
Sparse Kernelized Vector Quantization
with Local Dependencies

Frank-Michael Schleif

Abstract— Clustering approaches are very important meth-
ods to analyze data sets in an initial unsupervised setting.
Traditionally many clustering approaches assume data points
to be independent. Here we present a method to make use
of local dependencies to improve clustering under guaranteed
distortions. Such local dependencies are very common for data
generated by imaging technologies with an underlying topo-
graphic support of the measured data. We provide experimental
results on artificial and real world data of clustering tasks.

I. INTRODUCTION

The dramatic growth in data generating applications and
measurement techniques has created many high-volume and
multi-dimensional data sets. Most of them are stored digitally
and need to be efficiently analyzed to be of use. Clustering
methods are very important in this setting and have been
extensively studied in the last decades [6]. For most of
these approaches you need to specify the number of clusters
in advance and the obtained models are hard to interpret.
Additionally they ignore potential available meta-knowledge
like some kind of data dependencies. Novel imaging tech-
nologies for high dimensional measurements like in satellite
remote sensing of life science imaging generate such large
sets of data. Additionally for such type of data the labeling
of individual measurement points is costly. Clusterings are
therefore used in such settings to obtain full labellings of
the data sets based on the cluster assignments. Traditionally
approaches like single-linkage clustering or k-means are
employed but also more novel hierarchical methods adapted
for large data processing are used [16]. Most of these
approaches consider the data points to be independent and
do not or only minor integrate meta information of the data
or the underlying topographic grid structure of these high-
dimensional measurements. This information can improve
the clustering because we expect that neighbored points
on the grid are dependent and hence potentially similar in
the data-space. Beside of the grid dependencies also other
dependencies between datapoints are interesting, because
clustering of high dimensional data is complex and useful
constraints are desired.

Recently in [18] a supervised learning method has been
proposed, to efficiently process data with local dependen-
cies. Here we consider an unsupervised setting with local
dependencies where potentially only some of the data points
are labeled. Data of such type can be observed in the field
of satellite remote sensing [15], medical imaging [18], [3]

Frank-Michael Schleif is with the Department of Technology, University
of Bielefeld, Universitätsstrasse 21-23, 33615 Bielefeld, Germany, (email:
fschleif@techfak.uni-bielefeld.de).

or in a simpler setting for standard imaging. Beside a good
clustering also compact, sparse cluster models are of interest.

In this paper, we propose a new algorithm based on a
kernelized vector quantizer algorithm [17] (KVQ) which will
be adapted and extended to provide sparse models and to
deal with local data dependencies. The idea is to modify
the original problem definition by additional constraints and
to replace the cost function by a more appropriate setting.
Our model is formed by a number of prototypical vectors
identified from the dataspace.

The rest of the paper is organized as follows. In section II
we give preliminary settings used throughout the paper and
review some kernel based prototype clustering approaches.
Subsequently we introduce our kernel vector quantizer with
local dependencies (LKVQ). In section IV we show the
efficiency of the novel approach by experiments on artificial
and real life data. Finally, we conclude with a discussion of
the results and open issues.

II. PRELIMINARIES

We consider a clustering method C providing a cluster
model f̂ with a number of so called codebook vectors or pro-
totypes summarized in a codebook W and meta-parameters
ζ. Prototypes are members of the original dataspace and
allow easier interpretation and analysis of the obtained model
than by use of alternative clustering approaches.

We consider a dataset D with vectors ~v ∈ V with V ⊂ Rd
and d the number of dimensions. The number of samples
is given as N = |V |. Further we introduce prototypes ~w
living in the same space as the dataspace. Prototypes are
typically indexed by i and data-points by j. KVQ and LKVQ
employ a kernel based distance measure φ mapping the data
similarities of some distance measure D to {0, 1} as detailed
subsequently.

There are some prototype methods which are kernel based,
now briefly reviewed for later comparison with KVQ and our
method.

A. Kernel Neural Gas

Kernel neural gas (KNG) as introduced in [13] is a
kernelized variant of the classical Neural Gas (NG) algorithm
[9] with an optimization scheme employing neighborhood
cooperation. Further KNG assumes the availability of a simi-
larity matrix or Gram matrix S with entries sij characterizing
the similarity of points numbered i and j. This should be
positive semi-definite to allow an interpretation by means
of an embedding in an appropriate Hilbert space, i.e. sij =
Φ(~vi)

tΦ(~vj) for some feature function Φ. It can, however,

algorithmically be applied to general similarity matrices. The
key idea is to identify prototypes with linear combinations
in the high dimensional feature space

~wj =
∑
l

αjlΦ(~vl) (1)

with αjl as scaling coefficients. Then, squared distances can
be computed based on the Gram matrix as follows:

d(Φ(~vi), ~wj) = sii − 2
∑
l

αjlsil +
∑
ll′

αjlαjl′sll′ (2)

In [13] this approach is used to kernelize the original NG
within a gradient descent optimization, employing the kernel
trick.

B. Relational Neural Gas

Relational neural gas (RNG) as introduced in [5] assumes
that a symmetric dissimilarity matrix D with entries dij
describing pairwise dissimilarities of data is available. In
principle, it is very similar to KNG with respect to the
general idea. There are two differences: RNG is based on
dissimilarities rather than similarities, and it solves the result-
ing cost function using a batch optimization with quadratic
convergence as compared to a stochastic gradient descent.

As shown in [12], there always exists a so-called pseudo-
Euclidean embedding of a given set of points characterized
by pairwise symmetric dissimilarities by means of a mapping
Φ, i.e. a real vector space and a symmetric bi-linear form
(with probably negative eigenvalues) such that the dissim-
ilarities are obtained by means of this bi-linear form. As
before, prototypes are restricted to linear combinations

~wj =
∑
l

αjlΦ(~vl) with
∑
l

αjl = 1 (3)

We can put the restriction that the sum always leads to one.
Under this constraint, one can see that dissimilarities can be
computed by means of the formula

d(Φ(~vi), ~wj) = [Dtαj]i −
1

2
· αtj (4)

where [·]i refers to component i of the vector. This allows a
direct transfer of batch NG to general dissimilarities by the
following iterations

determine kij based on d(Φ(~vi), ~wj) (5)

αjl := hσ(klj)/
∑
l

hσ(klj) (6)

where hσ(t) = exp(−t/σ) is a neighborhood function which
exponentially scales the neighborhood range, and kij denotes
the rank of prototype ~wj with respect to ~vi, i.e. the number
of prototypes ~wk with k 6= j which are closer to ~vi as mea-
sured by some distance measure D. This algorithm can be
interpreted as neural gas in pseudo Euclidean space for every
symmetric dissimilarity matrix D. If negative eigenvalues are
present, however, convergence is not always guaranteed, all
though it can mostly be observed in practice [5].

III. MODEL
Our objective is to summarize a larger set of data by a

vector quantization (VQ) approach [4]. We represent a set
of data vectors {~v1, . . . , ~vl} ∈ V by a reduced number of
m prototypes or codebook vectors { ~w1, . . . , ~wm} ∈W with
the same dimensionality as the original dataspace V and the
average distortion is minimized according to a winner takes
all (wta) scheme [7]. For an l2 metric we consider:

EV Q =

l∑
i=1

||~vi − ~wj ||2 (7)

with ~wj = argmin
~wk

||~vi − ~wk||2 = wta(~vi). Following the

concept of [17] the goal is to find a minimal codebook min-
imizing (7) with the constrained that the prototypes are part
of V and the distance of the prototypes to datapoints limited
by a radius parameter R, guaranteeing a maximal level of
distortion. The problem specific radius parameter R has to
be provided by the user. Roughly, R defines the number of
cluster in the data, but is typically more easier accessible
from knowledge of typical data similarities than the number
of clusters. This can be efficiently formulated as a linear
programing problem. While this approach is very promising
the solutions of the approach in [17] are not very sparse and
limited to rather small sets V . As a further criticism of KVQ
the prototypes are not necessary representative. Actually the
prototype solutions of KVQ may still contain points which
are borderline points of the solution, they are valid but not
prototypical and the solution may still not be very sparse due
to the considered linear, real weighted optimization problem.
To overcome this we modify the considered cost function
and formulate the problem as a binary optimization problem.
Further, taking the local topology into account, we are able
to provide approximate solutions also for very large sets V
in reasonable time and can potentially improve the labeling
of unknown points.

A. Clustering via binary linear programming

Suppose we are given data

{~v1, . . . , ~vN} ∈ V

where V is our data space equipped with an additional
dependency relation ci,k ∈ [0, 1] for each pair (~vi, ~vk) with
ci,k ∈ CN×N and a distance measure D defined over V
and potentially a further distance measure D′ defined on V
generating C. Following [17] we consider a kernel k:

k : V × V → R

in particular

k(~v,~v′) = 1(~v,~v′)∈V×V :D(~v,~v′)≤R (8)

we consider also the empirical kernel map

φl(~v) = (k(~v1, ~v), . . . , k(~vl, ~v))

We are now looking for a vector ~x ∈ Rl such that:

x>φl(~v) > 0 (9)

is true ∀ i = 1, . . . , l. Then each point ~vi is within a distance
R of some prototype ~wj with a positive weight xj > 0 [17].
The obtained ~wj define a codebook providing an approxima-
tion of V up-to an error R measured in Rd. To avoid trivial
solutions the optimization problem is reformulated in [17]
to:

min
x∈R

||x||1 (10)

s.t. x>φl(~vi) ≥ 1 (11)

The original problem in Eq. (10) considers all points ~v
equally as long as the constraints are fulfilled. Hence for
equivalent { ~vk, . . . , ~vm} the weights with {xk, . . . , xm}
are not necessary sparse and the final prototype becomes
arbitrary. To overcome this problem we reformulate the
optimization problem as follows:

min
x∈R

||f>x||1 (12)

s.t. x>φl(~vi) ≥ 1 (13)
x ∈ [0, 1] (14)

leading to a binary, integer optimization problem1 and a
weighting of each ~vk by a factor (cost) fk. To calculate fk
we consider the dependencies C(k, ·) using radius R′ and
calculate the median distance of ~vk to all points ~vm with
C(k,m) ≥ 0 with a fixed offset of 1 and a self dependence of
1. If no dependencies are given we may still able to provide
some meaningful f by choosing f as e.g. the median distance
with respect to the data or a randomly sampled subset thereof.

This definition ensures on the one hand-side maximal spar-
sity of the model but also that the prototypes are somehow
typical (measured by the median) with respect to dependent
points measured with distance D′.

For our experiments we assume that all data are located
or measured on a grid. In this case the local dependencies C
can be defined e.g. on this given grid structure. Further, using
this additional information we can split the optimization
problems into patches such that Eq. (12) is calculated only
on a part of the data, e.g. a band of up-to some 1000 points
of V defined by the grid2. This leads to a very efficient
optimization problem also in case of very large data sets. The
combination of all these local solutions to the final solution
is still optimal but maybe slightly over-defined. The solution
could be more sparse but for our experiments we found that
this is no significant problem. The final model can be used
to assign new points ~vk to its nearest prototypes according
to the wta scheme. If a labeling is available the datapoints
~vk can be labeled according to the labeling of the prototypes
they belong to. Alternatively and similar as within [18] we
may take the local dependencies into account to re-weight
the original labeling. If the closest prototype of ~vk is labeled

1Linear programming is solvable in polynomial time, which is not sure
for integer programming, so it is more demanding, but in our studies the
calculation times were comparable short.

2In case of grid structured data it would of course also be possible to
split the dataset in advance and combine the solutions manually.

Fig. 1. The plot shows an output of LKVQ (R = 1.5, R′ = 0.5)
for a simple example explaining the dependency concept. Two clusters
of rectangles and diamonds are shown with lines connecting the depen-
dent entries. Using standard KVQ the prototypes are identified as the
points {(1.2, 1.5); (1.8, 1.5)} and {(3.5, 3); (4, 3.2)}. Using LKVQ the
prototypes are (1.2, 1.5) and (3.5, 3) - highlighted by larger symbols.
Additionally using θ = 0.7 LKVQ could correct the label of point (1.8, 1.5)
to diamond.

with Lj , we label ~vk in accordance to the labeling scheme
L:

L(~wj) = Lj for prototypes (15)

L(~vk) = θ · Lj + (1− θ) ·
∑
t

L(wta(~vt))

C(k, t)−1
(16)

and θ a parameter typically θ = 0.7. Using this approach
a wrong labeling of a point can be potentially corrected by
taking the labeling of the dependent neighbors into account.
It should be noted again that by the modification of the
cost function this dependency relation is also included on
the optimization process. The effect of the local dependency
optimization is schematically shown in Figure 1. Exemplary
we consider two clusters shown in a 2D data space. The data
have additionally a dependency indicated by lines between
the points. Now assume that points {3, 5, 6, 7, 8} are depen-
dent, e.g. are neighbored on the grid, and also the points
{1, 2, 4} are dependent. In the dataspace these two sets are
however not perfectly disjunct because point 3 is close to
the cluster of the points {1, 2, 4}. Without dependencies the
point 3 would be assigned to the left (rectangle symbols)
cluster in Figure 1 or the point itself would become the
cluster center. Using the dependencies in the clustering an
alternative prototype has been identified for the cluster of the
points {1, 2, 4} and the point 3 got the labeling of cluster 2
(diamond), although it has been assigned to cluster 1 due to
its data space proximity.

IV. EXPERIMENTS

A. Artificial data

Initially we repeated the experiment similar as given in
[17] for data spread on a rectangular 2D grid using the
Euclidean distance and a radius R = 0.2. Both approaches,
the KVQ from [17] and our model lead to similar results,
see Figure 2. Here for LKVQ we have split the problem into
patches using the locality of the data and we observe slightly
more prototypes than for KVQ as expected. It should be
mentioned that for KVQ the implementation given in Spider

Fig. 2. Visualization of the prototype models as obtained by KVQ (left) and LKVQ (right). The data are uniform Gaussian in [0, 1]× [0, 1] and a radius
R = 0.2 was chosen. Both solutions are valid but the solution of LKVQ is over-defined due to the used patch concept. Prototypes are given as bold dots
with a white circle. The receptive fields of the prototypes are indicated by different background shades.

[19] has in parts problems to find a valid solution for the
optimization problem using different values for R, whereas
LKVQ always finds a sparse solution for each patch. If the
data set is not to large we can process the data as one single
block using LKVQ. In Figure 3 the solutions for a checker
board dataset with 16 clusters is depicted. Here we used
R = 30 for the data and grid distances. We observe that the
solution of KVQ is valid but not maximum sparse whereas
for LKVQ the smallest valid solution with 16 prototypes,
one per cluster, has been identified due to the binary linear
problem. We also observe that the prototypes for LKVQ are
closer to the center of the data clouds as expected due to the
alternative cost function.

B. Influence of the radius R

The radius R has a direct impact on the number of
generated clusters but also on the efficiency of the clustering
algorithm. For very small R the number of clusters is
increasing whereas for large R the number of clusters (NC)
decreases until NC = 1. Beside of this effect also the
computation time is sometimes effected. If R is chosen too
large and the costs f are not equalized, the clusters may
strongly overlap and the optimization problem becomes more
and more complex.

To show this we consider a small example (without local
dependencies) taken from [11] (subset n15,a45), known as
the chicken data set. The task is to classify 446 silhouettes
of chicken pieces into 5 categories (wing, back, drumstick,
thigh and back, breast). The data silhouettes are represented
as a string of the angles of consecutive tangential line pieces
of length 20 including appropriate scaling. The strings are
then compared using a (rotation invariant) edit distance. The
results for a run of the chicken data with different R are
shown in Figure 4. One clearly observe the mentioned effect
and also that for some large R the runtime is significantly
increased. This is caused because there exist multiple so-
lutions with very similar costs. To overcome this problem
one can add uniform noise N(0, 1) to the similarity matrix
with exception of the main diagonal. Thereafter the effect
is significantly less pronounced, in our experiments it could
be reduced by a factor of 10 such that almost the original
performance has been obtained, with the same accuracy as

before. The chicken example also demonstrates the capability
of LKVQ to deal with non-euclidean data.

C. Image encoding
As the second example we consider an image encoding

approach using a standard image, because image coding
provides an easily visualized task. We consider different radii
leading to a different number of prototypes and compare the
image quality by the standard PSNR value. Additional to
KVQ we compare with the LBG algorithm. The results are
shown in Figure 5 and 6. The original image consists of
256× 256 monochrome pixels and has been preprocessed to
32× 32 pixel with 64 dimensions each in the same manner
as in [17]. We found that all approaches are able to achieve
PSNR > 30 but the visual quality is different and also
the number of necessary prototypes is significantly larger
for LBG and KVQ. In the second plot LBG and LKVQ
are compared with 529 prototypes. Again we observe a
very good reconstruction quality for LBG and LKVQ but
the PSNR for LKVQ is significantly better and artifacts in
the face region of the LBG reconstruction are not present
for LKVQ. KVQ shows the same artefact’s in some image
blocks as in the previous publication.

In Table I we show the results for different radii and
compare the PSNR values. Due to the rather small number
of sample points for the considered complex scenery the
setting of R′ has no significant effect for LKVQ and has
been skipped.

Additionally we compare the results using the KNG algo-
rithm and the RNG algorithm, both with Euclidean distance
in Table II. It should be noted that for KNG and RNG the
prototypes are not restricted to points from the dataspace.

D. Local dependencies - remote sensing application
The main subject of this research is to provide an efficient

clustering approach taking local dependencies into account.
Such problems occur more and more often e.g. in satellite
remote sensing or for medical imaging technologies. In a real
life example we consider a satellite remote sensing data set
from the Colorado region (see Figure 7).

Airborne and satellite-borne remote sensing spectral im-
ages consist of an array of multi-dimensional vectors (spec-
tra) assigned to particular spatial regions (pixel locations)

Fig. 3. Visualization of the prototype models as obtained by KVQ (left) and LKVQ (right) for a 4× 4 checkerboard. The parameter R = 30 was chosen.
Both solutions are valid but the solution of LKVQ has maximum sparseness and the fidelity of the prototype positions is better than for KVQ. Prototypes
are given as bold dots with a white circle. The receptive fields of the prototypes are indicated by different background shades.

0 0.05 0.1 0.15 0.2 0.25 0.3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

Relative number of Clusters

A
cc

ur
ac

y

Fig. 4. The plot shows results of LKVQ varying R in a range of 0.1, 0.6 . . . , 29.6 for the chicken data set with a mean distance of 23. The x-axis
depicts the relative number of cluster (1.0% ≡ 446 points) and the y-axis the obtain recognition accuracy using a given labeling. The runtime of the
LKVQ optimization is indicated by the size of the dots (great dots indicate long runtimes).

Image Size R Prototypes PSNR
Original full 0 65536 -
LBG-Reconstr. small - 184 25
LBG-Reconstr. medium - 257 27
LBG-Reconstr. large - 529 32
KVQ-Reconstr. small 300 891∗ 23
KVQ-Reconstr. medium 200 204∗ 22
KVQ-Reconstr. large 50 495 33
LKVQ-Reconstr. small 300 184 27
LKVQ-Reconstr. medium 200 257 30
LKVQ-Reconstr. large 50 529 41

TABLE I
COMPRESSION MODELS USING LBG, KVQ AND LKVQ FOR DIFFERENT MODEL SIZES. FOR ENTRIES WITH ∗ THE APPROACH DID NOT CONVERGE

AND HAD BEEN STOPPED AFTER 10 ITERATIONS. ONE CAN CLEARLY OBSERVE THE LKVQ PERFORMED BEST FOR ALL MODEL SIZES.

reflecting the response of a spectral sensor at various wave-
lengths. A spectrum is a characteristic pattern that provides

a clue to the surface material within the respective surface
element. The utilization of these spectra includes areas

Fig. 5. Visualization of the image reconstruction LBG (left), KVQ (middle) and LKVQ (right). All reconstructions have a PSNR of 30 − 32 but LBG
requires 529 prototypes, KVQ 495 and LKVQ the lowest number of prototypes 257. The radius of LKVQ is R = 200 and for KVQ R = 50.

Fig. 6. Visualization of the image reconstruction LBG (left), LKVQ (right) each with 529 prototypes. The LBG reconstruction has a PSNR of 32 whereas
the LKVQ reconstruction provides an almost perfect reconstruction with a PSNR of 41 and a radius R = 50.

Method Prototypes PSNR LKVQ-PSNR
RNG 529 30.25 41

257 25.29 30
184 24.12 27

KNG 529 20.2 41
257 19.9 30
184 19.8 27

TABLE II
PSNR VALUES OF THE man-IMAGE-RECONSTRUCTIONS WITH

DIFFERENT #PROTOTYPES FOR RNG AND KNG COMPARED TO LKVQ.

such as mineral exploration, land use, forestry, ecosystem
management, assessment of natural hazards, water resources,
environmental contamination, biomass and productivity; and
many other activities of economic relevance [14].

Spectral images can formally be described as a matrix
S = ~v(x,y), where ~v(x,y) ∈ RDV is the vector (spectrum) at

pixel location (x, y) here with DV = 6. The elements v(x,y)i ,
i = 1 . . . DV of spectrum ~v(x,y) reflect the responses of a
spectral sensor at a suite of wavelengths [1]. The spectrum is
a characteristic fingerprint pattern that identifies the averaged
content of the surface material within the area defined by
pixel (x, y). Some sample spectra for different data classes
are depicted in Figure 8. The data density P (V) may vary
strongly within the data. Sections of the data space can be
very densely populated while other parts may be extremely
sparse, depending on the materials in the scene and on the
spectral band-passes of the sensor. Therefore with standard
clusterings it may easily happen that sparse data regions
are omitted from the model leading to large errors for rare
classes.

The considered image was taken very close to colorado
springs using satellites of LANDSAT-TM type

The satellite produced pictures of the earth in 7 different

Fig. 7. (Left) a coloring in accordance to the RGB channels of the original data (data approx 1990) is shown, middle the obtained labeling by LKVQ
and on the right the prototype positions as black dots. Only 2% of the data have been selected as prototypes.

Label class R G B ground cover #pixels
a 1 0 128 0 Scotch pine 581424
b 2 128 0 128 Douglas fir 355145
c 3 128 0 0 Pine / fir 181036
d 4 192 0 192 Mixed pines 272282
e 5 0 255 0 Mixed pines 144334
f 6 255 0 0 Aspen/Pines 208152
g 7 255 255 255 No veg. 170196
h 8 128 60 0 Aspen 277778
i 9 0 0 255 Water 16667
j 10 0 255 255 Moist meadow 97502
k 11 255 255 0 Bush land 127464
l 12 255 128 0 Pastureland 267495
m 13 0 128 128 Dry meadow 675048
n 14 128 128 128 Alpine veg. 27556
o 15 0 0 0 misclassif. -

TABLE III
CLASSES OF THE SATELLITE IMAGE, USED SIMILARITY BASED

COLORING (RGB) AND THE NUMBER OF PIXEL OF EACH CLASS.

spectral bands. The spectral information, associated with
each pixel of a LANDSAT scene is represented by a vector
~v ∈ V ⊆ RDV with DV = 6. There are 14 labels describing
different vegetation types and geological formations. The
detailed labeling of the classes is given in Table III, here we
also specify the used coloring for the subsequently generated
images as obtained from the classification models3. The
colors where chosen such that similar materials get similar
colors in the RGB space.

3Colored versions of the image can be obtained from the corresponding
author.

Fig. 8. Sample spectra from the remote satellite data

The size of the image is 1907×1784 pixels. For this dataset
full labeling and measurement grid information is available.
The labeling is used in the model application step to provide
a coloring based on the obtained prototypes, only. The grid
information is used to define f as well as to split the problem
into bands. We choose R = 60 and R′ = 100 taken from
the data statistic as suggested before. This satellite image
has been already used in [15] with ≈ 90%− 96% accuracy
and 0.5%−10% prototypes of the training data on a smaller
subset of the image. Here we obtain a model using only 2%
of the datapoints as prototypes and a labeling error of only
5%.

LKVQ and the experiments have been implemented in
Matlab [10] on an Intel-dual core notebook computer with
2.8GHz and 2GB ram. LKVQ requires an efficient imple-
mentation of the linear programing problem also in case of
larger problems therefore we used the GNU Linear Program-

ming Kit (GLPK) [8] providing an efficient implementation
of different problem solvers in combination with a Matlab
binding. To apply a LKVQ model to new data we have
to identify the closest prototypes in accordance to the wta
scheme mentioned before. This can get quite time consuming
for larger codebooks. For Euclidean problems, we employ a
kd-tree [2] implementation to store the prototypes providing
log-linear search time in the wta scheme.

V. CONCLUSIONS

An improved version of the KVQ method has been
proposed. It provides an inherent sparse solution rather a
wrapper based sparsification. It has a guaranteed conversion
due to the linear optimization model, but with additional
costs due to the more complex optimization scheme. LKVQ
automatically determines the number of prototypes but it
is not necessarily the minimal number of prototypes which
is a complex combinatorial problem but provides a good
approximation by a integer linear programming approach.

LKVQ is capable to take local dependencies into account
included in the cost function, to allow for optimization with
dependencies. Additionally the cost function was modified
such that the obtain solutions are more prototypical than
for KVQ leading to improved reconstruction performance.
LKVQ is now an effective clustering approach for medium-
scale problems with local dependencies. In future work we
will explore more data sets with dependencies and explore
more advance optimization concepts also for very large
problem settings.

Acknowledgment: This work was supported by the Ger-
man Res. Fund. (DFG), HA2719/4-1 (Relevance Learning for
Temporal Neural Maps) and by the Cluster of Excellence 277
Cognitive Interaction Technology funded in the framework
of the German Excellence Initiative. The author would like
to thank Vilen Jumutc for helpful discussions around local
data dependencies. Thanks also to M. Augusteijn (University
of Colorado) for providing this satellite remote imaging data
and labeling.

REFERENCES

[1] Campbell, N.W., Thomas, B.T., Troscianko, T.: Neural networks for
the segmentation of outdoor images. In: Solving Engineering Problems
with Neural Networks. Proceedings of the International Conference on
Engineering Applications of Neural Networks (EANN’96). Syst. Eng.
Assoc, Turku, Finland. vol. 1, pp. 343–6 (1996)

[2] deBerg, M., vanKreveld, M., Overmars, M., Schwarzkopf, O.: Com-
putational Geometry: Algorithms and Applications. Springer (2000)

[3] Deininger, S.O., Gerhard, M., Schleif, F.M.: Statistical classification
and visualization of maldi-imaging data. In: Proc. of CBMS 2007. pp.
403–405 (2007)

[4] Gersho, A., Gray, R.M.: Vector quantization and signal compression.
Kluwer Academic Publishers, Norwell, MA, USA (1991)

[5] Hammer, B., Hasenfuss, A.: Topographic mapping of large dissimilar-
ity datasets. Neural Computation 22(9), 2229–2284 (2010)

[6] Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recog-
nition Letters 31, 651–666 (2010)

[7] Kohonen, T.: Self-Organizing Maps, Springer Series in Information
Sciences, vol. 30. Springer, Berlin, Heidelberg (1995), (Second Ex-
tended Edition 1997)

[8] Makhorin, A.: Gnu linear programming kit (2010)

[9] Martinetz, T., Berkovich, S., Schulten, K.: ”̈Neural-gas”̈ Network for
Vector Quantization and its Application to Time-Series Prediction.
IEEE-Transactions on Neural Networks 4(4), 558–569 (1993)

[10] Mathworks Inc: Matlab 2010b. http://www.mathworks.com
(20.01.2011) (2010)

[11] Neuhaus, M., Bunke, H.: Edit-distance based kernel functions for
structural pattern classification. Pattern Recognition 39(10), 1852–
1863 (2006)

[12] Pekalska, E., Duin, R.: The dissimilarity representation for pattern
recognition. World Scientific (2005)

[13] Qin, A.K., Suganthan, P.N.: Kernel neural gas algorithms
with application to cluster analysis. In: Proceedings of
the Pattern Recognition, 17th International Conference on
(ICPR’04) Volume 4 - Volume 04. pp. 617–620. ICPR
’04, IEEE Computer Society, Washington, DC, USA (2004),
http://dx.doi.org/10.1109/ICPR.2004.520

[14] Richards, J.A., Jia, X.: Remote Sensing Digital Image Analysis.
Springer, New York (1999), 3rd Ed.

[15] Schleif, F.M., Ongyerth, F.M., Villmann, T.: Supervised data analysis
and reliability estimation for spectral data. NeuroComputing 72(16-
18), 3590–3601 (2009)

[16] Simmuteit, S., Schleif, F.M., Villmann, T.: Hierarchical evolving trees
together with global and local learning for large data sets in maldi
imaging. In: Proceedings of WCSB 2010. pp. 103–106 (2010)

[17] Tipping, M.E., Schoelkopf, B.: A Kernel Approach for Vector Quan-
tization with Guaranteed Distortion Bounds. In: Proc. of AISTAT’01
(2001)

[18] Vural, V., Fung, G., Krishnapuram, B., Dy, J.G., Rao, R.B.: Using
local dependencies within batches to improve large margin classifiers.
Journal of Machine Learning Research 10, 183–206 (2009)

[19] Weston, J., Elisseeff, A., BakIr, G., Sinz, F.: Spider toolbox
(2011), http://www.kyb.tuebingen.mpg.de/bs/people/spider/ (last visit
28012011)

