0.80(0.01) 0.95 63

Table 1. Results of prototype based classification in comparison to SVM for diverse dis-
similarity data sets. The classification accuracy obtained in a repeated cross-validation
is reported, the standard deviation is given in parenthesis. SVM results marked with
* are taken from [16]. For Cat Cortex, Vibrio, Chromosome, the respective best SVM
result is reported by using different preprocessing mechanisms clip, flip, shift, and sim-
ilarities as features with linear and Gaussian kernel.

see Tab. 1. The evaluation of the results is done by means of the classification
accuracy as evaluated on the test set in a ten fold repeated cross-validation (nine
tenths of date set for training, one tenth for testing) with ten repeats. The re-
sults are reported in Tab. 1. In addition, we report the best results obtained by
SVM after diverse preprocessing techniques [16].

Interestingly, in most cases, results which are comparable to the best SVM
as reported in [16] can be found, whereby making preprocessing as done in [16]
superfluous. Further, unlike for SVM which is based on support vectors in the
data set, solutions are represented as typical prototypes.

5 Conclusions

We have presented an extension of prototype-based techniques to general pos-
sibly non-Euclidean data sets by means of an implicit embedding in pseudo-
Euclidean data space and a corresponding extension of the cost function of GLVQ
and RSLVQ to this setting. As a result, a very powerful learning algorithm can
be derived which, in most cases, achieves results which are comparable to SVM
but without the necessity of according preprocessing since relational LVQ can
directly deal with possibly non-Euclidean data whereas SVM requires a positive
semidefinite Gram matrix. Similar to SVM, relational LVQ has quadratic com-
plexity due to its dependency on the full dissimilarity matrix. A speed-up to
linear techniques e.g. by means of the Nyström approximation for dissimilarity
data similar to [22] is the subject of ongoing research.
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