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Abstract. Unlike many black-box algorithms in machine learning, pro-
totype based models offer an intuitive interface to given data sets since
prototypes can directly be inspected by experts in the field. Most tech-
niques rely on Euclidean vectors such that their suitability for complex
scenarios is limited. Recently, several unsupervised approaches have suc-
cessfully been extended to general possibly non-Euclidean data charac-
terized by pairwise dissimilarities. In this paper, we shortly review a
general approach to extend unsupervised prototype-based techniques to
dissimilarities, and we transfer this approach to supervised prototype-
based classification for general dissimilarity data.

1 Introduction

While machine learning techniques have revolutionized the possibility to deal
with large and complex electronic data sets and highly accurate classification and
clustering models can be inferred automatically from given data, many machine
learning techniques have the drawback that they largely behave as black boxes. In
consequence, applicants often have to simply ‘trust’ the output of such methods.
It is in general hardly possible to see why an automatic classification method
has taken a particular decision, nor is it possible to change the behavior or
functionality of a given model from the outside due to the black box character.
Hence many machine learning techniques are not suited to inspect large data
sets in a meaningful human-understandable way.

Prototype-based methods represent their decisions in terms of typical rep-
resentatives contained in the input space. Prototypes can directly be inspected
by humans in the field in the same way as data points: for example, physicians
can inspect prototypical medical cases, prototypical images can directly be dis-
played on the computer screen, prototypical action sequences of robots can be
performed in a robotic simulation, etc. Since the decision in prototype-based
techniques usually depends on the similarity of a given input to the prototypes
stored in the model, a direct inspection of the taken decision in terms of the
responsible prototype becomes possible.

Many different algorithms have been proposed in the literature which de-
rive prototype based models from given data. Unsupervised techniques include
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popular clustering algorithms such as simple k-means or fuzzy-k-means cluster-
ing, topographic mapping such as neural gas or the self-organizing map, and
statistical counterparts such as the generative topographic mapping [19, 15, 3].
Supervised techniques take into account a priorly given class labeling and they
try to find decision boundaries which accurately describe priorly known class la-
bels. Popular methods include in particular different variants of learning vector
quantization, some of which are derived from explicit cost functions or statisti-
cal models [15, 25, 28]. Besides different mathematical derivations of the models,
these learning algorithms have in common that they arrive at sparse represen-
tations of data in terms of prototypical vectors, they form decisions based on
the similarity of data to these prototypes, and their training is often very in-
tuitive based on Hebbian principles. In addition to their direct interpretabil-
ity, prototype-based models provide excellent generalization ability due to their
sparse representation of data, see e.g. the work [11, 26] for explicit large margin
generalization bounds for prototype-based techniques. Prototypes offer a com-
pression and efficient representation of the important aspects of given data which
very naturally allows to wrap the basic algorithms into an incremental life-long
learning paradigm, treating the prototypes as a compact representation of all
already seen data. This aspect has been used in diverse scenarios which deal
with incremental settings or very large data sets, see e.g. [6, 14, 1].

One of the most severe restrictions of prototype-based methods is their de-
pendency on the Euclidean distance and their restriction to Euclidean vector
spaces only. This makes them unsuitable for complex or heterogeneous data
sets: input features often have different relevance; further, high dimensionality
easily disrupts the Euclidean norm due to accumulated noise in the data. This
problem can partially be avoided by incorporating appropriate metric learning
into the algorithms such as proposed e.g. in [26] or by looking at kernel versions
of the techniques, see e.g. [24]. However, data in complex dynamical systems are
often inherently non-Euclidean, such that an explicit or implicit representation
in terms of Euclidean vectors is not possible at all. Rather, data have a complex
structural form and dedicated dissimilarity measures should be used. Popular
examples include dynamic time warping for time series, alignment for symbolic
strings, graph or tree kernels for complex structures, the compression distance
to compare sequences based on an information theoretic ground, and similar.
These settings do not allow a vectorial representation of data at all, rather, data
are given implicitly in terms of pairwise dissimilarities or relations; we refer to a
‘relational data representation’ in the following when addressing data sets which
are represented implicitly by means of pairwise dissimilarities dij of data, D
denotes the corresponding matrix of dissimilarities.

Recently, popular prototype-based clustering algorithms have been extended
to deal with relational data. Since no embedding vector space is given a priori
in these settings, the adaptation of prototypes by means of vectorial operations
is no longer possible. One simple way around this problem is to restrict proto-
type positions to data positions. For techniques derived from a cost function,
an optimization in the restricted feasible set of data positions leads to concrete
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learning algorithms such as, for example, median clustering or affinity propaga-
tion [5, 7]. One drawback of this procedure consists in the fact that prototypes
are very restricted if parts of the data space are sampled only sparsely, such
that optimization is often very complicated. Due to this reason, the obtained
accuracy can be severely reduced as compared to representations by prototypes
in a continuous vector space.

In contrast, relational clustering implicitly embeds dissimilarity data in
pseudo-Euclidean space and, this way, considers an implicit continuous update
of prototypes for relational data which is equivalent to the standard setting in
the Euclidean case, see e.g. [10]. An embedding in pseudo-Euclidean space is pos-
sible for every data set which is characterized by a symmetric matrix of pairwise
dissimilarities [23], such that this approach covers a large number of relevant
situations. This way, a highly improved flexibility of the prototypes is achieved
since they can be represented in a smooth way independent of the sampling fre-
quency of the data space. This approach has been integrated into unsupervised
topographic mapping provided by neural gas, the self-organizing map, and the
generative topographic mapping [10, 12, 9]. In all cases, a very flexible prototype-
based data inspection technique for complex data sets which are described by
pairwise dissimilarities arises. Example applications include the mapping of sym-
bolic music data, large text data sets, or complex biomedical data sets such as
mass spectra [21, 13, 8].

So far, the models proposed in the literature widely deal with unsupervised
batch algorithms only. Supervised prototype-based classification for relational
data described by pairwise dissimilarities has not yet been considered. The task
of supervised classification occurs in diverse complex applications such as the
classification of mass spectra according to the biomedical decision problem, the
classification of environmental time series according to related toxicity, or the
classification of music according to underlying composers or epochs. Supervised
prototype-based techniques for general dissimilarity data would offer one striking
possibility to arrive at human understandable classifiers in such settings.

In this contribution, we shortly review relational clustering algorithms for
dissimilarity data and we propose a way to extend these techniques to supervised
settings, arriving in particular at a relational extension of the popular supervised
prototype-based learning vector quantization (LVQ) [15]. We derive an explicit
algorithm based on a formalization of LVQ via a cost function [25, 28], and we
test the accuracy of the approach in comparison to unsupervised alternatives in
several benchmark scenarios. Based on the very promising accuracy achieved in
these examples, we propose different extensions of the techniques to improve the
sparsity, efficiency, and suitability to deal with large data sets.

2 Prototype based clustering and classification

Assume data x
i ∈ R

n, i = 1, . . . ,m, are given. Prototypes are elements w
j ∈

R
n, j = 1, . . . , k, of the same space. They decompose data into receptive fields

R(wj) = {xi : ∀k d(xi,wj) ≤ d(xi,wk)}
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based on the squared Euclidean distance

d(xi,wj) = ‖xi −w
j‖2 .

The goal of prototype-based machine learning techniques is to find prototypes
which represent a given data set as accurately as possible.

In the unsupervised setting, the accuracy is often measured in terms of the
accumulated distances of prototypes and data points in their receptive fields.
Learning techniques can be derived from cost functions related to this objective.
We exemplarily consider neural gas (NG) which constitutes a high-level technol-
ogy to infer a prototype-based topographic mapping [19, 20]. NG is based on the
objective

ENG =
∑

i,j

exp(−rk(xi,wj)/σ2) · d(xi,wj)

where rk(xi,wj) denotes the rank of prototype w
j , i.e. the number of proto-

types which are closer to x
i than w

j measured according to the distance d. The
parameter σ determines the degree of neighborhood cooperation. Batch opti-
mization as introduced in [5] iteratively optimizes assignments and prototypes
by means of the updates

compute kij := rk(xi,wj) for all i and j based on d(xi,wj)
set wj :=

∑

i exp(−kij/σ
2) · xi/

∑

i exp(−kij/σ
2) for all j

Starting from a random initialization, NG robustly determines prototype loca-
tions which represent data accurately as measured by the distances. In addition,
the ranking of prototypes allows to infer the inherent data topology: prototypes
are neighbored if and only if they are closest for at least one given data point
[20].

In supervised settings, data x
i are equipped with prior class labels c(xi) ∈

{1, . . . , L} in a finite set of priorly known classes. An unsupervised prototype-
based clustering gives rise to a classification by means of posterior labeling: a
prototype w

j is assigned the label c(wj) which corresponds to the majority of
the labels of data points observed in its receptive field R(wj). While this often
yields astonishingly accurate classifiers, unsupervised training algorithms do not
take into account the priorly known classes such that decision boundaries are
not optimal. Learning vector quantization (LVQ) tries to avoid this problem by
taking the labeling into account while positioning the prototypes [15]. Here we
restrict to a variant of LVQ as proposed in [25], generalized LVQ (GLVQ), which
has the benefit of a mathematical derivation from a cost function which can be
related to the generalization ability of LVQ classifiers [26].

We assume every prototype is equipped with a label c(wj) prior to training.
The cost function of GLVQ is given as

EGLVQ =
∑

i

Φ

(

d(xi,w+(xi))− d(xi,w−(xi))

d(xi,w+(xi)) + d(xi,w−(xi))

)

where Φ is a differentiable monotonic function such as the hyperbolic tangent,
and w

+(xi) refers to the prototype closest to x
i with the same label as x

i,
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w
−(xi) refers to the closest prototype with a different label. This way, for every

data point, its contribution to the cost function is small iff the distance to the
closest prototype with a correct label is smaller than the distance to a wrongly
labeled prototype, resulting in a correct classification of the point.

A learning algorithm can be derived thereof by means of a stochastic gradient
descent. After a random initialization of prototypes, data x

i are presented in
random order. Adaptation of the closest correct and wrong prototype takes place
by means of the update rules

∆w
+(xi) ∼ − Φ′(µ(xi)) · µ+(xi) · ∇

w
+(xi)d(x

i,w+(xi))

∆w
−(xi) ∼ Φ′(µ(xi)) · µ−(xi) · ∇

w
−(xi)d(x

i,w−(xi))

where

µ(xi) =
d(xi,w+(xi))− d(xi,w−(xi))

d(xi,w+(xi)) + d(xi,w−(xi))
,

µ+(xi) =
2 · d(xi,w−(xi))

(d(xi,w+(xi)) + d(xi,w−(xi))2
,

and

µ−(xi) =
2 · d(xi,w+(xi)

(d(xi,w+(xi)) + d(xi,w−(xi))2
.

For the squared Euclidean norm, the derivative yields

∇
w

jd(xi,wj) = −(xi −w
j),

leading to Hebbian update rules of the prototypes which take into account the
priorly known class information, i.e. they adapt the closest prototypes towards /
away from a given data point depending on the correctness of the classification.
GLVQ constitutes one particularly efficient method to adapt the prototypes
according to a given labeled data sets, alternatives such as techniques based on
heuristics or algorithms derived from statistical models are possible [28, 27].

3 Dissimilarity data

Prototype-based techniques as introduced above are restricted to Euclidean vec-
tor spaces such that their suitability to deal with complex non-Euclidean data
sets is highly limited. Since data are becoming more and more complex in many
application domains e.g. due to improved sensor technology or dedicated data
formats, the need to extend intuitive prototype-based techniques towards more
general data has attracted some attention recently.

In the following, we assume that data x
i are not given as vectors, rather

pairwise dissimilarities di,j = d(xi,xj) of data points numbered i and j are
available. D refers to the corresponding dissimilarity matrix. Note that it is
easily possible to transfer similarities to dissimilarities and vice versa, see [23].
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We assume symmetry dij = dji and we assume dii = 0. However, we do not
require that d refers to a Euclidean data space, i.e. D does not need to be
embeddable in Euclidean space, nor does it need to fulfill the conditions of a
metric.

One very simple possibility to transfer prototype-based models to this general
setting is offered by a restriction of prototype positions. If we restrict wj ∈ X =
{x1, . . . ,xm} for all j, dissimilarities d(xi,wj) are well defined and the cost
functions of NG and GLVQ can be evaluated. Because of the discrete nature of
the space of possible solutions, training can take place by means of an exhaustive
search in X to find good prototype locations, in principle. This principle has
been proposed to extend SOM and NG [5, 16]. One drawback of this technique
is given by the restriction of flexibility of the prototypes on the one hand, and
the complexity due to the exhaustive search, which is quadratic.

As an alternative, NG has been extended to so-called relational NG in [10].
Data described by pairwise dissimilarities can always be embedded in pseudo-
Euclidean space, provided D is symmetric and has zero diagonal [23]. In pseudo-
Euclidean space a symmetric bilinear form exists which induces the pairwise
dissimilarities of data. As demonstrated in [10], NG can be performed in the
pseudo-Euclidean vector space using this bilinear form. Since the embedding
is usually not given explicitly and computation of an explicit embedding takes
cubic complexity, the prototypes are usually adapted only implicitly based on the
following observations: assume prototypes are represented as linear combinations
of data points

w
j =

∑

i

αjix
i with

∑

i

αji = 1 .

Then dissimilarities can be computed implicitly by means of the formula

d(xi,wj) = ‖xi −w
j‖2 = [D · αj ]i −

1

2
· αt

jDαj

where αj = (αj1, . . . , αjn) refers to the vector of coefficients describing the pro-
totype w

j implicitly.
This way, batch adaptation of NG in pseudo-Euclidean space can be per-

formed implicitly by means of the iterative adaptation:

compute kij := rk(xi,wj) based on d(xi,wj) = [D · αj ]i −
1
2 · αt

jDαj

set αji := exp(−kij/σ
2)/

∑

i exp(−kij/σ
2) for all j and i

This way, prototypes are represented implicitly by means of their coefficient
vectors, and adaptation refers to the know pairwise dissimilarities dij only. We
refer to relational NG (RNG) in the following. Initialization takes place by setting
the coefficients to random vectors which sum up to 1. Note that the assumption
∑

i αji = 1 is automatically fulfilled for optima of NG. Even for general settings,
this assumption is quite reasonable since we can expect that the prototypes lie
in the vector space spanned by the data.

For GLVQ, a kernelized version has been proposed in [24]. However, this
refers to a kernel matrix only, i.e. it requires Euclidean similarities instead of
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general symmetric dissimilarities. In particular, it must be possible to embed
data in a possibly high dimensional Euclidean feature space. Here we transfer
the ideas or RNG to GLVQ, obtaining a valid algorithm for general symmetric
dissimilarities.

We assume that prototypes are given by linear combinations of data in
pseudo-Euclidean space as before. Then, we can use the equivalent characteri-
zation of distances in the GLVQ cost function leading to the costs of relational
GLVQ (RGLVQ):

ERGLVQ =
∑

i

Φ

(

[Dα+]i −
1
2 · (α+)tDα+ − [Dα−]i +

1
2 · (α−)tDα−

[Dα+]i −
1
2 · (α+)tDα+ + [Dα−]i −

1
2 · (α−)tDα−

)

,

where as before the closest correct and wrong prototype are referred to, indicated
by the superscript + and −, respectively. A stochastic gradient descent leads to
adaptation rules for the coefficients α+ and α−: component k of these vectors is
adapted by the rules

∆α+
k ∼ − Φ′(µ(xi)) · µ+(xi) ·

∂
(

[Dα+]i −
1
2 · (α+)tDα+

)

∂α+
k

∆α−

k ∼ − Φ′(µ(xi)) · µ−(xi) ·
∂
(

[Dα−]i −
1
2 · (α−)tDα−

)

∂α−

k

where µ(xi), µ+(xi), and µ−(xi) are as above. The partial derivative yields

∂[Dαj ]i −
1
2 · αt

jDαj

∂αjk

= dik −
∑

l

dlkαjl

After every adaptation step, normalization takes place to guarantee
∑

i αji = 1.
This way, a learning algorithm which adapts prototypes in a supervised manner
similar to GLVQ is given for general dissimilarity data, whereby prototypes are
implicitly embedded in pseudo-Euclidean space.

The prototypes are initialized as random vectors, i.e we initialize αij with
small random values such that the sum is one. It is possible to take class infor-
mation into account by setting all αij to zero which do not correspond to the
class of the prototype.

The resulting classifier represents clusters in terms of prototypes for general
dissimilarity data. Although these prototypes correspond to vector positions in
pseudo-Euclidean space, they can usually not be inspected directly because the
pseudo-Euclidean embedding is not computed directly. Therefore, we use an
approximation of the prototypes after training, substituting a prototype by its
K nearest data points as measured by the given dissimilarity. To achieve a fast
computation of this approximation, we enforce αij ≥ 0 during the updates.

Note that generalization of the classification to new data can be done in the
same way as for RNG: given a novel data point x characterized by its pairwise
dissimilarities D(x) to the data used for training, the dissimilarity to the pro-
totypes is given by d(x,wj) = D(x)t · αj −

1
2 · αt

jDαj . For an approximation of
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prototypes by exemplars, obviously, only the dissimilarities to these exemplars
have to be computed, i.e. a very sparse classifier results.

4 Experiments

We evaluate the algorithm for three benchmark data sets where data are char-
acterized by pairwise dissimilarities:

1. The Copenhagen chromosomes data set constitutes a benchmark from cy-
togenetics [17]. A set of 4,200 human chromosomes from 22 classes (the
autosomal chromosomes) are represented by grey-valued images. These are
transferred to strings measuring the thickness of their silhouettes. These
strings are compared using edit distance with insertion/deletion costs 4.5
[22].

2. The vibrio data set consists of 1,100 samples of vibrio bacteria populations
characterized by mass spectra. The spectra contain approx. 42,000 mass po-
sitions. The full data set consists of 49 classes of vibrio-sub-species. The mass
spectra are preprocessed with a standard workflow using the BioTyper soft-
ware [18]. As usual, mass spectra display strong functional characteristics
due to the dependency of subsequent masses, such that problem adapted
similarities such as described in [2, 18] are beneficial. In our case, similar-
ities are calculated using a specific similarity measure as provided by the
BioTyper software[18].

3. The sonatas data set contains complex symbolic data similar to [21]. It is
comprised of pairwise dissimilarities between 1,068 sonatas from the classical
period (by Beethoven, Mozart and Haydn) and the baroque era (by Scarlatti
and Bach). The musical pieces were given in the MIDI file format, taken from
the online MIDI collectionKunst der Fuge1. Their mutual dissimilarities were
measured with the normalized compression distance (NCD), see [4], using
a specific preprocessing, which provides meaningful invariances for music
information retrieval, such as invariance to pitch translation (transposition)
and time scaling. This method uses a graph-based representation of the
musical pieces to construct reasonable strings as input for the NCD, see [21].
The musical pieces are classified according to their composer.

These three data sets constitute typical examples of non-Euclidean data which
occur in complex systems, such as medical image analysis, mass spectrometry,
and symbolic domains. In all cases, dedicated preprocessing steps and dissim-
ilarity measures for structures are used. The dissimilarity measures are inher-
ently non-Euclidean and cannot be embedded isometrically in a Euclidean vector
space.

We report the results of RNG in comparison to RGLVQ for these data sets.
The number of prototypes is picked according to the number of priorly known
classes, i.e. k = 63 for the chromosomes data (the smallest classes are repre-
sented by only one prototype), k = 49 for the vibrio data set, and k = 5 for

1 http://www.kunstderfuge.com
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Chromosomes Vibrio Sonatas

RNG 0.911(0.004) 0.898(0.005) 0.745(0.002)
RNG (K = 7) 0.915(0.004) 0.993(0.004) 0.762(0.006)
RNG (K = 5) 0.912(0.003) 0.987(0.004) 0.754(0.008)
RNG (K = 3) 0.907(0.003) 0.976(0.004) 0.738(0.006)
RNG (K = 1) 0.893(0.002) 0.922(0.006) 0.708(0.004)

RGLVQ 0.927(0.002) 1.000(0.000) 0.839(0.002)
RGLVQ (K = 7) 0.923(0.005) 1.000(0.000) 0.794(0.005)
RGLVQ (K = 5) 0.917(0.001) 1.000(0.000) 0.788(0.006)
RGLVQ (K = 3) 0.912(0.002) 0.999(0.000) 0.780(0.009)
RGLVQ (K = 1) 0.902(0.000) 0.999(0.001) 0.760(0.008)

Table 1. Results of supervised and unsupervised prototype based classification for
dissimilarity data on three different data sets. Evaluation is done by the classification
accuracy measured in a repeated cross-validation. The standard deviation is given in
parenthesis.

the sonatas data set. The prototypes are initialized randomly, and training is
done for 5 epochs (chromosomes) or 10 epochs (vibrio, sonatas), respectively,
starting from a random initialization of prototypes. The results are evaluated
by the classification accuracy on the test set obtained in a repeated stratified
10-fold cross-validation with two repeats (for chromosomes) or ten repeats (vib-
rio, sonatas), respectively. The results are reported in Tab. 1, choosing different
values K to approximate the prototypes by their nearest K exemplars.

In all cases, a good classification accuracy can be obtained using prototype-
based relational data processing. Interestingly, the results obtained from trained
RNG and RGLVQ classifiers using a K-approximation of the prototypes do not
lead to much decrease of the classification accuracy, i.e. it is possible to represent
the classes in terms of a small number of data points only. This way, the resulting
classifiers can be directly inspected by experts in the field, because every class
can be represented by a small number of exemplary data points.

In all cases, the incorporation of label information into the classifier leads to
an increased classification accuracy of the resulting model, since priorly avail-
able information about class boundaries can better be taken into account in
this setting. Thus, RGLVQ constitutes a very promising method to infer a high
quality prototype-based classifier for general dissimilarity data sets which offers
the possibility to inspect the clustering by directly referring to the prototypes
or their approximation in terms of exemplars, respectively.

5 Conclusions

In this contribution, we have proposed a high quality supervised classification
technique for general dissimilarity data which represents the decisions in the
form of prototypes. Due to this representation, unlike many alternative black-
box techniques, it offers the possibility of a direct inspection of the classifier
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by humans. Further, unlike alternatives which are based on kernels such as the
kernel GLVQ [24] or the relevance vector machine [29], the technique does not re-
quire that data are embeddable into Euclidean space, rather, a general symmetric
dissimilarity matrix can be dealt with. Due to these properties, this technique
seems very suited for interactive data inspection and modeling tasks, since it
allows to deal with general dissimilarities (thus also very complex data or struc-
tural elements, or user-adapted dissimilarity values), and it allows an inspection
by the user (including a direct change of the behavior by including or changing
prototypes).

We demonstrated the accuracy of the technique for three different non-
Euclidean data sets. More experimental evaluation and, in particular, an ap-
plication to very large data sets are the subject of ongoing research. In partic-
ular, applications to spatiotemporal data as they occur in dynamic systems or
robotics seem very interesting, where techniques such as temporal and spatial
alignment offer very popular and powerful dissimilarity measures. Note that the
extension of supervised prototype based classification to general dissimilarities
by means of relational extensions is not restricted to GLVQ. Rather, alternative
formulations based on cost functions such as soft robust LVQ as introduced in
[28] can be extended in a similar way.

One central problem of relational classification as introduced above has not
yet been considered in this contribution: while we arrive at sparse solutions by
using approximations of prototypes, the techniques inherently possess quadratic
complexity because of their dependency on the full dissimilarity matrix. This
can lead to memory problems to store the full matrix, besides a long training
time for large data sets. In applications, probably the biggest bottleneck is given
by the necessity to compute the full dissimilarity matrix. In [8], two different
ways to approximate the computation by linear time techniques which refer
to an only linear subpart of the full dissimilarity matrix have been proposed
and compared in the unsupervised setting: the classical Nyström approximation
[30] to approximate the dissimilarity matrix by a low rank matrix, on the one
side, and patch processing to compress the data consecutively by means of a
prototype-based representation, on the other side. The approximation of RGLVQ
by similar linear time techniques is a matter of ongoing research.
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