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Abstract

The large amount of digital data requests for scal-
able tools like efficient clustering algorithms. Many
algorithms for large data sets request linear separa-
bility in an Euclidean space. Kernel approaches can
capture the non-linear structure but do not scale well
for large data sets. Alternatively, data are often rep-
resented implicitly by dissimilarities like for protein
sequences, whose methods also often do not scale to
large problems. We propose a single algorithm for both
type of data, based on a batch approximation of re-
lational soft competitive learning, termed fast generic
soft-competitive learning. The algorithm has linear
computational and memory requirements and performs
favorable to traditional techniques 1.

1. Introduction

The amount of digital data doubles roughly every 20
months. Hence automatic tools to deal with large data
become indispensable to extract relevant information
and clustering is one of the standard techniques. At the
same time, dedicated data formats such as XML, graph
structures, etc., are more frequent, leading to large dis-
similarity data sets. Classical cluster methods, like k-
means process Euclidean data only. Also kernel ap-
proaches like kernel-k-means or kernel soft competi-
tive learning (KSCL) [14] are often limited, due to the
lack of a valid kernel. Alternatives are given e.g. by
the relational soft competitive learning [9] and have re-
cently been extended to large scale problems [8]. Rela-
tional soft competitive learning (RSCL) is an extension
of soft-competitive learning (SCL) [12]. It replaces the
Euclidean distance function of a data point v to a clus-
ter representant or prototype w by an implicit represen-
tation which refers to the dissimilarity matrix D only,
where dij = ‖vi − vj‖2 denotes the underlying dis-
similarities induced by an arbitrary symmetric bilinear

1Matlab-Code is available at http://www.cit-ec.de/tcs

form. Obviously, D has squared complexity. Employ-
ing the full dissimilarity matrix can be avoided by us-
ing the Nyström approximation as shown by the authors
earlier in [8]. RSCL has been considered so far only for
dissimilarity data, but this restriction is not necessary.
Since each similarity matrix, provided by a kernel, can
be easily transformed to a dissimilarity matrix, RSCL
can be effectively used for both types of data. For simi-
larity data this leads to a novel very fast batch approach
of the online KSCL similarly efficient as approximate
kernel k-means [5] (a-KKM) 2. We demonstrate how to
derive the new algorithm for both types of data.

In section 2 we outline the related work on large
scale clustering and the relational soft competitive
learning as well as its kernel counterpart. We present
the generic fast approximate soft competitive learning
(FG-SCL) in Section 3. Section 4 summarized the re-
sults of our empirical studies.

2 Related work

2.1 Large scale clustering

Many methods have been proposed to cluster large
data sets [10]. Single pass approaches reduce the time
necessary to cluster the data. Sampling methods reduce
the computation time by clustering on a small random
data subset. Core set approaches [2] define cluster cen-
ters based on exemplars using non-random, geometric
techniques. Also efficient data structures like trees have
been employed and more recently parallelization tech-
niques are used [1]. Most of the existing methods for
large scale clustering are based on the Euclidean dis-
tance and fail for data which are not linearly separable.
Kernel methods have been introduced to many cluster-
ing algorithms to overcome this limitation but do not
scale for large data [6]. Only few attempts have been
made to obtain scalable kernel clustering approaches.
In [11] a core-set based extension of kernel-k-means

2Idea in [5] is theoretically equiv. to our earlier work cited in [8]

http://www.cit-ec.de/tcs


is proposed, but the convergence of this method is not
guaranteed and in [5] an efficient approximate kernel-k-
means algorithm was proposed, employing the Nyström
technique [15]. The representation by similarities, like
for kernel methods is often not accessible for domain
specific (dis-)similarity measures, since the underlying
measure may not be a metric and not imply a valid ker-
nel. The obtained dissimilarity data can be clustered
by dissimilarity or relational clustering techniques, like
relational soft competitive learning [9] or affinity prop-
agation (AP) [7] 3 Most of the current techniques do
not scale for large data. Subsequently we derive the fast
approximate soft competitive learning, which is a novel
efficient batch clustering for large similarity and dissim-
ilarity data.

2.2 Soft Competitive Learning

In contrast to regular k-means, soft competitive
learning (SCL) [12] extends the quantization error to
incorporate data induced neighborhood cooperation:

ESCL :=
∑
ij

hσ(rij)d(vi,wj) (1)

where hσ(t) = exp(−t/σ) exponentially scales the
neighborhood range, and rij denotes the rank of pro-
totype wj with respect to vi, i.e. the number of proto-
types wk with k 6= j which are closer to vi as measured
by the Euclidean distance d. SCL optimizes Eq. (1) by
means of a stochastic gradient descent, annealing the
neighborhood range σ during training such that, in the
limit, the standard quantization error is approximated
[12]. The iterative adaptation rule is

wj := wj + η · hσ(rij)(vi −wj) (2)

where η denotes the learning rate. There exists a faster
(euclidean) batch optimization scheme as introduced in
[4] which in turn optimizes prototype locations and as-
signments similar to an EM scheme, i.e. it consecutively
computes

wj :=
∑
i

hσ(rij)vi/
∑
i

hσ(rij) (3)

with rij based on d(vi,wj).

2.3 Kernelized Soft Competitive Learning

An extension of SCL to generic similarity measures,
employing kernels is used in online Kernelized SCL

3AP does not rely on Euclidean similarities and can use double
centered dissimilarity matrices as shown in [9]

(KSCL) [14]4. KSCL optimizes the same cost func-
tion as SCL but with the Euclidean distance substituted
by a kernel induced distance. Since the feature space is
unknown, prototypes are expressed implicitly as linear
combination of feature vectors wi =

∑n
l=1 αi,lφ(vl),

αi ∈ Rn is the corresponding coefficient vector. Dis-
tance in feature space for φ(vj) and wi is computed as:

d(φ(vj),wi) = ‖φ(vj)−
n∑
l=1

αi,lφ(vl)‖2 (4)

= kj,j − 2 ·
n∑
l=1

kj,lαi,l

+

n∑
s,t=1

ks,tαi,sαi,t

The update rules of SCL can be modified by substitut-
ing the Euclidean distance by the formula (4), with the
kernel ki,j = k(vi, vj) and taking derivatives with re-
spect to the coefficients αi,l (details see [14]).

2.4 Relational Soft Competitive Learning

Relational soft competitive learning (RSCL) as in-
troduced in [9] assumes that a symmetric dissimilarity
matrix D with entries dij describing pairwise dissimi-
larities of data is available. In principle, it is very simi-
lar to KSCL. There are two differences: RSCL is based
on dissimilarities rather than similarities, and it solves
the resulting cost function using a batch optimization
with quadratic convergence as compared to a stochastic
gradient descent.

As shown in [13], there always exists a so-called
pseudo-Euclidean embedding of a given set of points
characterized by pairwise symmetric dissimilarities by
means of a mapping Φ, i.e. a real vector space and a
symmetric bilinear form (with probably negative eigen-
values) such that the dissimilarities are obtained by
means of this bilinear form. As before, prototypes are
restricted to linear combinations

wj =
∑
l

αjlΦ(vl) with
∑
l

αjl = 1 (5)

Dissimilarities are computed as:

d(Φ(vi),wj) = [Dtαj ]i −
1

2
· αtjDαj (6)

where [·]i refers to component i of the vector. This al-
lows a direct transfer of batch SCL to general dissimi-
larities by the following iterations derived from (3)

αjl := hσ(rjl)/
∑
l

hσ(rjl) (7)

4No batch version of KSCL was proposed so far.



with rjl based on d(Φ(vj),wl). This algorithm can be
interpreted as soft competitive learning in pseudo Eu-
clidean space for every symmetric dissimilarity matrix
D. If negative eigenvalues are present, however, con-
vergence is not always guaranteed, albeit can mostly be
observed in practice [9].

3 Fast generic soft competitive learning

The Nyström approximation (see e.g. [15]) substi-
tutes a given full Gram matrix S = (S(vi,vj))i,j =
(sij)ij by a low rank approximation. This may
lead to linear complexity of a model depending
on such a matrix. For a given kernel s, by
the Mercer theorem, one can find an expansion:
s(w,v) =

∑∞
i=1 λiΦi(w)Φi(v) with eigenfunctions

Φi and eigenvalues λi as solutions of an integral equa-
tion. It can be approximate with the Nyström tech-
nique, by sampling according to the distribution p:
1
m ·

∑
k s(w,vk)Φi(vk) ≈ λiΦi(w). Using the matrix

eigenproblem S(m)U(m) = U(m)Λ(m) of the m × m
Gram matrix S(m), approximations for the eigenfunc-
tions can be derived:

λi ≈ λ(m)
i /m Φi(w) ≈

√
m · ~swu

(m)
i (8)

where u(m)
i is the ith column of U(m), and ~sw refers to

the vector (s(v1,w), . . . , s(vm,w)). Thus, for a given
N × N Gram matrix, m rows and respective columns
are picked randomly (landmarks) and the enumeration
is changed such that these are the first m rows and
columns. Rows are denoted by Sm,N and columns by
SN,m. Hence, using the approximation (8) we obtain
S̃ =

∑m
i=1 1/λ

(m)
i · SN,m · u(m)

i (u
(m)
i )tSm,N , where

λ
(m)
i and u

(m)
i correspond to the m × m eigenprob-

lem. Hence we obtain, S−1m,m denoting the pseudoin-
verse S̃ = SN,mS

−1
m,mSm,N which is of complexity

O(m3N) instead of O(N2), i.e. it is linear if the ap-
proximation quality m is fixed.

Similarly, dissimilarities D can be approximated if
D is symmetric. Being a normal matrix, D allows a
diagonalization, i.e. it can be interpreted as operator
d(v,w) =

∑
i λiΦi(v),Φi(w). Therefore, the same

mathematical treatment as for kernels is possible, but
negative eigenvalues are allowed. For RSCL, this yields
the approximation of the distance computation (6)

d(vi,wj)
2 ≈ [DN,m(D−1m,m(Dm,Nαj))]i (9)

−1

2
· (αtjDN,m) · (D−1m,m(Dm,Nαj))

which is O(m3N). Again, the approximation is exact
if the number of samples m is chosen according to the

rank of D. 5

For similarity data we transform the similarity matrix
S to a dissimilarity matrixD using Equations from [13].

d(vi,vj)
2 = s(vi,vi) + s(vj,vj)− 2s(vi,vj)

This is coupled with the Nyström approximation, avoid-
ing the full calculation of the matrix S, assuming a gen-
eral kernel function is given. The approach is shown
in Algorithm 1. Pseudo code for RSCL is given in
[9]. Hence FG-SCL is a wrapper around a modified

Algorithm 1 Pseudocode to obtain Nyström approxi-
mated dissimilarities from similarities
1: function SIMILARITY TO DISSIMILARITY(S,m)
2: [Landmarks ] = Select m of N RandomLandmarks(N,m)
3: [Sm×N ] = (SL,I)L∈Landmarks,I∈[1:N ]

4: [Diags ] = (SI,I)I∈[1:N ]

5: for every L in Landmarks and I in [1 : N ] do
6: d(L, I)2 = DiagsL +DiagsI − 2 · SL,I ;
7: end for
8: end function

RSCL. It processes matrices S using Alg. 1 to obtain
a Nyström approximated matrix D or directly approx-
imates D using the prior discussed Nyström approx-
imation. The obtained approximation matrices DN,m

and D−1m,m are used as an input for RSCL with the dis-
tance calculations replaced by Eq. (9). The runtime-
complexity of FG-SCL is dominated by the distance
calculations with O(m3N). RSCL and hence FG-SCL
shows fast convergence (see [9]) due to the batch ap-
proach. The memory complexity is dominated by the
m×N dis-/similarity matrix. The memory complexity
of FG-SCL is O(mN).

4 Experiments

We compare the efficiency of fast generic SCL with
approximated k-means and affinity propagation using
Euclidean data (MNIST, USPS, SPAM) and for the dis-
similarity data (CHROMO, SWISS, BACT) in com-
parison to AP. The MNIST data 6 contain 70000, 784-
dimensional binary images from 10 digit classes. We
used a neural kernel k(vi,vj) = tanh(av>i vj + b) with
a = 0.0045 and b = 0.11 acc. to [5](AP was not ap-
plicable for this large data set). The USPS 7 contain
11000, 256-dimensional character feature vectors from
10 classes analyzed by an RBF kernel with σ = 1e− 7.
The SPAM database 8, contain 4601, 57-dimensional

5Samples should be representative for the full data. Thus, the
Nyström method is not appropriate if data display e.g. a trend or the
data set is already small.

6http://yann.lecun.com/exdb/mnist/
7http://www.cs.nyu.edu/˜roweis/data.html
8http://archive.ics.uci.edu/ml/datasets

http://yann.lecun.com/exdb/mnist/
http://www.cs.nyu.edu/~roweis/data.html
http://archive.ics.uci.edu/ml/datasets


MNIST ACC DQE Time
FG-SCL 0.82 (0.11) 397 1715
A-KKM 0.80 (0.03) 449 529
AP n.a. n.a. n.a.
USPS ACC DQE Time
FG-SCL 0.82 (0.01) 105 442
A-KKM 0.82 (0.01) 108 109
AP 0.76 (0.01) 424 953
SPAM ACC DQE Time
FG-SCL 0.86 (0.04) 12492 5
A-KKM 0.78 (0.12) 12364 8
AP 0.76 (0.04) 6063 304

Table 1: Results for the similarity data. Nyström: m =
0.1 ·N (SPAM, USPS), m = 0.01 ·N (MNIST)

feature vectors, processed by a linear kernel to obtain
the similarity matrix S. The Copenhagen Chromosomes
data (CHROMO), consist of 4, 200 samples in 21 of
gray-valued images, transformed to string distances us-
ing the edit distance (see [16]). The SwissProt (SWISS)
data, consist of 10, 988 protein sequences, in 32 classes;
dissimilarities are calculated by the Smith-Waterman al-
gorithm (see [16]).The bacteria data (BACT), contain
2007 mass spectrometry fingerprints in 30 classes of
different bacteria species, analyzed by the scoring func-
tion from [3]. For comparison with [9] we used 250
clusters for SWISS, 60 clusters for CHROMO and 30
clusters for BACT. For MNIST and USPS we used 100
clusters, each and 2 clusters for SPAM. All models are
initialized randomly and trained for upto 100 iterations.
Results for similarity data are shown in Tab. 1 and for
dissimilarity data in Tab 2. We provide the mean dual
quantization error (DQE, see [16]) , a kind of intra-
cluster distance, the mean classification error by a post-
labeling (majority vote) (ACC) and the mean runtime
(Time) on 10 CV runs with 10 repetitions (standard de-
viations given in brackets). FG-SCL gives comparable
good results with respect to the error-measures. Es-
pecially the quantization errors are better or similar to
alternative methods. The runtime is comparable to A-
KKM and better compared to AP.

5 Conclusions

We have proposed an approximation based soft-
competitive learning algorithm for the analysis of sim-
ilarity and dissimilarity data. It is efficient for large
(dis-) similarity data sets. We showed that the pro-
posed algorithm is (i) efficient in both computational
and memory requirement, avoiding a full computation
of the (dis-) similarity-matrix, and (ii) is able to yield

CHROMO ACC DQE Time
FG-SCL 0.91(0.02) 3971 186
AP 0.90(0.00) 4711 380
SWISS ACC DQE Time
FG-SCL 0.87 (0.00) 348 2769
AP 0.93 (0.00) 337 14162
BACT ACC DQE Time
FG-SCL 0.74 (0.02) 229 26
AP 0.56 (0.03) 248 615

Table 2: Results for the dissimilarity data

similar clustering results as the a-KKM or AP. For sim-
ilarity data the algorithm is equivalent to a-KKM and
outperforms AP. For dissimilarity data FG-SCL is sub-
stantially faster than AP with guaranteed lower memory
complexity, keeping similar good clustering results.
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