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Abstract. Topographic mapping offers an intuitive interface to inspect
large quantities of electronic data. Recently, it has been extended to data
described by general dissimilarities rather than Euclidean vectors. Unlike
its Euclidean counterpart, the technique has quadratic time complexity
due to the underlying quadratic dissimilarity matrix. Thus, it is infeasible
already for medium sized data sets. We introduce two approximation
techniques which speed up the complexity to linear time algorithms: the
Nyström approximation and patch processing, respectively. We evaluate
the techniques on three examples from the biomedical domain.

1 Introduction

In many application areas such as bioinformatics, technical systems, or the web,
electronic data sets are increasing rapidly with respect to size and complexity.
Automated analysis tools offer indispensable techniques to extract relevant infor-
mation from these data. Popular approaches provide diverse techniques for data
structuring and data inspection. Visualization or clustering still constitute one of
the most common tasks in this context. Topographic mapping such as offered by
the self-organizing map (SOM) [12] and its statistic counterpart, the generative
topographic mapping (GTM) [3] provide simultaneous clustering, data visual-
ization, compression by means of prototypes, and inference of the topographic
structure of the data manifold in one intuitive framework. For this reason, topo-
graphic mapping constitutes a popular tool in diverse areas ranging from remote
sensing or biomedical domains up to robotics or telecommunication [12].

Like many classical machine learning techniques, SOM and GTM have been
proposed for Euclidean vectorial data. Modern data are often associated to ded-
icated structures which make a representation in terms of Euclidean vectors
difficult: biological sequence data, text files, XML data, trees, graphs, or time
series, for example. These data are inherently compositional and a feature repre-
sentation leads to information loss. As an alternative, a dedicated dissimilarity
measure such as pairwise alignment, or kernels for trees or graph can be used as
the interface to the data. In such cases, machine learning techniques which can
deal with pairwise similarities or dissimilarities have to be used.

Quite a few extensions of topographic mapping towards pairwise similari-
ties or dissimilarities have been proposed in the literature. Some are based on
a kernelization of existing approaches [4, 18], while others restrict the setting
to exemplar based techniques [5, 13]. Some techniques built on alternative cost
functions and advanced optimization methods [16, 9]. A very intuitive method
which directly extends prototype based clustering to dissimilarity data has been
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proposed in the context of fuzzy clustering [11] and later been extended to to-
pographic mapping such as SOM and GTM [10, 8]. Due to its direct correspon-
dence to standard topographic mapping in the Euclidean case, we will focus on
the latter techniques. Further, we restrict to the GTM because of its excellent
visualization capabilities and its foundation as a stochastic model.

One drawback of machine learning techniques for dissimilarities is given by
their high computational costs: since they depend on the full (quadratic) dis-
similarity matrix, they have squared time complexity; further, they require the
availability of the full dissimilarity matrix, which is even the more severe bottle-
neck if complex dissimilarities such as e.g. alignment techniques are used. This
fact makes the methods unsuitable already for medium sized data sets.

Here, we propose two different approximations to speed up GTM for dissim-
ilarities: the Nyström approximation has been proposed in the context of kernel
methods as a low rank approximation of the matrix [17]. In [7], preliminary work
extends these results to dissimilarities. In this contribution, we demonstrate that
the technique provides a suitable linear time approximation for GTM for dissim-
ilarities. As an alternative, patch processing has been proposed in the context of
topographic mapping of Euclidean data [1] and later been extended to clustering
of dissimilarities [10]. Here we transfer the technique to GTM for dissimilarities,
resulting in a linear time method which is even suited if data are not i.i.d. i.e. a
representative subpart of the matrix is not accessible priorly.

2 Relational Topographic Mapping

The GTM has been proposed in [3] as a probabilistic counterpart to SOM. It
models given data x ∈ RD by a constraint mixture of Gaussians induced by a
low dimensional latent space. More precisely, regular lattice points w are fixed
in latent space and mapped to target vectors w 7→ t = y(w,W) in the data
space, where the function y is typically chosen as generalized linear regression
model y : w 7→ Φ(w) ·W induced by base functions Φ such as equally spaced
Gaussians with bandwidth σ. Every latent point induces a Gaussian

p(x|w,W, β) =

(
β

2π

)D/2

exp

(
−β

2
‖x− y(w,W)‖2

)
(1)

A mixture of K modes p(x|W, β) =
∑K

k=1
1
K p(x|wk,W, β) is generated. GTM

training optimizes the data log-likelihood with respect to W and β. This can be
done by an EM approach, iteratively computing responsibilities

Rkn(W, β) = p(wk|xn,W, β) =
p(xn|wk,W, β)p(wk)∑
k′ p(xn|wk′ ,W, β)p(wk′)

(2)

of component k for point number n, and optimizing model parameters by means
of the formulas

ΦTGoldΦWT
new = ΦTRoldX (3)

for W, where Φ refers to the matrix of base functions Φ evaluated at points wk,
X to the data points, R to the responsibilities, and G is a diagonal matrix with
accumulated responsibilities Gnn =

∑
nRkn(W, β). The bandwidth is given by

1

βnew
=

1

ND

∑
k,n

Rkn(Wold, βold)‖Φ(wk)Wnew − xn‖2 (4)
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where D is the data dimensionality and N the number of points. GTM is initial-
ized by aligning the lattice image and the the first two data principal components.

GTM has been extended to general dissimilarities in [8]. We assume that
data x are given by pairwise dissimilarities dij = ‖xi−xj‖2 with corresponding
dissimilarity matrix D, where the vector representation x of the data is unknown
and ‖ · ‖2 can be induced by any symmetric bilinear form. As pointed out in
[11, 10], if prototypes are restricted to linear combinations of the form tk =∑N

n=1 αknxn with
∑N

n=1 αkn = 1, the prototypes tk can be represented indirectly
by means of the coefficients αk and distances can be computed by

‖xn − tk‖2 = [Dαk]n −
1

2
·αT

k Dαk (5)

This constitutes the key observation to transfer GTM to relational data D.
As before, targets tk induce a Gaussian mixture distribution in the data

space. They are obtained as images of points w in latent space via a gener-
alized linear regression model where, now, the mapping is to the coefficients
y : wk 7→ αk = Φ(wk)·W with W ∈ Rd×N . The restriction

∑
n[Φ(wk)·W]n = 1

is automatically fulfilled for optima of the data log likelihood. Hence the like-
lihood function can be computed based on (1) and the distance computa-
tion can be performed indirectly using (5). An EM optimization scheme leads
to solutions for the parameters β and W, and an expression for the hid-
den variables given by the responsibilities of the modes for the data points.
Algorithmically, Eqn. (2) using (5) and the optimization of the expectation∑

k,nRkn(Wold, βold) ln p(xn|wk,Wnew, βnew) with respect to W and β take
place in turn. The latter yields model parameters which can be determined in
analogy to (3,4) where, now, functions Φ map from the latent space to the space
of coefficients α and X denotes the unity matrix in the space of coefficients. We
refer to this iterative update scheme as relational GTM (RGTM). Initialization
takes place by referring to the first MDS directions of D.

3 The Nyström approximation

We shortly review the Nyström technique as presented in [17]. By the Mercer
theorem kernels k(x,y) can be expanded by orthonormal eigenfunctions φi and
non negative eigenvalues λi in the form k(x,y) =

∑∞
i=1 λiφi(x)φi(y). The eigen-

functions and eigenvalues of a kernel are the solution of
∫
k(y,x)φi(x)p(x)dx =

λiφi(y), which can be approximated based on the Nyström technique by sam-
pling xk i.i.d. according to p: 1

m

∑m
k=1 k(y,xk)φi(xk) ≈ λiφi(y). Using the ma-

trix eigenproblem K(m)U(m) = U(m)Λ(m) of the m×m Gram matrix K(m) we
can derive the approximations for the eigenfunctions and eigenvalues

λi ≈
λ
(m)
i

m
, φi(y) ≈

√
m

λ
(m)
i

kyu
(m)
i , (6)

where u
(m)
i is the ith column of U(m). Thus, we can approximate φi at an

arbitrary point y as long as we know the vector ky = (k(x1,y), ..., k(xm,y))T .
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One well known way to approximate a n × n Gram matrix, is to use a
low-rank approximation. This can be done by computing the eigendecompo-
sition of the kernel K = UΛUT , where U is orthonormal and Λ is diago-
nal with Λ11 ≥ Λ22 ≥ ... ≥ 0, and keeping only the m eigenspaces which
correspond to the m largest eigenvalues of the matrix. The approximation is
K ≈ Un,mΛm,mUm,n, where the indices refer to the size of the corresponding
submatrix. The Nyström method can approximate a kernel in a similar way,
without computing the eigendecomposition of the whole matrix, which is an
O(n3) operation. For a given n × n Gram matrix K we randomly choose m
rows and respective columns. We denote these rows by Km,n. Using the formu-

las (6) we obtain K̃ =
∑m

i=1 1/λ
(m)
i · KT

m,nu
(m)
i (u

(m)
i )TKm,n, where λ

(m)
i and

u
(m)
i correspond to the m ×m eigenproblem. Thus we get, K−1m,m denoting the

pseudoinverse,

K̃ = KT
m,nK−1m,mKm,n. (7)

This approximation is exact, if Km,m has the same rank as K.
For dissimilarity data, a direct transfer is possible, see [7] for preliminary

work on this topic. A symmetric dissimilarity matrix D is a normal matrix and
according to the spectral theorem can be diagonalized D = UΛUT with U being
a unitary matrix whose column vectors are the orthonormal eigenvectors of D
and Λ a diagonal matrix with the eigenvalues of D, which can be negative for
non-Euclidean distances. Therefore the dissimilarity matrix can be seen as an

operator d(x,y) =
∑N

i=1 λiφi(x)φi(y) where λi ∈ R correspond to the diagonal
elements of Λ and φi denote the eigenfunctions. The only difference to an expan-
sion of a kernel is that the eigenvalues can be negative. All further mathematical
manipulations can be applied in the same way.

Using the approximation (7) for the distance matrix, we can apply this result
for RGTM. It allows to approximate (5) in the way

‖xn − tk‖2 ≈
[
DT

m,n

(
D−1m,m (Dm,nαk)

)]
n
− 1

2
·
(
αT

k DT
m,n

)
·
(
D−1m,m (Dm,nαk)

)
(8)

with a linear submatrix of m rows and a low rank matrix Dm,m corresponding to
the eigenproblem. This computation is O(m2n) instead of O(n2), i.e. it is linear
in the number of data points n, assuming fixed approximation m. The last state-
ment holds for constant data space complexity, by means of the eigenproblem
and has to be adapted otherwise.

A benefit of the Nyström technique is that it can be decided priorly which
linear parts of the dissimilarity matrix will be used in training. A drawback is
that a good approximation can only be achieved if the rank of Dm,m is close to
the rank of D as much as possible, i.e. the chosen subset should be representative.

4 Patch Processing

Patch processing takes a different perspective and processes data consecutively
in patches of small size m. It has been proposed in [10] in the context of clustering
dissimilarity data. Here we present an extension to RGTM.

The principled idea is to compress all already seen data by means of the
prototypes as found by RGTM. These prototypes are taken as additional inputs
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init:
E := ∅, number of patch p := 1

repeat:
read patch of size m, i.e. Pm,m := {dij | p ·m < i, j ≤ (p + 1) ·m}
compute dissimilarities of patch and E,

i.e. Pm,|E| := {di,j | p ·m < i ≤ (p + 1) ·m,xj ∈ E}
compute dissimilarities in E, i.e. P|E|,|E| := {dij | xi,xj ∈ E}

this gives the matrix P :=

(
Pm,m Pm,|E|
P t
m,|E| P|E|,|E|

)
set the multiplicities to mi :=

{
1 if p < i ≤ (p + 1)m
mi if (xi,mi) ∈ E

perform RGTM with multiplicities for P
set E := union of the k nearest data points in P for every prototype tj

with multiplicities according to their receptive fields

Fig. 1. Principled algorithm for patch RGTM

in the next step in the same way as ‘standard’ points. Since they compress several
data points, they are counted with multiplicities according to the size of their
receptive fields. This way, eventually, all data points are processed.

Two extensions are necessary to apply this scheme: we need an efficient re-
alization of RGTM if some data are contained in the training set more than
once, i.e. data point xi comes with multiplicity mi. Further, since prototypes in
RGTM are represented only implicitly by means of coefficient vectors, an effi-
cient approximation of prototype tj by means of a priorly fixed number of data
points needs to be chosen. Both issues can be dealt with:

– Extension of RGTM to multiple data points: Multiple data points affect
Eqns. 3, 4. In Eqn. 3, the matrices G and R need to weight the responsi-
bilities according to the multiplicities of the data. In Eqn. 4, the summands
are weighted by the multiplicities and N is changed accordingly. Similarly,
the MDS initialization of RGTM can be extended to multiplicities.

– Approximation of prototypes by a finite number of points: fixing the quality
k of the approximation, we represent a prototype tj by its k closest data
points xi. The union of these data points is taken and every data point is
weighted according to the sum of multiplicities of its receptive field.

The algorithm of patch RGTM is displayed in Fig. 1. Since all data are taken
into account either directly in the current patch or indirectly represented by the
prototypes, processing of data sets in non i.i.d. order is possible. Since it becomes
apparent only during training which parts of the dissimilarity matrix are used
for training, it is required to compute dissimilarities during training on demand.
Only a linear subpart of the dissimilarity corresponding to the size m needs to
be considered, hence the algorithm is O(m2n) instead of O(n2).

5 Experiments

We evaluate the techniques on three benchmarks from the biomedical domain:
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– The Copenhagen Chromosomes data set constitutes a benchmark from cyto-
genetics [14]. A set of 4200 human chromosomes from 22 classes (the autoso-
mal chromosomes) are represented by grey-valued images. These are trans-
ferred to strings measuring the thickness of their silhouettes. These strings
are compared using edit distance with insertion/deletion costs 4.5.

– The vibrio data set consists of 1100 samples of vibrio bacteria populations
characterized by mass spectra. The spectra encounter approx. 42000 mass
positions. The full data set consists of 49 classes of vibrio-sub-species. The
mass spectra are preprocessed with a standard workflow using the BioTyper
software [15]. According to the functional form of mass spectra, dedicated
similarities as provided by the BioTyper software are used [15].

– Similar to an application presented in [13], we extract roughly 11000 protein
sequences of the SwissProt data base according to 32 functional labels given
by PROSITE [6]. Sequence alignment is done using FASTA [19].

For the chromosomes and vibrio data sets, we use 20 × 20 prototypes, 10 × 10
base functions with bandwidth 1, and 50 epochs for training. For patch RGTM,
we use 10 patches with a k-approximation with k ∈ {1, 3, 5}. For the Nyström
approximation, two different fractions of landmarks are tested.

The results of a ten-fold cross-validation with ten repeats are reported in the
Tables 1 and 2. The classification accuracy is evaluated using posterior labeling
of the prototypes, the standard deviation is given in parenthesis. Further, the
CPU time in seconds is reported, the relative speed up as compared to the
(not accelerated) RGTM is given in parenthesis. We test the robustness of the
techniques with respect to non i.i.d. data by sorting data according to the given
class labeling, with only 30 percent random sampling (referred to as ’streaming
data’), versus standard random ordering.

Interestingly, the Nyström technique as well as patch processing lead to im-
proved speed (up to a factor 8) on the Chromosome data already for this compa-
rably small data set. The classification accuracy for this data set is only slightly
reduced (by less than 5%) for appropriate settings. Obviously, the Nyström tech-
nique requires representative sampling while patch processing is more robust
against non i.i.d. ordering of data. For the Vibrio data set, no speed up can be
achieved using patch processing and the results are massively worse in this case
probably due to the fact that a compression of data by few prototypes is not
adequately possible. In contrast, the Nyström approximation seems well suited.

For the SwissProt data set we used 40 × 40 prototypes and bandwidth 0.2.
Patch RGTM is done with 11 patches. The results of a ten-fold cross-validation

Chromosome Classification accuracy Streaming data CPU time in sec
RGTM 0.916 (0.003) 2650

RGTM (Nyström 0.01) 0.878 (0.022) 0.626(0.164) 394 (6.7)
RGTM (Nyström 0.1) 0.552 (0.065) 0.365(0.210) 619 (4.3)

Patch RGTM (k=1) 0.845 (0.005) 0.737 (0.023) 318 (8.3)
Patch RGTM (k=3) 0.851 (0.003) 0.777 (0.013) 523 (5.1)
Patch RGTM (k=5) 0.867 (0.004) 0.804 (0.013) 615 (4.3)

Table 1. Results of the methods on the Chromosome data set, standard deviation and
speed up are given in parentheses
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Vibrio Classification accuracy Streaming data CPU time in sec
RGTM 0.947 (0.005) 78

RGTM (Nyström 0.05) 0.927 (0.005) 0.652 (0.043) 32 (2.4)
RGTM (Nyström 0.1) 0.937 (0.010) 0.590 (0.053) 36 (2.2)

Patch RGTM (k=1) 0.677 (0.020) 0.421 (0.048) 77 (1)
Patch RGTM (k=3) 0.833 (0.012) 0.592 (0.043) 107 (0.7)
Patch RGTM (k=5) 0.889 (0.010) 0.648 (0.044) 149 (0.5)

Table 2. Results on the Vibrio data set reporting standard deviation and speed up in
parentheses

with five repeats (only one repeat for RGTM) and the CPU time required to
train the map once for the full data set are reported in Table 3. Apparently,
the Nyström approximation does not deteriorate the accuracy of the map, while
patch processing is not suited due to the incompressibility of the data by few
prototypes.

This data set is of medium size, such that the speed up of the Nyström ap-
proximation becomes apparent; it accounts for a factor almost 10. Interestingly,
also the required memory is widely reduced: in the given example, assuming dou-
ble precision, about 500 Megabyte are necessary to store the full dissimilarity
matrix as compared to about 4.5 Megabyte for the dissimilarities referred to by
the Nyström approximation. Using the same number of landmarks and assuming
a standard RAM of 12 Gigabyte, this technique would allow to store the required
dissimilarities of almost 30 million data points when using the Nyström approx-
imation as compared to only 30 thousand data if the full dissimilarity matrix
is required. The speed-up would be in the same order of magnitude due to the
dominating factor required to compute the pairwise dissimilarities. Extensions
of the technique to a larger fraction of the data set are the subject of ongoing
work.

6 Conclusions

Relational GTM offers a highly flexible tool to simultaneously cluster and or-
der dissimilarity data in a topographic mapping. Due to the dependency on the
full matrix, the method requires squared time complexity and memory to store
the dissimilarities. We have proposed two speed-up techniques which both lead
to linear effort: patch processing and the Nyström approximation. Using three
examples from the biomedical domain, we demonstrated that already for compa-
rably small data sets the techniques can greatly improve speed while not losing
too much information contained in the data.

SwissProt Classification Accuracy CPU time in sec
RGTM 0.596 53135

RGTM (Nyström 0.009) 0.630 (0.017) 5892 (9)

Patch RGTM (k=5) 0.388 (0.006) 18623 (2.85)

Table 3. Results on the SwissProt data set; standard deviation, speed up in parentheses
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