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Abstract. We derive a novel derivative based version of kernelized Gen-
eralized Learning Vector Quantization (KGLVQ) as an effective, easy to
interpret, prototype based and kernelized classifier. It is called D-KGLVQ
and we provide generalization error bounds, experimental results on real
world data, showing that D-KGLVQ is competitive with KGLVQ and
the SVM on UCI data and additionally show that automatic parameter
adaptation for the used kernels simplifies the learning.

1 INTRODUCTION

Kernelized learning vector quantization (KGLVQ) was proposed in [9] as an
extended approach of Generalized Learning Vector Quantization (GLVQ) [10]
with the goal to provide non-linear modeling capabilities for learning vector
quantizers and to improve the performance in classification tasks. While the
approach was quite promising it has been used only rarely due to its calculation
complexity. One drawback is the storage of a large kernel matrix and additionally
the storage and update of a combinatorial coefficient matrix Ψ . To address this
problem multiple authors have proposed alternative strategies to deal with non-
linear separable data focusing either on local linear models, the direct integration
of alternative diagonal metrics in the cost functions or by full matrix learning
strategies [6, 2]. Data analysis using kernel methods is a very active field of
research (see e.g. [3]) and was very successful in analyzing non-linear problems.
The underlying parameters for the kernel are thereby determined in general
using cross validation approaches. The obtained models show good generalization
behavior but are in general hard to interpret due to the non-linear mapping of
the data in a kernel space and the fact that the model parameters are identified
based on decision boundary points. Prototype based algorithms provide models
which are calculated on typical points of the data space and are hence easily
interpretable by experts of the field [11].
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In this paper we propose an approach combining the positive aspects of both
domains. We extend the GLVQ by a kernelized, differentiable metric called D-
KGLVQ which allows the non-linear representation of the data, on the other
hand we keep the prototype concept and obtain very compact representation
models. Additionally the presented approach allows for an adaptation of kernel
parameters during the learning procedure.

In Sec. 2 we present a short introduction into kernels and give the notations
used throughout the paper. Subsequently we present the D-KGLVQ algorithm
and evaluate it in comparison to standard GLVQ, the kernelized KGLVQ and a
state of the art SVM. Finally, we conclude with a discussion in Section 4.

2 PRELIMINARIES

We consider a mapping of a data space X to a potentially high dimensional space
F : φ : X −→ F . Then, a kernel function κ : X×X −→ R. can be characterized
by the following necessary and sufficient properties, see [14],

1. κ is either continuous or has a finite domain
2. κ can be computed by decomposition using a certain mapping φ

κφ (x1,x2) = 〈φ (x1) , φ (x2)〉F (1)

From the last equation we have that κ has to be positive semi-definite because
of the properties of the inner product. We now assume that the kernel is differ-
entiable with respect to the arguments. Using the linearity in the Hilbert-space
F , dot products of data with the elements of F generated by X and φ can be
described as FX =

{∑l
i=1 αiκ (xi,y) : l ∈ N,xi ∈ X,αi ∈ R

}
. This property is

used in [9], adapting the αi to derive a kernelization of GLVQ.

3 ALGORITHM

Learning vector quantization was introduced as a generic concept for intuitive
prototype-based classification algorithms [8]. Several variants were developed to
improve the standard algorithms [7, 10, 13]. GLVQ is an extension of the standard
LVQ providing a cost function [10]. It has the benefit that it can be interpreted
as a margin optimization method [5].

All LVQ-algorithms typically constitute distance based approaches. However,
as pointed out in [6] more general similarity measures can be considered with the
remaining restriction of differentiability. Now the idea is to replace such a general
similarity measure by inner products which implies the utilization of kernels. In
this way we obtain a kernel variant of the underlying LVQ algorithms. Focusing
on GLVQ extended by a differentiable kernel we obtain the D-KGLVQ.

3.1 Standard GLVQ

Let cv ∈ L be the label of input v, L a set of labels (classes) with #L = NL
and V ⊆ RDV be a finite set of inputs v with |V | = N the number of data
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points. LVQ uses a fixed number of prototypes (weight vectors) for each class.
Let W = {wr} be the set of all prototypes and cr be the class label of wr.
Furthermore, let Wc= {wr|cr = c} be the subset of prototypes assigned to class
c ∈ L. Further, let d be an arbitrary (differentiable) distance measure in V . We
start with the cost function for GLVQ

CostGLVQ =
∑
v

µ(v) µ(v) =
dr+ − dr−
dr+ + dr−

(2)

which has to be minimized by gradient descent. Thereby, dr+ is determined by

v 7→ s (v) = argminr∈Ad (v,wr) (3)

and dr+ = d (v,ws) with the additional constraint that cv = cr, i.e. dr+ is the
squared distance of the input vector v to the nearest prototype labeled with
cr+ = cv. Analogously, dr− is defined. Note that µ(v) is positive if the vector v
is misclassified and negative otherwise.

The learning rule of GLVQ is obtained taking the derivatives of the above
cost function. Using ∂µ(v)

∂wr+
= ξ+

∂dr+
∂wr+

and ∂µ(v)
∂wr−

= ξ− ∂dr−
∂wr−

with

ξ+ =
2 · dr−

(dr+ + dr−)2
ξ− =

−2 · dr+
(dr+ + dr−)2

(4)

one obtains for the weight updates [6]:

4wr+ = ε+ · ξ+ ·
∂dr+

∂wr+
4wr− = ε− · ξ− · ∂dr−

∂wr−
(5)

3.2 Kernelized GLVQ

We now briefly review the main concepts used in Kernelized GLVQ (KGLVQ)
as given in [9]. The KGLVQ makes use of the same cost function as GLVQ but
with the distance calculations done in the kernel space. Under this setting the
prototypes cannot explicitly be expressed as vectors in the feature space due to
lack of knowledge about the feature space. Instead in [9] the feature space is
modeled as a linear combination of all images φ(v) of the datapoints v ∈ V .
Thus a prototype vector may be described by some linear combination of the
feature space data sample, i.e. wF

j =
∑N
i=1 ψj,iφ(vi), where ψk ∈ R|W |×N is the

combinatorial coefficient vector. The distance in feature space between a sample
φ(vi) and the feature space prototype vector wF

k can be formulated as:

dFi,j = ‖φ(vi)−wF
j ‖2 = ‖φ(vi)−

N∑
i=1

ψj,iφ(vi)‖2

= k(vi,vj)− 2
N∑
m=1

k(vj,vm) · ψj,m +
N∑
s,t

k(vs,vt) · (ψj,sψj,t)



4

The update rules of GLVQ are modified in [9] accordingly, using the kernelized
representation of the distances and prototypes. Subsequently additional deriva-
tives with respect to the ψ parameters are determined in a direct manner. The
algorithm performs all calculations in the feature space using the kernel trick and
updates the model parameters by means of ψ updates. The final model consists
of the pre-calculated kernel matrix and the combinatorial coefficient matrix for
the ψ coefficients. The detailed equations are available in [9].

3.3 Inner product based GLVQ and Kernel GLVQ

Now we replace the squared distance measure in (2) by a differentiable inner
product σ defining a norm dσ.Thus, identifying any subsets by utilization of σ
can be done equivalently (in topological sense) by means of the norm dσ and vice
versa. In context of GLVQ this implies that all margin analysis is still valid also
for inner product based variants of GLVQ. Further, among all inner products
σ those are of particular interest, which are generated by kernels κφ defined in
(1), i.e. σ = κφ. The prototypes are subsequently preimages of its kernel space
counterparts. Here, using the differentiability assumption for the used kernels
provides an alternative easier solution than the one proposed in [9]. Consider
the inner product σ based classifier function

µσ(v) =
σ2
r+
− σ2

r−

σ2
r+

+ σ2
r−

which has to be positive if v is correctly classified, i.e.

v 7→ s (v) = argmaxr∈A

[
(σ (v,wr))2

]
(6)

and σr+ as well σr− play the same role as dr+ and dr− . The cost changes to

CostKGLVQ =
∑
v

µσ(v) . (7)

we get prototype derivatives as:

∂µσ(v)
∂wr±

= ξ±σ
∂σr±

∂wr±
ξ+σ =

4 · σr+ · σ2
r−

(σ2
r+

+ σ2
r−)2

ξ−σ = −
4 · σ2

r+ · σr−

(σ2
r+

+ σ2
r−)2

The final updates for the gradient ascent are obtained as

4wr+ = ε+ · ξ+σ ·
∂σr+

∂wr+
4wr− = ε− · ξ−σ ·

∂σr−

∂wr−
(8)

containing the derivatives of the kernel σ. In case of the usual Euclidean in-
ner product σφ (v,wr) = vT · wr with φ as identity function, one simply gets
∂σφ
∂wr

= v. Yet, in case of a kernel based inner product κφ, the derivative of the
inner product can easily be carried out without any explicit knowledge of the
underlying function φ taking into account the kernel trick property. For example,
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if κφ is the polynomial kernel κφ = 〈v,w〉d we have ∂κφ
∂w = d · 〈v,w〉d−1 · v. For

the rbf-kernel

κφ (v,w,γ) = exp

(
− (v −w)2

2γ2

)
(9)

one obtains ∂κφ
∂w = 1

γ2 exp
(
− (v−w)2

2γ2

)
(v −w) whereas for the exponential kernel

κφ = exp (〈v,w〉) this procedure yields ∂κφ
∂w = exp (〈v,w〉)·v. Further prominent

problem specific differentiable kernels are e.g. the Sobolev-Kernel which is well
suited for the analysis of functional data or the Tanimoto-kernel in the context
of taxonomical data [16],[15]. For further kernel examples we refer to [14].

Generalization error analysis It has been shown in [5, 12] that generalization
bounds for LVQ schemes can be derived based on the notion of the hypothesis
margin of the classifier, independent of the input dimensionality of the classifier,
rather the margin, i.e. the difference of the distance of points to its closest correct
(wr+) and wrong prototype (wr−) determine the generalization ability. This fact
makes the algorithm particularly suitable for kernelization where the generaliza-
tion ability is measured in the feature space F since the nonlinear feature map
as well as the kernel are fixed. However, the feature map Φ typically maps to a
high (probably infinite) dimensional space such that the generalization ability
of classifiers can severely decrease if the generalization ability would depend on
the input dimensionality of the classifier. For GLVQ as a large margin approach,
a straightforward transfer of the bounds as provided in [5] based on techniques
as given in [1] is possible.

Assume a classification into two classes is considered: we refer to the corre-
sponding prototypes by wS

i with S = ±1. Classification takes place by a winner
takes all rule, i.e.

f : v 7→ sgn

(
max
w+
i

{σ(v,w+
i )2} −max

w−
i

{σ(v,w−i )2}

)
(10)

where sgn selects the sign of the term. A trainable D-KGLVQ network corre-
sponds to a function f in this class with N prototypes. We can assume that data
v are limited in size and, thus, also the images Φ(v) and the possible location of
prototype vectors are restricted by a finite size B. We assume that data and their
labeling stem from a (partially unknown) probability distribution P . General-
ization bounds aim at bound the generalization error EP (f) = P (f(v) 6= cv) An
important role will be taken by the margin of a classification. For this purpose,
the sign is dropped in (10) leading to the related function Mf . We fix a positive
value, the margin, ρ and the associated loss

L : R→ R, t 7→

1 if t ≤ 0
1− t/ρ if 0 < t ≤ ρ
0 otherwise
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Then, a connection of the generalization error and the empirical error on m
samples with respect to the loss L can be established with probability δ > 0

ÊLm(f) =
m∑
i=1

L(cv ·Mf (v))/m (11)

simultaneously for all functions f using techniques of [1]:

EP (f) ≤ ÊLm(f) +
2
ρ
Rm(MF ) +

√
ln(4/δ)

2m

Rm(MF ) denotes the so-called Rademacher complexity of the class of functions
implemented by D-KLVQ networks with function Mf . The quantity can be upper
bounded, using techniques of [12] and structural properties given in [1], by a term

O

(
N2/3B3 +

√
ln(1/δ)√

m

)
The quantity B depends on the concrete kernel and can be estimated depend-
ing on the data distribution. Thus, generalization bounds for D-KGLVQ with
arbitrary kernel result which are comparable to generalization bounds for GLVQ.

3.4 Parameter adaptation for Gaussian kernels

Kernel width The width γ of the Gaussian kernel (9) crucially influences the
performance of the classifier. Yet, an alternative is to individualize the kernel
width γr for each prototype wr and, afterwards treat them as parameters to be
learned. As the prototypes itself, this can be done by stochastic gradient ascent
on CostKGLVQ based on ∂CostKGLVQ

∂γr
. For the localized Gaussian kernel (9):

∂µσ(v)
∂γr±

= ξ±σ ·
∂κφ

(
v,wr± ,γr±

)
∂γr±

= ξ±σ ·
κφ

(
v,wr± ,γr±

)
γ3
r±

·
(
v −wr±

)2
.

Relevance learning The Gaussian kernel usually takes as ingredients the Eu-
clidean norm of the vector difference, but more special choices like Sobolev-norms
for functional data are also possible. Here we look at the scaled Euclidean metric

dλ (v,w) =
∑
i

λi · (vi − wi)2
∑
i

λi = 1

As usual in relevance learning [6], the scaling parameters λi can be adapted
with respect to the classification task at hand by gradient learning, leading to a
gradient ascent but now as ∂CostKGLVQ

∂λi
. Considering ∂µσ(v)

∂λi
we obtain for wr±

∂µσ(v)
∂λi

= ξ+σ ·
∂κφ

(
v,wr± ,γr±

)
∂λi

= −ξ+σ ·
κφ

(
v,wr± ,γr±

)
2γ2

(
vr±,i − wr±,i

)2
We denote this approach as Kernelized Relevance GLVQ (D-KGRLVQ). 4.
4 Extendable to matrix learning [2], giving Kernelized Matrix GLVQ (D-KGMLVQ)
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4 EXPERIMENTS

We present a comparison for 5 benchmark datasets 3 derived from the UCI
[4] and the other 2 from [11]. We analyze the performance of GLVQ, KGLVQ,
D-KGLVQ and SVM using Radial Basis Function (RBF) kernels. The σ param-
eter of the RBF kernel has been optimized using a separate test set, evaluated
in a 3-fold cross validation in a range of {1e−6, 1e−5, . . . , 1e6} and fine tuned
for D-KGLVQ using the proposed gamma-learning scheme. We observed an im-
provement of the D-KGLVQ in the generalization of around 1%. For KGLVQ
the parameter settings have been found to be very sensitive while for D-KGLVQ
and SVM the specific setting of the sigma parameter was quite robust.

GLVQ, D-KGLVQ and KGLVQ have been trained with 1 prototype per class.
In comparison to GLVQ the other methods show improved results demonstrated
by the mean errors over the datasets see Table 1. We find that the performance
of D-KGLVQ and KGLVQ are quite similar, and both are competitive to SVM.
The D-KGLVQ allows for metric adaptation like in [11] to e.g. identify rele-

Dim Dataset size GLVQ D-KGLVQ KGLVQ SVM
Error/#PT Error/#PT Error/#PT Error/#SV

Breast Cancer 32 569 26.19/2 08.00/2 07.30/2 02.64/74
Diabetes 8 768 28.26/2 30.00/2 27.00/2 23.32/370
Heart 13 270 25.93/2 17.00/2 18.81/2 15.43/102
Colorectal Cancer 1408 95 23.16/2 16.25/2 17.87/2 11.58/57
Lung Cancer 1408 100 34.00/2 29.00/2 27.50/2 25.00/65
Mean 25.51/2 20.05/2 19.68/2 15.59/134

Table 1. Generalization error and model complexity (averaged) for the datasets.

vant individual features in the original data space. Individual prototypes can be
analyzed with respect to their receptive fields. Sets of data points, represented
by one prototype in a high-dimensional space can be related back to belong to
each other and can be considered to be similar in its characteristics. This is not
possible using SVM models because their model parameters are extreme points
rather prototypes. Considering the model complexity we find that with only 2
prototypes the LVQ methods perform quite well. Especially for D-KGLVQ a very
compact model is obtained whereas for KGLVQ the model contains additionally
the kernel matrix and the combinatorial coefficient matrix. For SVM the per-
formance is a bit better than for all other methods but with a large number of
support vectors in the model.

5 CONCLUSIONS

In this paper we derived a novel kernelized learning vector quantizer employing
differentiable kernel functions. We provided generalization error bounds analo-
gous to that used in [5]. We presented experimental results on real world datasets
which showed that D-KGLVQ is competitive with both KGLVQ and SVM. In
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terms of computational complexity the demands of D-KGLVQ during training
are significantly lower with respect to KGLVQ because no large combinatorial
coefficient matrix has to be calculated and stored. As pointed out in Section
2 the D-KGLVQ can be easily extended to use problem specific parametrized
kernel functions. The parameters of the kernel functions can also be subject of
the optimization provided by D-KGLVQ. The solutions generated by D-KGLVQ
are in the kernel space but the model parameters keep the prototype concept
and are therefore compact and easier to interpret than typical kernel models.
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