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Abstract—We suggest and investigate the use of Generalizedlinear methods. While limited in power and flexibility, linrea
Matrix Relevance Learning (GMLVQ) in the context of discrim-  methods continue to be attractive due to their interprétabi

inative visualization. This prototype-based, supervised learning oy computational costs, and accessibility for mathenadtic
scheme parameterizes an adaptive distance measure in terms Ofanalysis

a matrix of relevance factors. By means of a few benchmark . .
problems, we demonstrate that the training process yields low  Probably the most prominent methods that employ linear
rank matrices which can be used efficiently for the discriminative projections are the well known Prinicipal Component Anays
visualization of labeled data. Comparison with well known for the unsupervised analysis of data sets and Linear Discri
standard methods illustrate the flexibility and _discriminat_ive inant Analysis in the context of classification problems.
power of the novel approach. The mathematical analysis of Wi t L i h to the low-di )
GMLVQ shows that the corresponding stationarity condition e Presen "’}nov_e' .lnear approach 1o e' ow Im. repre
can be formulated as an eigenvalue problem with one or several Sentation and visualization of labeled data which is based o
strongly dominating eigenvectors. We also study the inclusion of particularly powerful and flexible framework for classifiican.
a penalty term which enforces non-singularity of the relevance |n the recently introduced Generalized Matrix Relevanc®LV
matrix and can pe used to control the role of higher order [3], a set of prototypes is identified as typical represeéveat
eigenvalues, efficiently. . . .
of the classes. At the same time an adaptive distance measure

is determined. The latter is parameterized by a matrix which
corresponds to a linear transformation of feature space. Th

Given the ever increasing amount of large, high-dimensiongptimization of, both, prototypes and relevance matrix is
data sets acquired in a variety scientific disciplines argliap guided by a margin based cost function. The method displays
cation domains, efficient methods for dimension reductiath aan intrinsic tendency to yield a low rank relevance matrig,an
visualization play an essential role in modern data prangsshence, its eigenvectors can be employed for discriminative
and analysis. low-dimensional representation and visualization.

A multitude of methods for the low-dimensional represen- The fact that the approach combines prototype based clas-
tation of complex data sets has been proposed in recent, yesification with linear low-dimensional representationskesm
see for instance [1] for an overview and categorization ef tht a particularly promising technique for interactive task
many different approaches. The diversity of methods refleqrototypes serve as typical representatives of the classds
the large number of goals and criteria one can have in mifgkilitate good interpretability of the classifier. Thisdkearly
with respect to dimension reduction. Indeed, in particfiteir benefitial in discussions with domain experts. In the cantéx
visualization, one of the key problems of the field seems {@sualization, it offers the possibility taoom inon regions of
be the formulation of clear-cut objectives. feature space which are most representative for the classes

A somewhat special case is the discriminative visualiratidJser feedback or data driven, adaptive distance measures
of labeled data as it occurs in classification problems oemthcan also be readily employed in the context of interactive
supervised machine learning frameworks. The classifisatiapplications. They can be used, for instance, in the siityilar
accuracy which can be achieved in the low-dimensional spaeased retrieval of images from a large data base, see [4]
provides at least one obvious guideline for the evaluatiwh afor an example in the medical domain. The combination of
comparison of visualizations. prototype based classification, adaptive similarity messu

In this contribution we restrict ourselves to methods whicand discriminative visualization clearly bears the pranis
perform an explicit mapping from the original feature spadacilitate a number of novel techniques for the interactive
to lower dimension [1], [2]. Moreover, we will consider onlyanalysis of complex data.

I. INTRODUCTION



We illustrate the GMLVQ approach to discriminative vi- 1) The adaptive distance measure:
sualization in terms of a few example data sets, compariMpatrix Relevance LVQ employs a distance measure given by
with the classical approaches of PCA and LDA. Moreovethe quadratic form
we present a theoretical analysis which explains the teryden

N AT - i N N
to low-rank representations in GMLVQ. d(i,2) = —2) Ay—2) for 7,ZzeRY. (1)
It is required to fulfill the basic conditiond(y, %) = 0 and
[1. LINEAR DISCRIMINATIVE VISUALIZATION d(y,7) = d(Z,5) > 0 for all ¢,2 with ¢ # 2. These are

o ) ) . conveniently satisfied by assuming the parameterizatioa
We first introduce Generalized Matrix Relevance Learningn™ j o

as a tool for the discriminative low-dimensional repreaéoh )
of labeled data. In addition we review very briefly two classi dy,2)= (-2 Q" (§-2) = [Q" (§-2)] 2
statistical methods: Principal Component Analysis andeain

Discriminant Analysis. Hence Q' defines a linear mapping of data and prototypes to

a space in which standard Euclidean distance is applied.
In the frame of this contribution we only considemgéobal
metric which is parameterized by a single matix for all
Similarity based methods play a most important role iprototypes. Extensions to locally defined distance measure
both, unsupervised and supervised machine learning amalys. local-linear projections, are discussed in [3], [18].
of complex data sets, see [5] for an overview and furtherrefe Note that for a meaningful classification and for the LVQ
ences. In the context of classification problems, Learnieg-V training it is sufficient to assume that is positive semi-
tor Quantization (LVQ), originally suggested by Kohone-{6 definite; the transformation need not be invertible and ¢oul
[8], constitutes a particularly intuitive and successfanfly even be represented by a rectangular mafrix [18]. Here
of algorithms. In LVQ, classes are represented by protatypee consider unrestrictety x N-matrices() without imposing
which are determined from example data and are defined in gymmetry or other constraints on its structure. In this ctse
original feature space. Together with a suitable disshityiar elements of) can be varied independently. For instance, the
distance measure they parameterize the classifier, frdguederivative of the distance measure with respect to an aritr
according to aNearest Prototypscheme. LVQ schemes areelement ofQ is
easy to implement and very flexible. Numerous variations of od(if, ) L
the original scheme have been suggested, aiming at clearer o 2(y—2r) [ (y—z)}m ©)
mathematical foundation, improved performance, or better ) _
stability and convergence behavior, see e.g. [9]-[13]tHeyr © N Matrix notation:

A. Generalized Matrix Relevance Learning

references, also reflecting the impressive variety of appbn od(y,z) 25— 2 (- 2T 0 @)
domains in which LVQ has been employed successfully, are o0 VW 4 )
available at [14]. This derivative is the basis of the matrix adaptation scheme

A key issue in LVQ and other similarity based techconsidered in the following.
niques is the choice of an appropriate distance measuret Mop) Cost function based training:
frequently, standard Euclidean or other Minkowski metrica particularly attractive and successful variant of LVQnted
are used without further justification and reflect implict-a GeneralizedLVQ (GLVQ) was introduced by Sato and Ya-

sumptions about, for instance, the presence of approxiynatghado [10], [11]. Given a set of training examples
isotropic clusters

Pre-defined distance measures are, frequently, sensitive t{€",0"},=1 where¢” e RY ando” € {1,2,....n.}
rescaling of single features or more general linear transde ) ) . S ®)
tions of the data. In particular if data is heterogeneousen tfOr @nn.-class problem inV dimensions, training is based on
sense that features of different nature are combined, lnesfa  the cost function

of Euclidean distance based classification is far from alwio 1 & _ L d(idy, &) — d(, )
An elegant framework has been developed which can cir? = 5 D e(d) with e(§) = y — 2g —= (6)
cumvent this difficulty to a large extent: In so-called Releve v=1 (@, &) + d(dk, €)

Learning schemes, only the functional form of the dissintja Here, the index/ identifies the closest prototype which carries
is fixed, while a set of parameters is determined in the tnginithe correct labels; = o, the so-calledcorrect winnerwith
process. To our knowledge, this idea was first proposed ih [1Ew,, &) = ming{d(wx, £)|sxy = o}. Correspondingly, the
in the context of LVQ. Similar ideas have been formulated fayrong winneriy is the prototype with the smallest distance
other distance based classifiers, see e.g. [16] for an eeam@lls;, ) among allw; representing a different class # o.
in the context of Nearest Neighbor classifiers [17]. Frequently, an additional sigmoidal functi@(e) is applied

A generalized quadratic distance is parameterized by[X0]. While its inclusion would be straightforward, we restr
matrix of relevances in Matrix Relevance Learning which ithe discussion to the simplifying case(xz) = «z, in the
summarized in the following. following.



Note thate(f) in Eg. (6) is negative if the feature vectorinitial Q2 were drawn independently from a uniform distribution
is classified correctly. Moreover;¢(¢) quantifies the margin U(—1,+1) with subsequent normalization; ; Q=1
of the classification and minimizingg can be interpreted as 3) Linear projection of the data set:
large marginbased training of the LVQ system [10], [19].As discussed above, the adaptive mafiixcan be interpreted
Matrix relevance learning is incorporated into the framewo as to define a linear projection for the intrinsic represia
of GLVQ by inserting the distance measure (2) with adaptivef data and prototypes.
parameters) into the cost function (6), see [3]. Given a particular matrix\, the corresponding? is not
The popularstochastigradient descent [20], [21] approxi-uniquely defined by Eg. (2). Distance measure and classifi-
mates the gradier £ by the contributionVe(¢”) wherev is  cation performance are, for instance, invariant undetimota
selected randomly fronil,2. .. P} in each step. This variant or reflections in feature space and= QQ' can have many
is frequently used in practice as an alternativéaéchgradient  solutions. The actual matri obtained in the GMVLQ train-

descent where the sum over allis performed [20]. ing process will depend on initialization and the randomize
Given a particular exampl¢”, the update of prototypes issequence of examples, for instance.
restricted to thewinnersw,; and wg: Expressing the symmetrit in terms of its eigenvectors;
B B 8e<gu) and eigenvectors suggests the canonical representation
Wy, «— W, — Ny —— for L=J K @)
(3'wL N
see [3] for details and the full form. A= ) N =007 with (12)
Updates of the matrixX2 are based on single example i=1
contributions Q = {\//\1171, v/ Aatla, ..., \/)\NﬁN} ,
de(£V) 2dy,  0dy 24y ody

(8) " in which the rows of2T are proportional to the eigenvectors

o0 v v 12 90 v v 12 00
|+ di] | + di] of A. For a low dimensional representation of the data set,

whered? = d(iiz, £), with derivatives as in Eq. (4). the leading eigenvectors of can be employed, i.e. those
In the stochastic gradient descent procedure the matgigrresponding to the largest eigenvalues. The fact thaintoe
update reads trix parameterizes a discriminative distance measuresthey
de(£Y) with the observation that GMVLQ vyields low rank relevance
-9 o0 ©) matrices A, supports the idea of using this scheme for the
As demonstrated in Sec. Ill and shown analytically iNiSualization of labeled data sets in classification.

Sec. IV, the GMLVQ approach displays a strong tenden
to yield singular matricesA [3], [18] of very low rank.
This effect is advantageous in view of potential over-fgtin - We consider Linear Discriminant Analysis (LDA) in the for-
due to a large number of adaptive parameters. However, #glation introduced by Fisher [20], [24]-[26]. An alterivat
restriction to a single or very few relevant directions cafipproach to LDA is based on Bayes decision theory [25]-[27]
lead to numerical instabilities and might result in inferioand is very similar in spirit. For simplicity we will refer to
classification performance if the distance measure beconmgsher’s discriminant as LDA, in accordance with imprecise
too simple[3], [22]. In order to control this behavior a penaltybut widespread terminology. Our summary of LDA follows to
term of the form—xIndet QQ T /2 can be introduced, which g large extent the presentation in [20].

is controlled by a Lagrange parameter> 0 and prohibits  Gijven a data set representing classes, cf. Eq. (5), LDA

c
I%/. Linear Discriminant Analysis

singularity of A. The corresponding gradient term [23] determines an(N x [n. — 1])-dim. matrix T’ which defines
1 9lndet QQT o, (nc — 1) linear projections of the data. It is determined as to
58— = H% (10)  maximize an objective function of the form

with the shorthand)~7 = (Q—l)T, is added to the matrix J() = Tr {(rcer)_l (FCZ,FT)} , (13)

update, yielding
Here, C,, and Cp are the so-calledwithin-class and the

Q—Q—n 6ea(§2 ) +pu T (11) between-classovariance matrix, respectively:
in stochastic descent. Note that the extension to rectangul ne P - - -
(N x M)-matricesQ (M < N) is also possible [18], [22]: Cow = D> Gsov (& —ms)(E —my)"  (14)
ReplacingQ~! in Eq. (11) by the Moore-Penrose pseudoin- s=lv=1
verse [23] enforces raiik) = M. e L o T
In the example applications of GMLVQ presented in the G = 212155,01/ (1l — 112) (n7s —171)

following section, protoytpes were initialized close toeth
respective class-conditional means, with small randoniadevwith the Kronecker symbal;; =1 if i=j andd;; =0 else. The
tions in order to avoid coinciding vectotg,. Elements of the total mean?: and the class-conditional means, are directly
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Fig. 1. Projection of the three-dim. artificial two-class alaet described Fig. 2. Two-dimensional visualization of theis data set as obtained by,
in the text, class 1 (2) is represented by grey (black) symbelspectively. from left to right, PCA, LDA, and GMLVQ; see the text for ddai
From left to right: original data, projection on the leadiaemgenvector ofA
in GMLVQ, projection on the first principal component (uppéght) and
projection by LDA (lower right).
relate to Hebbian learning in the context of neural networks

[29], [30].
estimated from the given data: Conveniently, eigenvectors are ordered according to the
» . magnitude of the corresponding eigenvalues. For a noretliz
1 - Ogv s E ' i ith ei y
= = Z Y andim, = Dos 2005 & . (15) eigenvectornd; of C with eigenvaluec; we have
P > Ogv s
v=1 s
=T A STy =T =
Assuming that the within-class covariance matrix is irioéet e =W Cwi = (wi ¢ = m)

v=1

one can show that the rows of the optiniatorrespond to the
leading(n.—1) eigenvectors ot 1C;. These can be directly Hence, the eigenvectors mark characteristic directiorth wi
determined from the given data set and, thus, LDA does nériancec;. The intuitive assumption that a large variance sig-
require an iterative optimization process. nals high information content of the particular projecticem
Note that the between-class covariance mafhjys of rank be supported by information theoretic arguments concgrnin
(n.—1) [20]. Hence, LDA as described above yields a lineghe optimal reconstruction of original vectors from theetm
mapping to an(n.—1)-dimensional space. For the purpos@rojections [1], [20], [26]. For the purpose of two-dimeorsal
of visualization, only the leading eigenvectors @f 'S, are Visualization of data sets in the following section, onlg tivo
employed. Note that for two-class problems, LDA reduces téading eigenvectors were employed.
the identification of a single directiofi which maximizes the
ratio of within class and between class scatter in terms @f th
projections&” - 5 [20].
For the results presented in the next section, we have use€6MLVQ with 1 prototype per class and LDA are, at a
the implementation of Fisher LDA as it is available in van deglance, very similar in spirit. Clearly, for well separateéarly

I1l. COMPARISON OF METHODS AND ILLUSTRATIVE
EXAMPLES

Maaten’s Toolbox for Dimensionality Reduction [28]. isotropic classes represented by single prototypes irr thei
o ] centers one would not expect dramatic differences. However
C. Principal Component Analysis GLMVQ prototypes are not restricted to positions in the slas

For completeness we also present results obtained by Pganditional means which can be advantageous when clusters
cipal Component Analysis (PCA) [1], [20], [26]. PCA isoverlap. More importantly, a different cost function is iept
arguably the most frequently used projection based tedenigmized which appears to be less sensitive to the specificeclust
for the exploration and representation of multi-dimenalongeometry in many cases. In practical applications superior
data sets. Several criteria can be employed as a startimg pelassification performance has been found for GMLVQ, even
for deriving PCA, see [1], [20], [26] for examples. if two classes are represented by single prototypes, sde [31

Given a data set of the form (5), PCA determines tHer a recent example in the biomedical context.
eigenvalues and orthonormal eigenvectors of the covarianc LDA is obviously restricted to data sets which are, at least

matrix approximately, separable by single linear decision boriesa
S LN\ LVQ approaches can implement more complex piecewise lin-
C= Z ({ - m) (5 - m) (16)  ear decision boundaries by using several prototypes, tiefiec

the cluster geometries and potential multi-modal stregwof
with the total meanm given in Eq. (15). The matrixC the classes. In combination with relevance matrix training
can also be written a§' = C,, + C, cf. Eq. (14). How- LVQ retains this flexibility but at the same time bears the
ever, unsupervised PCA does not take class membershipgential to provide a discriminative linear projection tbe
into account at all. Efficient methods for the calculation afata.

the eigenvalue spectrum can be employed in practice. It is,A first obvious example illustrates this flexibility in terro$
however, very instructive to inspect iterative procedwrbich —an artificial toy data set with two classesiih= 3 dimensions,



p=0 p=0.01 p=0.1

displayed in Fig. 1 (left panel). Obviously, the data is not ; 06—~ 06

linearly separable. Nevertheless, LDA identifies a wefirdl i oar g 04

direction which maximizes the criterion given in Eq. (13ud®  °° % 02 i oz ,*

to the elongation of clusters along theaxis in R? and the o : 0 < e 0 g S
large distance of the two class 1 clusters along:tais, the Y -02 o 02

direction of smallest within class variance correspondth&  -os o -04 o4

z-axis. The largest separation of projected class-comiitio 06 o6

means would obviously be obtained along thaxis. In the = o 5% o 508 ° 5
actual setting, the former dominates the outcome of LDA. It | ) )

yields a direction which almost coincides with theaxis. A o o o

slight deviation prevents the prototypes from coincidimg i o >

the projection. PCA identifies the direction of largest adler

variance, i.e. theg-axis in the example setting. L - L J.ll

A GMLVQ analysis with an appropriate set ®fprototypes,
cf. Fig. 1 (center panel), achieves good classification andrig. 3. Influence of the penalty term (10) in GMLVQ on the vikzation of
discriminative one-dimensional visualization at the saime. the Iris data set. Upper panels: The projection of data and protsyffplack
Furthermore, its outcome is to a large extent robust wi i”;f;‘;/'zzj ?Qr’t?ﬁ);rslteffrt'g rsigeﬁf’gd:e'gfzvi’t%foﬁf ;?]Z Leszl"t(')r"g'x[‘gwfr
respect to the precise configuration of the clusters. panel: the corresponding eigenvalue spectra of the stagjoh for the three

A classical illustrative example was already considered lggnsidered values of.

Fisher [24]: the well-knownris data set. It is available from

the UCI repository [32], for instance. In this simple data se

four features represent properties of 50 individual Irisvies Presence of a penalty term, > 0, enforces non-singulat
which are to be assigned to one of three different species.and higher order eigenvalues increase witft the same time

Here we applied a-score transformation before processinge scatter of the data along the second eigendirectiof of
the data by means of PCA, LDA, and GMLVQ. Hence, thBecomes more pronounced. It is interesting to note thag, her
data sets visualized in Figs. 2 and 3 correspond to fotfle GMLVQ Nearest-Prototype accuracy deteriorates when th
features normalized to zero mean and unit variance. ApglyiRenalty is introduced. While fop, = 0.01 the effect is not
unsupervised PCA (left panel) shows already that one of thet noticeable, we observe an increased error ratofor
classes, represented by black symbols, is well separatedl frv = 0.1. Apparently, optimizing the margin based original
the other two Iris species which overlap in the two-dimgost function (6) is consistent with achieving low erroresat
projection. Although PCA is unsupervised by definition, th# this data set.
obtained visualization happens to be discriminative tortage ~ The Landsatdatabase provides another popular benchmark
extent: A Nearest Neighbor (NN) classification according t@vailable at the UCI repository [32]. It consistsGaf35 feature
Euclidean distance in the two-dim. space misclassifi§s of vectors iNR3%, containing spectral intensities of pixelsdx 3
the feature vectors. neighborhoods taken from a satellite image. The clasdificat

For the three class problem, LDA naturally achieves a twgoncerns the central pixel in each patch, which is to be
dim. representation, as outlined in Sec. 1I-B. It resultgtia assigned to one of 6 classes (red soil, cotton crop, grey soil
visualization shown in the center panel of Fig. 2. The LDAlamp grey soil, soil with vegetation stubble, very damp grey
classifier achieves an overall misclassification rat@%fon soil), see [32] for details.
the data set. NN-classification in the LDA-projected twmdi  Figure 4 (upper panels) displays the two dimensional visu-
space yields3.3% error rate, reflecting that its discriminatingalization of the data set as obtained by PCA and LDA. In the
power is superior compared with unsupervised PCA. projection restricted to the two leading eigendirecticagu-

We employed the GMLVQ approach with constant learninglidean NN-classification scheme achieves overall misdias
ratesn,, = 0.25 andn = 1.25- 102 in Eq. (7) and (8), cation rates 022.4% in the case of PCA anfi7.9% for LDA.
respectively. Plain GMLVQ without panelty term achieves ali appears counterintuitive that unsupervised PCA should
overall Nearest-Prototype error rate 8. The rightmost outperform the supervised LDA with respect to this measure.
panel in Fig. 2 displays the visualization according to thidowever, one has to take into account that LDA provides a
two leading eigenvectors of the relevance matfix The discriminative scheme in.—1 = 5 dimensions which is not
corresponding Euclidean NN-classification error is alaanfb optimized with respect to the concept of NN-classificatilon.
to be2%, reflecting the discriminative power of the projectionaddition, the restriction to two leading eigendirectiomaits

The influence of adding a penalty term, Eq. (10), is illughe discriminative power, obviously. Indeed, the unrestd
trated in Fig. 3. The upper left panel corresponds:te- 0, LDA system misclassifies only5.2% of the data.

i.e. original GMLVQ, note the different scaling of axes in We also display the outcome of GMLVQ training with
comparison with Fig. 2 (right panel). In this case, the firgt = 1 prototype per class ankl = 3 prototypes per class,

eigenvalue of\ is approximatelyl and the resulting projection respectively, in Fig. 4 (lower panels). Without the penalty
is close to one-dimensional, see Fig. 3 (lower row). Therm, Eq. (10), the corresponding NN error rates 2fe)%



(k = 1) and 18.9% (k = 3), respectively. Visual inspection PCA LDA

i class2 || g
N + class3
2 5 + class4
°e < class5 .oy
= class6 e ?.}

prototypes. Of course, the GMLVQ system is also not op-
timized with respect to the NN-performance. Indeed, error 1o _;;
rates corresponding to Nearest Prototype classificatien ar B Rl
significantly lower: we obtain6.3% for k = 1 and 15.4% .
for k = 3 prototypes per class, respectively.

Finally, Fig. 5 exemplifies the influence of the penalty
term on the GMLVQ system withk = 3 prototypes per
class. The corresponding eigenvalue spectra are displayed
the rightmost panels. While the leading eigenvalues clearly
dominate, the penalty term assigns a certain weight to all GMLVQ, k=3, u=0
eigendirections and remains non-singular. o :

On the one hand we note that, as higher order directions are
contributing more strongly, the NN-classification in two- di
mensions deteriorates slightly: we obtain error rate8002%
for 1 = 0.01 and23.3% with x = 0.1. On the other hand we  ’°
observe that the prototype-distance-based classificatitor 0
varies only slightly with the penalty: we obtain error ratds 251
14.8% for = 0.01 and 15.2% with . = 0.1, respectively. =

The experiments presented here illustrate the tendency of 15
GMLVQ to yield low rank relevance matrices. The results -2,
support the idea that this classification scheme can be em-
ployed for meaningful visualization of labeled data sets. Fig. 4. Two-dimensional visualizations of tiendsatdata set as described in
is flexible enough to implement complex piecewise Iine;%ggggtl'e?tegﬁzﬁ?tfg’: EB;SLTfigrf]tt)r"%““’A’E{/%mv'vi‘t’rzoéicé'g’:ggédpg’ Z;:SAS
decision boundaries in high-dimensional multi-class {@0t$, (jower left), and with three prototypes per class (lowehtjgFor the sake of

yet it provides discriminative low-dimensional projea:tinof clarity, only 300 randomly selected examples from each class are displayed.
the data. at the same time Stars mark the projections of GMLVQ protytpes, in addition.

also confirms that better discrimination is achieved withreno 15 ;| - class %

IV. STATIONARITY OF MATRIX RELEVANCE LEARNING

The attractive properties of GMLVQ, as illustrated in th&°llowing considerations are based on the assumption that
previous section, can be understood theoretically from ti the converging system, i.e. after many training stes,
generic form of the matrix update, details are presented 'fn reProduced under the update (17). This self-consistency
a technical report [33]. On average over the random sekectigrgument implies that the set of prototypes as well as the

of an examplet”, the stochastic descent update, Eq. (9), cassignment of input vectors to thg does not change anymore
be written as as (2 is updated. We also have to assume that the individual

Qe [I-9G|Q 17) distances converge smpothly ésapproachgs its stationary
state. The potential existence of pathological data sets an
with the shorthandz; = ({_ wr). Here, the matrixG' is configurations which might violate these assumptions vell b

given as a sum over all example data: provided in a forthcoming publication.
L P We would like to emphasize that does not have the form
G = 5 Z Z ¢J(q”,tﬁm)¢x(fl’,1ﬁn) (18) of a maodified covariance matrixsince it incorporates label

information: Examples are weighted with positive or negati
sign. Hence( is not even positive (semi-) definite, in general.
Furthermore, the matrix is given as a sum over all prototypes
@, which contribute termsx (£ — @) (€ — @) T
whered”, = d(”,,,). In the sum over pairs of prototypes, To begin with, we assume that an orderipg < p, <
the indicator functions; = 0, 1 singles out the closest correctos ... < pn Of the eigenvalues ofs exists with a unique
prototypew; with s; = o, while ¢x = 0,1 identifies the smallest eigenvalug,. We exploit the fact that the set of
wrong winnerx with sx # o. Obviously, Eq. (17) can be eigenvectors forms an orthonormal bagis} Y, of IRY. The
interpreted as a batch gradient descent step, which ceisiciéhfluence of degeneracies is discussed below.
with the averaged stochastic update. An unnormalized update of the form (17) would be domi-
It is important to realize that the matri¥ in Eq. (17) does nated by the largest eigenvalue and corresponding eiggmvec
change with the LVQ update, in general. Even if prototypesf the matrix[I — n G]. For sufficiently smalh this eigenvalue
positions are fixed, the assignment of the data tovifreners is (1 — np;) > 0. However, the naive iteration of Eq. (17)
as well as the corresponding distances vary with The without normalization would yield either divergent behavi

v=1 mn=1

drun v =T d'rVL v v
X\, T - =T, T
{(d%ﬁd%V N (A E



for p; < 0 or the trivial stationary solutiof2 — 0 for s GMLVQ, k=3,11=0.01 GMLVQ, k=3, p=0.1

p1 > 0. Eq. (17) is reminiscent of theon Misesiteration o
for the determination of leading eigenvalues and eigewovect 2 M ;
[34], where normalization is also required. 1 R
~ Under the constraint thaf’,; Q7 = 1 and considering the - 0
limit of small learning rates; — 0, one can show that the of & T8 )
. . . W‘_’:.&
stationary solution of Eq. (17) corresponds to a mérigvery .:-_-j‘@f 1
column of which is a multiple of the eigenvector: -t :
N - 0 1 2 3 =) -2 -1 0 1
Q = [alﬁl, Cl2’(71, oo 7(1]\/'171] Wlth Z a,? =1. (19) Eigenvalues, k=3, n=0.01 Eigenvalues, k=3, u=0.1
=1 0.12 0.12
For a detailed presentation of the argument, see [33]. Explo 0.1 0.1
ing the normalization of the coefficients, we can work out 0.08 0.08
the resulting matrix\:
0.06 0.06
A=QQ" =47, (20) 0.04 0.04
. .. . . 0.02 0.02
Hence, the resulting relevance matrix is given by the eigen-
vector of G which corresponds to its smallest eigenvalue. % 10 20 30 % 10 20 30

In the case of &-fold degenerate smallest eigenvalueyf
Fig. 5. Influence of the penalty term on the GMLVQ system withee

prototypes per class in the landsat data. Upper left panslialization for
pr=p2=...=pp < Pr+1 < Pit2--- < PN, w = 0.01, upper right: the same withh = 0.1. For a legend see Fig. 4.
. . . . . Lower left panel: eigenvalues fgr = 0.01, lower right: eigenvalues for
the stationarity condition implies that the columnsfefare ., =o0.1.

arbitrary vectors from the corresponding eigenspace, lsee a

[33]. It is still possible to construct an orthonormal basis

{@-}le of this space and we obtain a stationary The solution becomes particularly transparent for verylwea
penalization of singularity. As detailed in [33], the self-
consisent stationary relevance matrix has the form

A=Y by 5] (21)
w= H T H T
where the actual coefficients; have to satisfy the symmetry A=|1t- Z; pi — p1 nvy Z; pi — p1 uvi (23)

A = Ay and the normalization TA) = 1.
The above results are valid in the limit — 0 and for in the limit 1 — 0. As expected, the eigendirection corre-

infinitely many training steps. In practice, learning rates 0  sponding top; still dominates the distance measure for small

and stoppingafter a finite number of updates will result in abut non-zerou. The influence of all other eigenvectoty

matrix A with rank(A) > 1, in general. As confirmed in increases withy and is inversely proportional tpr — p1).

the examples of Sec. (IIDA is dominated by one leadingHere we assumeg; < p2, the extension to degenerate

eigenvectory;, generically, but several others also contributemallest eigenvalues is analogous to the above.

weakly. The incorporation of the penalty term, cf. Eq. (10), Example results presented in the previous section confirm

preventsA from becoming singular, and hence has a similaur theoretical findings qualitatively. More detailed gtitna

effect on the resulting eigenvalue spectrum. tive comparisons will be presented in a forthcoming study.
Extending the generic update equation (17) by the penaltyWWe have shown that, also in GMLVQ, the obtained pro-
term gives jections can be formulated as the solution of a modified
Qx Q—nGA+nuQT. (22) eigenvalue problem. In contrast to PCA and LDA, however,

neither the corresponding matrix nor the solution can be
Its presence complicates the stationarity condition,ildetd constructed from a given data set in a straightforward tashi
the analysis are presented in [33]. We restrict ourselves @m the contrary, it results from the iterative process after
presenting the results with respect to two specific limits:  many steps and depends on initialization and the positipnin
For very strong penalty; — oo, one obtains the stationaryof prototypes in the course of the training.

A =Y @) /N =I/N. V. CONCLUSION
k

We have demonstrated that Generalized Matrix Learning
All eigenvectors contribute equally in this case and the di¥ector Quantization constitutes a powerful method for the
tance reduces to the standard Euclidean measure in origiviglialization of labeled data sets. The framework combines
feature space, apart from the normalization fadtaw. the flexibility and discriminative power of prototype-bdse



classification with the conceptually simple but versatde-

dimensional representation of feature vectors by mearnig-of |

(11]

ear projection. Comparison with classical methods of saimil[lz]
complexity like LDA and PCA illustrate the usefulness and

flexibility of the appraoch.

(23]

Furthermore, we have presented an analytic treatment[pj]
the matrix updates close to stationarity. Like for LDA and
PCA, the outcome of GMLVQ can be formulated as a modified

eigenvalue problem. However, its characteristic matrixncd

(15]

be determined in advance from the data; it depends on the

actual training dynamics, including the prototype posisio
Consequently, the mathematical treatment of stationaety
quires a self-consistency assumption. We have extended the
analysis to a variant of GMLVQ which introduces a penalt

term as to enforce non-singularity of the projection. Ittcols

(16]

7]

the role of higher-order eigenvalues and allows to influengss)

properties of the visualization systematically.

Locally linear extensions of the method which combine
global, low rank projections with class-specific relevangag]

matrices defined in the low-dimensional space are curre
investigated. This modification can enhance discrimieati

power significantly, yet retains the conceptual simpliaitly
the visualization.

Our findings indicate that GMLVQ is a promising tool

for discriminative visualization. In particular, we expea
variety of interesting applications in the interactive lgaes

o

(21]

(22]

of complex data sets. In the context of similarity base[%]

retrieval, for instance, extensions along the line of treSRIM

approach [35] appear promising. The adaptation of thenflista [24]
measure based on user-feedback instead of pre-defined Iaagi

constitutes another promising application of the approach
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