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Abstract—Digital data characterizing physiological processes
over time are becoming increasingly important such as spectro-
metric data or gene expression profiles. Typical characteristics
of such data are high dimensionality due to a fine grained
measurement, but usually only few time points of the series. Due
to the short length, classical time series models cannot be used.
At the same time, due to the high dimensionality, data cannot
be treated by means of time windows using simple vectorial
techniques.

Here, we consider the generative topographic mapping through
time (GTM-TT) as a highly regularized model for time series
inspection in the unsupervised setting, based on hidden Markov
models enhanced with topographic mapping facilities. We extend
the model such that supervised classification can be built on top
of GTM-TT, resulting in supervised GTM-TT, and we extend the
technique by supervised relevance learning. The latter adapts the
metric according to given auxiliary information resulting in an
interpretable form which can deal with high dimensional inputs.
We demonstrate the technique in simulated data as well as an
example from the biomedical domain, reaching state of the art
classification accuracy in both cases.

I. INTRODUCTION

More and more data sets occurring in the biomedical domain
are electronically available. Improved measurement technol-
ogy often leads to very high dimensional signals representing
a fine grained resolution of the available information, such
as e.g. mass spectrometric measurements or gene expressions.
At the same time, an increasing amount of data comes with
a temporal axis representing several measurements taken over
time. Typical examples include measurements over time de-
rived from serum or blood samples to judge the effectiveness
of a therapy. In such cases, the measurement at one point in
time represents a mass spectrum or a gene expression profile
at a dedicated point in time, and the overall information (the
effectiveness of a therapy) is mirrored by the development over
these measures over a short time span. Due to the high costs
of such measurements, typically, less than 10 time points are
encountered, while data dimensionality at one time point can
easily excess several hundred or thousand dimensions.

The analysis of high-dimensional short time series is a
challenging task. Due to the time characteristics, data are no
longer identical and independently distributed, and a treatment
as independent vectors over time is not appropriate. Due to
the very high data dimensionality, it is not feasible to address

the data simply as one large vector where all time points
are collected. Due to the shortness of the times series, stan-
dard time series methods like auto-regressive moving average
(ARMA) or extensions thereof (see e.g. [1]) are in general not
applicable. Thus, this setting constitutes a challenge to modern
data processing.

A few methods have been proposed to model these type
of data. In [2] an unsupervised projection technique has been
proposed employing a so called temporal context. Temporal
data are processed by a Self Organizing Map (SOM) [3]
but training is modified such that it depends on the current
temporal context. A further unsupervised model has been
proposed in [4] using the Generative Topographic Mapping
Through Time (GTM-TT) ([5]). Here, hidden variables are
introduced to account for the relevance of the different feature
dimensions, to account, in a non-discriminative manner, for the
explained variance in the data over time. A supervised two-
class method solely based on hidden Markov models has been
proposed in [6]. It models the two different data distributions
by independent HMMs and evaluates the generated models
to obtain a ranking of the input dimensions. Subsequently
the prediction is improved by selecting a set of features
using a wrapper strategy. In [7] a similar approach has been
proposed in a semi-supervised scenario, introducing class-wise
constraints in the hidden Markov model. The importance of
the individual features is determined based on a complex post
processing procedure. Another supervised method using all
features, based on a Support Vector Machine (SVM) and a
Kalman filter, has been proposed in [8].

While the first two approaches turn out to be very effective
for unsupervised analysis, the last methods focus on supervised
and semi-supervised analysis. The results in [6] are very
promising, with 85% prediction accuracy on a real life multiple
sclerosis data (MS) set, but they rely on strong assumptions
about the underlying HMM structure. The approach in [8]
improves this result by 2 − 5% but it results in a black box
scenario, without additional feature selection or the possibility
to easily inspect the results. The approach in [7] is evaluated
also with respect to the results of [6] achieving improved
performance for the MS data set. There is further ongoing
work in this field, reflecting the high demand for effective
methods dealing with these type of data. The application field



is not limited to the bio-medical domain as considered in
[6], [7], [9] but covers a broader field of applications also
in industry and geo-science as reflected in [4], [2].

Since it is based on Gaussians, GTM crucially depends
on the underlying metric in observation space, usually the
Euclidean metric. For very high dimensional data, however,
Euclidean distances become more and more meaningless due
to accumulated noise [10]. Further, the relevance of the mea-
sured dimensions for the observed task is not clear a priori,
and the overall quality of the method severely depends on
the fact that the relevance of the dimensions corresponds to
their contribution to the metric. Because of this observation,
many distance based learning techniques have been extended
to automatic relevance adaptation which automatically adapts
metric parameters according to given auxiliary information,
see e.g. [11], [12].

In this contribution, we are interested in the question how
relevance learning can be transferred to the temporal domain.
The identification of relevant input dimensions of a temporal
sequence is very important as outlined e.g. in [4], [6] to obtain
a better understanding of the data, to reduce the processing
complexity, and to improve the overall prediction accuracy. As
already motivated by some of the prior references, prototype
methods (see e.g. [3]) have been found to be very effective for
the analysis of high dimensional data also to analyze temporal
sequences. In [5], the Generative Topographic Mapping -
through time (GTM-TT), an unsupervised prototype based
method for the topographic projection of high-dimensional,
temporal sequences, has been proposed. GTM-TT learns a
hidden Markov model (HMM) of a data generating process
and represents the data by a prototype based representation in
time and space. Like in ordinary prototype methods the GTM-
TT approximates the data distribution by a vector quantization
of the data space. The temporal dependency between the
prototype is modeled by an internal HMM on the latent
space. Additionally the prototypes are assigned to a fixed grid
representation or lattice, which permits, provided the topology
is preserved (see [13]), the easy visualization and interpretation
of the data trajectory in a low dimensional space.

In this contribution we extend the GTM-TT to a supervised
method and we integrate relevance learning based on the aux-
iliary class labels. The latter techniques greatly enhances the
quality of the map by means of a supervised adaptation of the
underlying metric with respect to large margin classification.
The resulting metric form is diagonal, i.e. metric parameters
can directly be interpreted as relevance of the corresponding
input dimension. We demonstrate the effectiveness of the
technique in an artificial scenario as well as a real life data
set (the MS data set), reaching state-of-the-art classification
accuracy in the latter case. In addition, the relevance learning
for supervised GTM-TT allows to visualize the classes over
time and to directly inspect the resulting relevance profile.
Now, we first review GTM and GTM-TT and we explain
how to extend this method to supervised scenarios. Then,
we explain the principle of relevance learning and transfer it
to our setting. Finally, the approach is tested in experiments,

Fig. 1. GTM-TT consisting of a HMM in which the hidden states are
given by the latent points of the GTM model. The emission probabilities are
governed by the GTM mixture distribution [5]. The different data distributions,
exemplified in 3D (bottom) and indicated by the color/shading are mapped to
the 2D grid (top). Here we consider 9 hidden states on a 3×3 grid. The data
distribution may change over time and hence also the mapping of the GTM
is effected over time, assuming smooth transitions.

discussing open issues and further potential in the conclusions.

II. GENERATIVE TOPOGRAPHIC MAPPING

The Generative Topographic Mapping (GTM) as introduced
in [14] models data x ∈ RD by means of a mixture of
Gaussians which is induced by a lattice of points w in a low
dimensional latent space which can be used for visualization.
The lattice points are mapped via w 7→ t = y(w,W) to the
data space, where the function is parametrized by W; usually,
a generalized linear regression model is chosen

y : w 7→ Φ(w) ·W (1)

where the base functions Φ are often chosen as equally spaced
Gaussians.The high-dimensional points y(w,W) are so called
prototypes of the original data space, representing the data
space as accurately as possible. They can be directly inspected
and permit to summarize the data.

Every latent point induces a Gaussian

p(x|w,W, β) =

(
β

2π

)D/2
exp

(
−β

2
‖x− y(w,W)‖2

)
(2)

with variance β−1. Assuming a Dirac distribution of the
prototypes, this gives the data distribution as mixture of K
modes

p(x|W, β) =

K∑
k=1

p(wk)p(x|wk,W, β) (3)

with p(wk) = 1/K. Training of GTM optimizes the data log-
likelihood

ln

(
N∏
n=1

(
K∑
k=1

p(wk)p(xn|wk,W, β)

))
(4)

by means of an expectation maximization (EM) approach
with respect to the parameters W and β. In the E step,



the responsibility of mixture component k for point n is
determined as

rkn = p(wk|xn,W, β) =
p(xn|wk,W, β)p(wk)∑
k′ p(x

n|wk′ ,W, β)p(wk′)
(5)

In the M step, the weights W are determined solving the
equality

ΦTGoldΦWT
new = ΦTRoldX (6)

where Φ refers to the matrix of base functions Φ evaluated
at points wk, X to the data points, R to the responsibilities,
and G is a diagonal matrix with accumulated responsibilities
Gnn =

∑
k r

kn(W, β). The variance results from

1

βnew
=

1

ND

∑
k,n

rkn(Wold, βold)‖Φ(wk)Wnew−xn‖2 (7)

where data dimensionality D and number of points N .
This way, an unsupervised restricted Gaussian mixture

model induced by a low dimensional latent space results. The
degree of topology preservation is determined by the stiffness
of the mapping y. It can be directly controlled by the number
of base functions.

III. GTM THROUGH-TIME

The GTM through time (GTM-TT) has been introduced in
[5] to extend the topographic mapping to time series data for
which the entries are no longer independent. We assume that
data are time series in the D-dimensional Euclidean space,
i.e. x = x(1) . . .x(T ) ∈ (RD)∗ where T ≥ 1 is the length
of the time series. A data point of the training set is referred
to by xi. For such data consecutive entries x(t) and x(t+ 1)
are strongly correlated. While the data space of observations
over time is represented by a topographic mapping as before,
this temporal dependency is learned from the data in form
of a hidden Markov model. The hidden states are thereby
characterized by the lattice points wj in the latent space.

The structure of the GTM-TT is shown in Figure 1. Assum-
ing a sequence x of observations and a sequence of hidden
states of the same length z = z(1) . . . z(T ) where z(i) equals
a point wj , the probability of the observations and a specific
path of hidden states z is given by p(x, z|Θ) =

p(z(1))

T∏
t=2

p(z(t)|z(t− 1),W, β)

T∏
t=1

p(x(t)|z(t)) (8)

where the conditional probability

p(x(t)|z(t)) := p(x(t)|z(t),W, β) (9)

is as before (2) [14], resulting in the overall probability of x:

p(x|Θ) =
∑

z∈{w1,...,wK}T
p(x, z|Θ) (10)

The parameters of GTM-TT are

Θ = (W, β, π,P) (11)

with additional parameters for the initial state probabilities

π = (πj)
K
j=1 where πj = p(z(1) = wj) (12)

and transition probabilities

P = (pij)
K
i,j=1 where pij = p(z(t) = wj |z(t− 1) = wi)

(13)
which characterize the temporal correlations of subsequent
states in latent space, relying on the assumption of the standard
Markov property and stationarity of the dynamics.

Based on these definitions, it is possible to optimize the data
log likelihood

ln

(
N∏
n=1

p(xn|Θ)

)
(14)

with respect to the model parameters Θ by an EM-approach as
before. As for HMMs, a forward-backward procedure allows
to determine the hidden parameters, the responsibilities of
states for a given sequence, in an efficient way [15], based on
which the parameters W and β can be determined as before.
We obtain the probability of being in state wk at time t, given
the observation sequence xn:

rkn(t) = p(z(t) = wk|xn,Θ) =
AktBkt
p(xn|Θ)

(15)

The forward variable Akt is the joint probability
p(xn(1) . . .xn(t), z(t) = wk|Θ) given by the following
recursive equation:

Akt =

K∑
i=1

Ait−1pikp(x
n(t)|wk,Θ) (16)

and Ak1 = πkp(x
n(1)|wk,Θ). The backward variable Bkt

is the joint probability p(xn(t + 1) . . .xn(tn), z(t) = wk|Θ)
which can be calculated using the following recursive equation

Bkt =

K∑
i=1

pikp(x
n(t+ 1)|wi,Θ)Bit+1 (17)

where BkT = 1. The transition parameters of the Markov
model can be trained using the standard Baum-Welch training.
Details can be found in [16].

For an input time series xn(1) . . .xn(T ), GTM-TT gives
rise to a time series of responsibilities rkn(1) . . . rkn(T ) of
neuron k. Based on these responsibilities, a winner can be
determined for every time step t as neuron argmaxkr

kn(t).

IV. SUPERVISED GTM-TT

Assume that the observed time series x is equipped with
label information l which is element of a finite set of dif-
ferent labels 1, . . .L. We extend GTM-TT to a supervised
classification scheme in the following way: given a training
set, we train separate GTM-TT for every class, whereby
the models are coupled by choosing the same bandwidth β
and the same underlying topological structure in the latent
space, i.e. the same base functions Φ and the same Dirac
distribution on the latent space. The prototype parameters Wl



Fig. 2. Illustration of the SGTM-TT. It consists of multiple GTM-TT models.
It behaves similar to the regular GTM-TT but the training is classwise and
the β parameter is common over the different models. The different classwise
models (top) are used to represent the data distribution (bottom) over time
(from left to right).

are trained individually for every model representing label l.
The same holds for the initial state probability πl and the
transition probabilities Pl. We denote the obtained model
as Supervised GTM-TT. The concept of the SGTM-TT is
depicted schematically in Figure 2.

When processing a novel time series x we obtain L time
series of responsibilities according to every model. We denote
the responsibilities of model l for input x at time point
t by rkl (x(t)). This gives rise to an aggregated value of
responsibilities for every input series x and label l:

rl(x) :=

K∑
k=1

T∑
t=1

rkl (x(t))/(KT ) (18)

One can pick the label l as output for which this value is
largest. However, this does not take prior class probabilities
into account. Because of this fact, we use an additional
linear classifier with inputs given by the vectors (rl(x))Ll=1

which is trained based on the given training set. We define a
probabilistic kernel following [17] (p. 297) and train a standard
SVM model, involving no further parameters. This way, class
priors with maximum discriminative accuracy on the training
set are obtained.

V. RELEVANCE LEARNING FOR SGTM -TT

The principle of relevance learning has been introduced in
[11] as a particularly simple and efficient method to adapt the
underlying metric of prototype based classifiers according to
the given situation at hand. It takes into account a relevance
scheme of the data dimensions by substituting the squared
Euclidean metric by the weighted form

dλ(x, t) =

D∑
d=1

λ2d(xd − td)2 . (19)

The principle is extended in [18], [19] to the more general
metric form

dΩ(x, t) = (x− t)TΩTΩ(x− t) (20)

Using a square matrix Ω, a positive semi-definite matrix which
gives rise to a valid pseudo-metric is achieved this way. In [18],
[19], these metrics are considered in local and global form,
i.e. the adaptive metric parameters can be identical for the
full model, or they can be attached to every prototype present
in the model. Relevance learning for GTM has been already
introduced in [12] for i.i.d. data resulting in relevance GTM
(R-GTM). In case of temporal sequences some modification
of the original principle are necessary and also the supervision
will be handled differently as pointed out subsequently.

For simplicity and to maintain easy interpretability, we will
restrict to a global diagonal weighting scheme, in which case
a weight λi directly corresponds to the relevance of dimension
i assuming an equal range of the data dimensions. For GTM,
the distance used to compute local probabilities is substituted
by a weighted distance measure:

pλ(x|w,W, β) =

(
β

2π

)D/2
exp

(
−β

2
dλ(x, y(w,W))

)
(21)

with Euclidean distance which includes relevance terms to
weight the single dimensions. This gives rise to a data log
likelihood which takes into account the dimensions according
to their relevance and, hence, a topographic mapping which
mirrors this weighting scheme of the metric.

The question is how to set relevance parameters λ in a
way such that the classification accuracy of the resulting
mapping is as high as possible. We proceed as in [12] and
train the relevance parameters based on priorly given class
information in a separate update step which is interleaved
with the standard adaptation of the SGTM-TT assuming this
changed distance. For relevance learning, we rely on the
cost function as introduced in generalized learning vector
quantization since it treats the classification as a large margin
technique [19]. Metric parameters are adapted such that this
margin is optimized.

First, we shortly recall the cost function of GRLVQ for the
simple vectorial setting: Assume a prototype based classifica-
tion is given. Hence a finite set of prototypes tj with class
labels are present in the data space. Classification takes place
by means of a winner takes all scheme, i.e. the label cor-
responding to the prototype with smallest distance dλ(x, tj)
serves as output. For standard GTM, prototypes are induced
by latent points tj = y(wj ,W), and the distances determine
the responsibilities of the data points. Now adaptation of the
relevance terms λ takes place such that the costs

E(λ) =
∑
n

sgd

(
dλ(xn, t+)− dλ(xn, t−)

dλ(xn, t+) + dλ(xn, t−)

)
(22)

are optimized, where t+ corresponds to the closest prototype
with a correct label, whereas t− corresponds to the closest
prototype with an incorrect label, given input xn. It has
been shown in [19] that this scheme optimizes the hypothesis
margin of such a prototype based classifier. It can directly
be integrated into vectorial GTM, performing simultaneous
adaptation of the parameters of GTM to optimize the data



(a) Two functions: Euc = Lp-norm (b) Two functions: Euc 6= Lp-norm

Fig. 3. Illustration of the Lp-norm. Plot (a) indicates the case in which
the distance between two functions is equal, both for Euclidean or Lp-norm.
In plot (b) parts of the functions are interchanging (crossing). The distance
using Euc is still the same as in plot (a) but for the Lp-norm the distance is
changed, giving a more realistic measure of the distance of the two functions.

log-likelihood, and the metric parameters to optimize the clas-
sification margin. An excellent classification accuracy results
as demonstrated in [12]. The adaptation formulas for the
parameters λ can be derived from the above cost function by
taking the derivatives. To avoid divergence, metric parameters
are normalized after every adaptation step.

For SGTM-TT, a problem occurs: the classification is not
determined by a single prototype, rather a winner is deter-
mined for every class label and every time step t. Classification
takes place based on the aggregated responsibilities rl(x). We
use this classification to determine which class is assigned to a
given time series. For the metric update, however, we rely on a
prototypical representation of time series by SGTM-TT in the
following way: for every class label we consider the time series
of prototypes of the corresponding GTM-TT model according
to the winner prototypes over time, given input sequence x:

tl = (tl(1) . . . tl(T )) (23)

where

tl(t) = y(wk,Wl) with k = argmaxkr
k
l (x(t)) (24)

Now we can insert an input time series x and the corre-
sponding time series of prototypes representing a correct and
a wrong class label into the cost function of GRLVQ (22).
Assuming an appropriate metric of these two time series, a
well defined cost function results. How do we compare time
series? As simple way is by averaging over the Euclidean
distances in every time point. However, this simple approach
completely neglects the functional form of time series. In our
experiments, it turned out that a dissimilarity measure which
takes into account the functional form as proposed by Lee and
Verleysen in [20] is beneficial. It has already successfully been
used for the analysis of biomedical data in [21].

The distance measure integrates the functional form of three
subsequent time steps to compare the values x(t) and t(t) at
a given point in time t. Assume there is given a real valued
time series v = v(1) . . . v(T ), the functional Lp norm is given
by

Lfp (v) =

(
T∑
t=1

(4At (v) +4Bt (v))
p

) 1
p

(25)

with

4Ak (v) =

{
τ
2 |(t)| if 0 ≤ v(t)v(t− 1)
τ
2

(t)2

|v(t)|+|v(t−1)| if 0 > v(t)v(t− 1)
(26)

4Bk (v) =

{
τ
2 |v(t)| if 0 ≤ v(t)v(t+ 1)
τ
2

v(t)2

|v(t)|+|v(t+1)| if 0 > v(t)v(t+ 1)
(27)

representing the triangles on the left and right sides of v(t).
Values at the boundaries corresponding to time step 0 or T+1
are set to 0. This norm takes into account whether the entries
change the sign in subsequent time steps. For vectorial data
x and t over time with dimensionality D in every time step,
this induces the weighted distance

dλ(x, t) =

D∑
i=1

λiLfp (xi − ti) (28)

where xi − ti refers to the time series of real numbers given
by the distance of the entries in dimension i. This distance
measure does not only take the absolute distance into account,
but also measures whether the curves have the same shape. As
before, the relevance of dimension i is weighted by a relevance
term λi. The concept of the Lp-norm is shown in Figure 3.

The weighted distance (28) is now inserted into the cost
function of GRLVQ. Taking the derivatives (see [20] for the
derivatives of the Lp norm) with respect to the relevance terms
yields an adaptive weighting scheme for the input dimensions
which takes the functional form of the data into account. As
before, λ is normalized after every adaptation step to guarantee
nonnegative values which sum up to 1.

VI. EXPERIMENTS

Subsequently we consider two data sets to evaluate our
approach.

A. Data and parameter settings

1) Simulated data set: The first one is a simulated two class
scenario, proposed in the paper [6]. It consists of 100 samples
divided into two classes of 50 samples each. For each sample
100 features have been generated with 8 time points. Out of
the 100 features, only 10 where substantially differentiating
between the classes. The generation mechanism behind the
simulated data is to sample the time series from a piecewise
linear function. At a later step, sample-specific variation is
included by shrinking and expanding the curves.

2) Multiple sclerosis data: The second data set is taken
from [22] (IBIS) in the prepared form, given in [7]. The
data are taken from a clinical study analyzing the response
of multiple sclerosis (MS) patients to the treatment. Blood
sample entrenched with mono-nuclear cells from 52 relapsing-
remitting MS patients were obtained 0, 3, 6, 7, 12, 18 and 24
months after initiation of IFNβ therapy. This resulted in 7
measurements over 2 years on average. Expression profiles
were obtained using one-step kinetic reverse-transcription PCR
over 70 genes selected by the specialists to be potentially
related to IFNβ treatment. Overall, 8% of the measurements
were missing due to patients missing the appointments. After



TABLE I
PREDICTION ACCURACIES ON THE MS TEST DATA.

Method Number of genes Test accuracy (%)
SGTM-TT 70 85.66± 8.3
SGTM-TT-R 7 93.43± 5.8
IBIS 3 74.20
Kalman-SVM - 87.80
Lin-Best 7 85.00
Costa-Best 17 92.70± 6.1

the two year endpoint, patients were classified as either good
or bad responders, depending on strict clinical criteria. Bad
responders were defined as having suffered two or more
relapses or having a confirmed increase of at least one point on
the expanded disability status scale (EDSS). A good responder
shows a suppression of relapses and does not encouter an in-
crease of the EDSS. From the 52 patients, 33 were classified as
good and 19 as bad responders. A more detailed description of
the data set is available in the paper [22] and the supplemented
material.

For both data sets, we use a SGTM-TT with 9 hidden
states and 4 basis functions, which is a comparable model-
complexity to the chosen reference methods. The analysis is
done within a 4 fold cross-validation with 5 repetitions. We
compare it with the general HMM classifier (HMM-Lin) and
the discriminative HMM classifier (HHM-Disc-Lin) proposed
in [6]. We also included the results of [22] who originally
proposed the MS study, the analysis of [23], employing a
Kalman Filter combined with an SVM approach and [7]
proposing a semi-supervised analysis coupled with a wrapper
and cut-off technique to identify discriminating features.

B. Results

1) Simulated data: We applied SGTM-TT with relevance
learning for the simulated data set [6]. We observe an overall
prediction accuracy of 94± 4. The relevance profile identified
all known 10 features and effectively pruned out the remaining
irrelevant data dimensions. Our results are slightly better than
those reported in [6] (90%) and in [7] (92%).

2) Multiple sclerosis experiment: In Table I we summarize
the prediction (test-set) results for the classification of the MS
data set in comparison to the results given in [22]. We observe
improved prediction accuracy employing relevance learning as
compared to simple SGTM-TT. SGTM-TT improved by ≈ 6%
using relevance learning and the SVM classifier. Interestingly
also the prediction accuracy on the full data set, including all
features without relevance learning is quite good with nearly
84% and hence close to the best result proposed in [6]. The
obtained mappings of the SGTM-TT are topology preserving1

and we analyzed the mapping of the points to its prototypes
and the neighborhoods. The map for the first class is depicted
for two temporal sequences in Figure 4. Plots in the first row
show two typical state sequences for two samples from the
responder class. Also if the state sequences Z are not identical

1In our observations the topographic error was reasonable small.
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Fig. 4. Illustration of the 3×3 SGTM-TT mapping for the responder class.

we can expect that the underlying signals X are similar due to
its close neighborhood on the map. The start of a sequence is
indicated by � and the termination state by a ◦. This is also
reflected by such similarly clustered signals at the bottom.
Multiple normalized responder signals are shown using the
most relevant features from Figure 5.

As expected, results improve by integration of relevance
learning compared to the full feature set. Overall the SGTM-
TT with relevance learning performs very well and achieves
good results of 93.43% accuracy which is comparable to
the best reported model but relies on a smaller number of
necessary features. The features with high relevance, are
also relevant from a bio-medical point of view and show
good agreement to former findings [22] by clinical experts.
2 Further the integrated relevance learning avoids multiple
time consuming runs within a wrapper approach like for the
techniques used in [6], [7].

The obtained relevance profile is depicted in Figure 5 and
provides direct access to an interpretation of the relevant
features, or marker-candidates, pruning irrelevant or noisy di-
mensions. We observe that the standard-deviation is relatively
small, hence the relevance profiles of different runs are very
stable. The most discriminative features (high-relevance), can
in parts also be found in [7] but some additional features
appear to be relevant, and our proposed set consists of 7 genes
rather than 17 like in [7]. The values of the relevance profile
are roughly Gaussian distributed with µ = 0.1. We calculate
a threshold ζ for the most relevant features using ζ = µ + σ
and obtain 7 most relevant features, summarized in Table II.

SGTM-TT also inherently models different subgroups by
the probabilistic regularizing model of the GTM and GTM-TT
[14], [16]. Hence the model complexity is not critical provided
the map is reasonably large. This is a plus with respect to the

2We would like to stress that due to the small sample size and the 4 fold
cross-validation a mis-classification of 1 point, accounts for an error of 8%.
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Fig. 5. Relevance profile as obtained using SGTM-TT with relevance learning. The plot shows the average relevance (blue/dark), minimal relevance
(green/bright) and the standard deviation of the relevance, flipped to the negative part of the relevance axis.

TABLE II
MOST RELEVANT GENES USING SGTM-TT WITH RELEVANCE LEARNING.

Genes Relevance found by Lin (7) found by Costa (17)
MAP3K1 0.3014 X X
NFkBIB 0.2609 - -
IRF8 0.2584 - X
Caspase 10 0.2471 X X
Jak2 0.1869 X X
FLIP 0.1842 - -
RIP 0.1647 - -

approach presented in [7] which has the number of groups as
an additional meta parameter.

VII. CONCLUSION

We have presented a novel approach for the analysis of
short temporal sequences. It is based on the idea to in-
troduce supervision and relevance learning into Generalized
Topographic Mapping through time. Our results show that
we are able to achieve improved or similar performance to
alternative methods in the literature for a typical biomedical
data set. In addition, the prototype concept of the underlying
method permits a direct inspection of the model and extended
visualization performance. We also obtain a direct ranking
of the individual features employing the relevance profile,
rather than wrapper techniques which only prune features. In
future work we will explore more advanced metric adaptation
schemes and alternative functional distance measures. Further
we would like to apply our approach to non-clinical data.
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