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Abstract—We suggest and investigate the use of Generalized
Matrix Relevance Learning (GMLVQ) in the context of discrim-
inative visualization. This prototype-based, supervised learning
scheme parameterizes an adaptive distance measure in terms of
a matrix of relevance factors. By means of a few benchmark
problems, we demonstrate that the training process yields low
rank matrices which can be used efficiently for the discriminative
visualization of labeled data. Comparison with well known
standard methods illustrate the flexibility and discriminative
power of the novel approach. The mathematical analysis of
GMLVQ shows that the corresponding stationarity condition
can be formulated as an eigenvalue problem with one or several
strongly dominating eigenvectors. We also study the inclusion of
a penalty term which enforces non-singularity of the relevance
matrix and can be used to control the role of higher order
eigenvalues, efficiently.

I. I NTRODUCTION

Given the ever increasing amount of large, high-dimensional
data sets acquired in a variety scientific disciplines and appli-
cation domains, efficient methods for dimension reduction and
visualization play an essential role in modern data processing
and analysis.

A multitude of methods for the low-dimensional represen-
tation of complex data sets has been proposed in recent years,
see for instance [1] for an overview and categorization of the
many different approaches. The diversity of methods reflects
the large number of goals and criteria one can have in mind
with respect to dimension reduction. Indeed, in particularfor
visualization, one of the key problems of the field seems to
be the formulation of clear-cut objectives.

A somewhat special case is the discriminative visualization
of labeled data as it occurs in classification problems or other
supervised machine learning frameworks. The classification
accuracy which can be achieved in the low-dimensional space
provides at least one obvious guideline for the evaluation and
comparison of visualizations.

In this contribution we restrict ourselves to methods which
perform an explicit mapping from the original feature space
to lower dimension [1], [2]. Moreover, we will consider only

linear methods. While limited in power and flexibility, linear
methods continue to be attractive due to their interpretability,
low computational costs, and accessibility for mathematical
analysis.

Probably the most prominent methods that employ linear
projections are the well known Prinicipal Component Analysis
for the unsupervised analysis of data sets and Linear Discrim-
inant Analysis in the context of classification problems.

We present a novel, linear approach to the low-dim. repre-
sentation and visualization of labeled data which is based on a
particularly powerful and flexible framework for classification.
In the recently introduced Generalized Matrix Relevance LVQ
[3], a set of prototypes is identified as typical representatives
of the classes. At the same time an adaptive distance measure
is determined. The latter is parameterized by a matrix which
corresponds to a linear transformation of feature space. The
optimization of, both, prototypes and relevance matrix is
guided by a margin based cost function. The method displays
an intrinsic tendency to yield a low rank relevance matrix and,
hence, its eigenvectors can be employed for discriminative
low-dimensional representation and visualization.

The fact that the approach combines prototype based clas-
sification with linear low-dimensional representations makes
it a particularly promising technique for interactive tasks.
Prototypes serve as typical representatives of the classesand
facilitate good interpretability of the classifier. This isclearly
benefitial in discussions with domain experts. In the context of
visualization, it offers the possibility tozoom inon regions of
feature space which are most representative for the classes.
User feedback or data driven, adaptive distance measures
can also be readily employed in the context of interactive
applications. They can be used, for instance, in the similarity
based retrieval of images from a large data base, see [4]
for an example in the medical domain. The combination of
prototype based classification, adaptive similarity measures,
and discriminative visualization clearly bears the promise to
facilitate a number of novel techniques for the interactive
analysis of complex data.



We illustrate the GMLVQ approach to discriminative vi-
sualization in terms of a few example data sets, comparing
with the classical approaches of PCA and LDA. Moreover,
we present a theoretical analysis which explains the tendency
to low-rank representations in GMLVQ.

II. L INEAR DISCRIMINATIVE VISUALIZATION

We first introduce Generalized Matrix Relevance Learning
as a tool for the discriminative low-dimensional representation
of labeled data. In addition we review very briefly two classical
statistical methods: Principal Component Analysis and Linear
Discriminant Analysis.

A. Generalized Matrix Relevance Learning

Similarity based methods play a most important role in,
both, unsupervised and supervised machine learning analysis
of complex data sets, see [5] for an overview and further refer-
ences. In the context of classification problems, Learning Vec-
tor Quantization (LVQ), originally suggested by Kohonen [6]–
[8], constitutes a particularly intuitive and successful family
of algorithms. In LVQ, classes are represented by prototypes
which are determined from example data and are defined in the
original feature space. Together with a suitable dissimilarity or
distance measure they parameterize the classifier, frequently
according to aNearest Prototypescheme. LVQ schemes are
easy to implement and very flexible. Numerous variations of
the original scheme have been suggested, aiming at clearer
mathematical foundation, improved performance, or better
stability and convergence behavior, see e.g. [9]–[13]. Further
references, also reflecting the impressive variety of application
domains in which LVQ has been employed successfully, are
available at [14].

A key issue in LVQ and other similarity based tech-
niques is the choice of an appropriate distance measure. Most
frequently, standard Euclidean or other Minkowski metrics
are used without further justification and reflect implicit as-
sumptions about, for instance, the presence of approximately
isotropic clusters

Pre-defined distance measures are, frequently, sensitive to
rescaling of single features or more general linear transforma-
tions of the data. In particular if data is heterogeneous in the
sense that features of different nature are combined, usefulness
of Euclidean distance based classification is far from obvious.

An elegant framework has been developed which can cir-
cumvent this difficulty to a large extent: In so-called Relevance
Learning schemes, only the functional form of the dissimilarity
is fixed, while a set of parameters is determined in the training
process. To our knowledge, this idea was first proposed in [15]
in the context of LVQ. Similar ideas have been formulated for
other distance based classifiers, see e.g. [16] for an example
in the context of Nearest Neighbor classifiers [17].

A generalized quadratic distance is parameterized by a
matrix of relevances in Matrix Relevance Learning which is
summarized in the following.

1) The adaptive distance measure:
Matrix Relevance LVQ employs a distance measure given by
the quadratic form

d(~y, ~z) = (~y − ~z)⊤ Λ (~y − ~z) for ~y, ~z ∈ R
N . (1)

It is required to fulfill the basic conditionsd(~y, ~y) = 0 and
d(~y, ~z) = d(~z, ~y) ≥ 0 for all ~y, ~z with ~y 6= ~z. These are
conveniently satisfied by assuming the parameterizationΛ =
ΩΩ⊤, i.e.

d(~y, ~z) = (~y − ~z)⊤ ΩΩ⊤ (~y − ~z) =
[

Ω⊤ (~y − ~z)
]2

(2)

Hence,Ω⊤ defines a linear mapping of data and prototypes to
a space in which standard Euclidean distance is applied.

In the frame of this contribution we only consider aglobal
metric which is parameterized by a single matrixΛ for all
prototypes. Extensions to locally defined distance measures,
i.e. local-linear projections, are discussed in [3], [18].

Note that for a meaningful classification and for the LVQ
training it is sufficient to assume thatΛ is positive semi-
definite; the transformation need not be invertible and could
even be represented by a rectangular matrixΩ⊤ [18]. Here
we consider unrestrictedN ×N -matricesΩ without imposing
symmetry or other constraints on its structure. In this case, the
elements ofΩ can be varied independently. For instance, the
derivative of the distance measure with respect to an arbitrary
element ofΩ is

∂d(~y, ~z)

∂Ωkm

= 2(yk−zk)
[

Ω⊤(~y−~z)
]

m
(3)

or in matrix notation:

∂d(~y, ~z)

∂Ω
= = 2 (~y − ~z) (~y − ~z)⊤ Ω. (4)

This derivative is the basis of the matrix adaptation scheme
considered in the following.

2) Cost function based training:
A particularly attractive and successful variant of LVQ, termed
GeneralizedLVQ (GLVQ) was introduced by Sato and Ya-
mado [10], [11]. Given a set of training examples

{~ξν , σν}Pν=1 where~ξν ∈ R
N andσν ∈ {1, 2, . . . , nc}

(5)
for annc-class problem inN dimensions, training is based on
the cost function

E =
1

P

P
∑

ν=1

e(~ξν) with e(~ξ) =
d(~wJ , ~ξ)− d(~wK , ~ξ)

d(~wJ , ~ξ) + d(~wK , ~ξ)
(6)

Here, the indexJ identifies the closest prototype which carries
the correct labelsJ = σ, the so-calledcorrect winnerwith
d(~wJ , ~ξ) = mink{d(~wk, ~ξ)|sk = σ}. Correspondingly, the
wrong winner~wK is the prototype with the smallest distance
d(~wi, ~x) among all ~wi representing a different classsi 6= σ.
Frequently, an additional sigmoidal functionΦ(e) is applied
[10]. While its inclusion would be straightforward, we restrict
the discussion to the simplifying caseΦ(x) = x, in the
following.



Note thate(~ξ) in Eq. (6) is negative if the feature vector
is classified correctly. Moreover,−e(~ξ) quantifies the margin
of the classification and minimizingE can be interpreted as
large marginbased training of the LVQ system [10], [19].
Matrix relevance learning is incorporated into the framework
of GLVQ by inserting the distance measure (2) with adaptive
parametersΩ into the cost function (6), see [3].

The popularstochasticgradient descent [20], [21] approxi-
mates the gradient∇E by the contribution∇e(~ξν) whereν is
selected randomly from{1, 2 . . . P} in each step. This variant
is frequently used in practice as an alternative tobatchgradient
descent where the sum over allν is performed [20].

Given a particular example~ξν , the update of prototypes is
restricted to thewinners ~wJ and ~wK :

~wL ← ~wL − ηw

∂e(~ξν)

∂ ~wL

for L = J,K (7)

see [3] for details and the full form.
Updates of the matrixΩ are based on single example

contributions

∂e(~ξν)

∂Ω
=

2 dν
K

[dν
J + dν

K ]
2

∂dν
J

∂Ω
−

2 dν
J

[dν
J + dν

K ]
2

∂dν
K

∂Ω
(8)

wheredν
L = d(~wL, ~ξν), with derivatives as in Eq. (4).

In the stochastic gradient descent procedure the matrix
update reads

Ω← Ω− η
∂e(~ξν)

∂Ω
. (9)

As demonstrated in Sec. III and shown analytically in
Sec. IV, the GMLVQ approach displays a strong tendency
to yield singular matricesΛ [3], [18] of very low rank.
This effect is advantageous in view of potential over-fitting
due to a large number of adaptive parameters. However, the
restriction to a single or very few relevant directions can
lead to numerical instabilities and might result in inferior
classification performance if the distance measure becomes
too simple[3], [22]. In order to control this behavior a penalty
term of the form−µ ln det ΩΩ⊤/2 can be introduced, which
is controlled by a Lagrange parameterµ > 0 and prohibits
singularity ofΛ. The corresponding gradient term [23]

µ

2

∂ ln det ΩΩ⊤

∂Ω
= µΩ−T (10)

with the shorthandΩ−T =
(

Ω−1
)⊤

, is added to the matrix
update, yielding

Ω← Ω− η
∂e(~ξν)

∂Ω
+ η µΩ−T (11)

in stochastic descent. Note that the extension to rectangular
(N ×M)-matricesΩ (M < N ) is also possible [18], [22]:
ReplacingΩ−1 in Eq. (11) by the Moore-Penrose pseudoin-
verse [23] enforces rank(Λ) = M.

In the example applications of GMLVQ presented in the
following section, protoytpes were initialized close to the
respective class-conditional means, with small random devia-
tions in order to avoid coinciding vectors~wk. Elements of the

initial Ω were drawn independently from a uniform distribution
U(−1,+1) with subsequent normalization

∑

ij Ω2
ij = 1.

3) Linear projection of the data set:
As discussed above, the adaptive matrixΩ can be interpreted
as to define a linear projection for the intrinsic representation
of data and prototypes.

Given a particular matrixΛ, the correspondingΩ is not
uniquely defined by Eq. (2). Distance measure and classifi-
cation performance are, for instance, invariant under rotations
or reflections in feature space andΛ = ΩΩ⊤ can have many
solutions. The actual matrixΩ obtained in the GMVLQ train-
ing process will depend on initialization and the randomized
sequence of examples, for instance.

Expressing the symmetricΛ in terms of its eigenvectorsλi

and eigenvectors suggests the canonical representation

Λ =
N

∑

i=1

λi ~ui ~u⊤
i = ΩΩ⊤ with (12)

Ω =
[

√

λ1~u1,
√

λ2~u2, . . . ,
√

λN~uN

]

,

in which the rows ofΩ⊤ are proportional to the eigenvectors
of Λ. For a low dimensional representation of the data set,
the leading eigenvectors ofΛ can be employed, i.e. those
corresponding to the largest eigenvalues. The fact that thema-
trix parameterizes a discriminative distance measure, together
with the observation that GMVLQ yields low rank relevance
matricesΛ, supports the idea of using this scheme for the
visualization of labeled data sets in classification.

B. Linear Discriminant Analysis

We consider Linear Discriminant Analysis (LDA) in the for-
mulation introduced by Fisher [20], [24]–[26]. An alternative
approach to LDA is based on Bayes decision theory [25]–[27]
and is very similar in spirit. For simplicity we will refer to
Fisher’s discriminant as LDA, in accordance with imprecise
but widespread terminology. Our summary of LDA follows to
a large extent the presentation in [20].

Given a data set representingnc classes, cf. Eq. (5), LDA
determines an(N × [nc − 1])-dim. matrix Γ which defines
(nc − 1) linear projections of the data. It is determined as to
maximize an objective function of the form

J(Γ) = Tr
[

(

ΓCwΓ⊤
)−1 (

ΓCbΓ
⊤

)

]

. (13)

Here, Cw and CB are the so-calledwithin-class and the
between-classcovariance matrix, respectively:

Cw =

nc
∑

s=1

P
∑

ν=1

δs,σν (~ξν − ~ms)(~ξ
ν − ~ms)

⊤ (14)

Cb =

nc
∑

s=1

P
∑

ν=1

δs,σν ( ~ms − ~m) ( ~ms − ~m)
⊤

with the Kronecker symbolδij =1 if i=j andδij =0 else. The
total mean~m and the class-conditional means~ms are directly
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Fig. 1. Projection of the three-dim. artificial two-class data set described
in the text, class 1 (2) is represented by grey (black) symbols, respectively.
From left to right: original data, projection on the leadingeigenvector ofΛ
in GMLVQ, projection on the first principal component (upper right) and
projection by LDA (lower right).

estimated from the given data:

~m =
1

P

P
∑

ν=1

~ξν , and ~ms =

∑

s

∑

ν δσν ,s
~ξν

∑

s δσν ,s

. (15)

Assuming that the within-class covariance matrix is invertible,
one can show that the rows of the optimalΓ correspond to the
leading(nc−1) eigenvectors ofC−1

w Cb. These can be directly
determined from the given data set and, thus, LDA does not
require an iterative optimization process.

Note that the between-class covariance matrixCb is of rank
(nc−1) [20]. Hence, LDA as described above yields a linear
mapping to an(nc−1)-dimensional space. For the purpose
of visualization, only the leading eigenvectors ofC−1

w Sb are
employed. Note that for two-class problems, LDA reduces to
the identification of a single direction~γ which maximizes the
ratio of within class and between class scatter in terms of the
projections~ξν · ~γ [20].

For the results presented in the next section, we have used
the implementation of Fisher LDA as it is available in van der
Maaten’s Toolbox for Dimensionality Reduction [28].

C. Principal Component Analysis

For completeness we also present results obtained by Prin-
cipal Component Analysis (PCA) [1], [20], [26]. PCA is
arguably the most frequently used projection based technique
for the exploration and representation of multi-dimensional
data sets. Several criteria can be employed as a starting point
for deriving PCA, see [1], [20], [26] for examples.

Given a data set of the form (5), PCA determines the
eigenvalues and orthonormal eigenvectors of the covariance
matrix

C =

P
∑

ν=1

(

~ξν − ~m
)(

~ξν − ~m
)⊤

. (16)

with the total mean~m given in Eq. (15). The matrixC
can also be written asC = Cw + Cb, cf. Eq. (14). How-
ever, unsupervised PCA does not take class memberships
into account at all. Efficient methods for the calculation of
the eigenvalue spectrum can be employed in practice. It is,
however, very instructive to inspect iterative procedureswhich
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Fig. 2. Two-dimensional visualization of theIris data set as obtained by,
from left to right, PCA, LDA, and GMLVQ; see the text for details.

relate to Hebbian learning in the context of neural networks
[29], [30].

Conveniently, eigenvectors are ordered according to the
magnitude of the corresponding eigenvalues. For a normalized
eigenvector~wi of C with eigenvalueci we have

ci = ~w⊤
i C ~wi =

P
∑

ν=1

(

~w⊤
i

~ξν − ~w⊤
i ~m

)2

.

Hence, the eigenvectors mark characteristic directions with
varianceci. The intuitive assumption that a large variance sig-
nals high information content of the particular projectioncan
be supported by information theoretic arguments concerning
the optimal reconstruction of original vectors from the linear
projections [1], [20], [26]. For the purpose of two-dimensional
visualization of data sets in the following section, only the two
leading eigenvectors were employed.

III. C OMPARISON OF METHODS AND ILLUSTRATIVE

EXAMPLES

GMLVQ with 1 prototype per class and LDA are, at a
glance, very similar in spirit. Clearly, for well separated, nearly
isotropic classes represented by single prototypes in their
centers one would not expect dramatic differences. However,
GLMVQ prototypes are not restricted to positions in the class
conditional means which can be advantageous when clusters
overlap. More importantly, a different cost function is opti-
mized which appears to be less sensitive to the specific cluster
geometry in many cases. In practical applications superior
classification performance has been found for GMLVQ, even
if two classes are represented by single prototypes, see [31]
for a recent example in the biomedical context.

LDA is obviously restricted to data sets which are, at least
approximately, separable by single linear decision boundaries.
LVQ approaches can implement more complex piecewise lin-
ear decision boundaries by using several prototypes, reflecting
the cluster geometries and potential multi-modal structures of
the classes. In combination with relevance matrix training,
LVQ retains this flexibility but at the same time bears the
potential to provide a discriminative linear projection ofthe
data.

A first obvious example illustrates this flexibility in termsof
an artificial toy data set with two classes inN = 3 dimensions,



displayed in Fig. 1 (left panel). Obviously, the data is not
linearly separable. Nevertheless, LDA identifies a well-defined
direction which maximizes the criterion given in Eq. (13). Due
to the elongation of clusters along they-axis in R

3 and the
large distance of the two class 1 clusters along thez-axis, the
direction of smallest within class variance corresponds tothe
x-axis. The largest separation of projected class-conditional
means would obviously be obtained along thez-axis. In the
actual setting, the former dominates the outcome of LDA. It
yields a direction which almost coincides with thex-axis. A
slight deviation prevents the prototypes from coinciding in
the projection. PCA identifies the direction of largest overall
variance, i.e. they-axis in the example setting.

A GMLVQ analysis with an appropriate set of3 prototypes,
cf. Fig. 1 (center panel), achieves good classification and a
discriminative one-dimensional visualization at the sametime.
Furthermore, its outcome is to a large extent robust with
respect to the precise configuration of the clusters.

A classical illustrative example was already considered by
Fisher [24]: the well-knownIris data set. It is available from
the UCI repository [32], for instance. In this simple data set,
four features represent properties of 50 individual Iris flowers
which are to be assigned to one of three different species.

Here we applied az-score transformation before processing
the data by means of PCA, LDA, and GMLVQ. Hence, the
data sets visualized in Figs. 2 and 3 correspond to four
features normalized to zero mean and unit variance. Applying
unsupervised PCA (left panel) shows already that one of the
classes, represented by black symbols, is well separated from
the other two Iris species which overlap in the two-dim.
projection. Although PCA is unsupervised by definition, the
obtained visualization happens to be discriminative to a certain
extent: A Nearest Neighbor (NN) classification according to
Euclidean distance in the two-dim. space misclassifies12% of
the feature vectors.

For the three class problem, LDA naturally achieves a two-
dim. representation, as outlined in Sec. II-B. It results inthe
visualization shown in the center panel of Fig. 2. The LDA
classifier achieves an overall misclassification rate of2% on
the data set. NN-classification in the LDA-projected two-dim.
space yields3.3% error rate, reflecting that its discriminating
power is superior compared with unsupervised PCA.

We employed the GMLVQ approach with constant learning
ratesηw = 0.25 and η = 1.25 · 10−3 in Eq. (7) and (8),
respectively. Plain GMLVQ without panelty term achieves an
overall Nearest-Prototype error rate of2%. The rightmost
panel in Fig. 2 displays the visualization according to the
two leading eigenvectors of the relevance matrixΛ. The
corresponding Euclidean NN-classification error is also found
to be2%, reflecting the discriminative power of the projection.

The influence of adding a penalty term, Eq. (10), is illus-
trated in Fig. 3. The upper left panel corresponds toµ = 0,
i.e. original GMLVQ, note the different scaling of axes in
comparison with Fig. 2 (right panel). In this case, the first
eigenvalue ofΛ is approximately1 and the resulting projection
is close to one-dimensional, see Fig. 3 (lower row). The
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Fig. 3. Influence of the penalty term (10) in GMLVQ on the visualization of
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panel: the corresponding eigenvalue spectra of the stationary Λ for the three
considered values ofµ.

presence of a penalty term,µ > 0, enforces non-singularΛ
and higher order eigenvalues increase withµ. At the same time
the scatter of the data along the second eigendirection ofΛ
becomes more pronounced. It is interesting to note that, here,
the GMLVQ Nearest-Prototype accuracy deteriorates when the
penalty is introduced. While forµ = 0.01 the effect is not
yet noticeable, we observe an increased error rate of4% for
µ = 0.1. Apparently, optimizing the margin based original
cost function (6) is consistent with achieving low error rates
in this data set.

The Landsatdatabase provides another popular benchmark
available at the UCI repository [32]. It consists of6435 feature
vectors inR

36, containing spectral intensities of pixels in3×3
neighborhoods taken from a satellite image. The classification
concerns the central pixel in each patch, which is to be
assigned to one of 6 classes (red soil, cotton crop, grey soil,
damp grey soil, soil with vegetation stubble, very damp grey
soil), see [32] for details.

Figure 4 (upper panels) displays the two dimensional visu-
alization of the data set as obtained by PCA and LDA. In the
projection restricted to the two leading eigendirections,a Eu-
clidean NN-classification scheme achieves overall misclassifi-
cation rates of22.4% in the case of PCA and27.9% for LDA.
It appears counterintuitive that unsupervised PCA should
outperform the supervised LDA with respect to this measure.
However, one has to take into account that LDA provides a
discriminative scheme innc−1 = 5 dimensions which is not
optimized with respect to the concept of NN-classification.In
addition, the restriction to two leading eigendirections limits
the discriminative power, obviously. Indeed, the unrestricted
LDA system misclassifies only15.2% of the data.

We also display the outcome of GMLVQ training with
k = 1 prototype per class andk = 3 prototypes per class,
respectively, in Fig. 4 (lower panels). Without the penalty
term, Eq. (10), the corresponding NN error rates are27.0%



(k = 1) and 18.9% (k = 3), respectively. Visual inspection
also confirms that better discrimination is achieved with more
prototypes. Of course, the GMLVQ system is also not op-
timized with respect to the NN-performance. Indeed, error
rates corresponding to Nearest Prototype classification are
significantly lower: we obtain16.3% for k = 1 and 15.4%
for k = 3 prototypes per class, respectively.

Finally, Fig. 5 exemplifies the influence of the penalty
term on the GMLVQ system withk = 3 prototypes per
class. The corresponding eigenvalue spectra are displayedin
the rightmost panels. While the leading eigenvalues clearly
dominate, the penalty term assigns a certain weight to all
eigendirections andΛ remains non-singular.

On the one hand we note that, as higher order directions are
contributing more strongly, the NN-classification in two di-
mensions deteriorates slightly: we obtain error rates of20.2%
for µ = 0.01 and23.3% with µ = 0.1. On the other hand we
observe that the prototype-distance-based classificationerror
varies only slightly with the penalty: we obtain error ratesof
14.8% for µ = 0.01 and15.2% with µ = 0.1, respectively.

The experiments presented here illustrate the tendency of
GMLVQ to yield low rank relevance matrices. The results
support the idea that this classification scheme can be em-
ployed for meaningful visualization of labeled data sets. It
is flexible enough to implement complex piecewise linear
decision boundaries in high-dimensional multi-class problems,
yet it provides discriminative low-dimensional projections of
the data, at the same time.

IV. STATIONARITY OF MATRIX RELEVANCE LEARNING

The attractive properties of GMLVQ, as illustrated in the
previous section, can be understood theoretically from the
generic form of the matrix update, details are presented in
a technical report [33]. On average over the random selection
of an example~ξν , the stochastic descent update, Eq. (9), can
be written as

Ω← [I − η G] Ω (17)

with the shorthand~xL = (~ξ − ~wL). Here, the matrixG is
given as a sum over all example data:

G =
1

P

P
∑

ν=1

M
∑

m,n=1

φJ(~ξν , ~wm)φK(~ξν , ~wn) (18)

×

[

dν
m

(dν
m + dν

n)2
~xν

m ~xν⊤
m −

dν
n

(dν
m + dν

n)2
~xν

n ~xν⊤
n

]

.

wheredν
m = d(~ξν , ~wm). In the sum over pairs of prototypes,

the indicator functionsφJ = 0, 1 singles out the closest correct
prototype ~wJ with sJ = σ, while φK = 0, 1 identifies the
wrong winner ~wK with sK 6= σ. Obviously, Eq. (17) can be
interpreted as a batch gradient descent step, which coincides
with the averaged stochastic update.

It is important to realize that the matrixG in Eq. (17) does
change with the LVQ update, in general. Even if prototypes
positions are fixed, the assignment of the data to thewinners
as well as the corresponding distances vary withΩ. The
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Fig. 4. Two-dimensional visualizations of thelandsatdata set as described in
the text. Representaion in terms of the two-dim. projections obtained by PCA
(upper left panel), LDA (upper right), GMLVQ with one prototype per class
(lower left), and with three prototypes per class (lower right). For the sake of
clarity, only 300 randomly selected examples from each class are displayed.
Stars mark the projections of GMLVQ protytpes, in addition.

following considerations are based on the assumption that
in the converging system, i.e. after many training steps,G
is reproduced under the update (17). This self-consistency
argument implies that the set of prototypes as well as the
assignment of input vectors to the~wk does not change anymore
as Ω is updated. We also have to assume that the individual
distances converge smoothly asΩ approaches its stationary
state. The potential existence of pathological data sets and
configurations which might violate these assumptions will be
provided in a forthcoming publication.

We would like to emphasize thatG does not have the form
of a modified covariance matrixsince it incorporates label
information: Examples are weighted with positive or negative
sign. Hence,G is not even positive (semi-) definite, in general.
Furthermore, the matrix is given as a sum over all prototypes
~wk which contribute terms∝ (~ξ − ~wk)(~ξ − ~wk)⊤.

To begin with, we assume that an orderingρ1 < ρ2 ≤
ρ3 . . . ≤ ρN of the eigenvalues ofG exists with a unique
smallest eigenvalueρ1. We exploit the fact that the set of
eigenvectors forms an orthonormal basis{~vj}

N
j=1 of IRN . The

influence of degeneracies is discussed below.
An unnormalized update of the form (17) would be domi-

nated by the largest eigenvalue and corresponding eigenvector
of the matrix[I − η G]. For sufficiently smallη this eigenvalue
is (1 − ηρ1) > 0. However, the naive iteration of Eq. (17)
without normalization would yield either divergent behavior



for ρ1 < 0 or the trivial stationary solutionΩ → 0 for
ρ1 > 0. Eq. (17) is reminiscent of thevon Mises iteration
for the determination of leading eigenvalues and eigenvectors
[34], where normalization is also required.

Under the constraint that
∑

ij Ω2
ij = 1 and considering the

limit of small learning ratesη → 0, one can show that the
stationary solution of Eq. (17) corresponds to a matrixΩ every
column of which is a multiple of the eigenvector~v1:

Ω = [a1~v1, a2~v1, . . . , aN~v1] with
N

∑

i=1

a2
i = 1. (19)

For a detailed presentation of the argument, see [33]. Exploit-
ing the normalization of the coefficientsai, we can work out
the resulting matrixΛ:

Λ = ΩΩ⊤ = ~v1 ~v⊤
1 . (20)

Hence, the resulting relevance matrix is given by the eigen-
vector ofG which corresponds to its smallest eigenvalue.

In the case of ak-fold degenerate smallest eigenvalue ofG,

ρ1 = ρ2 = . . . = ρk < ρk+1 ≤ ρk+2 . . . ≤ ρN ,

the stationarity condition implies that the columns ofΩ are
arbitrary vectors from the corresponding eigenspace, see also
[33]. It is still possible to construct an orthonormal basis
{~vi}

k

i=1
of this space and we obtain a stationary

Λ =
k

∑

i,j=1

bij ~vi ~v
⊤
j (21)

where the actual coefficientsbij have to satisfy the symmetry
Λmn = Λnm and the normalization Tr(Λ) = 1.

The above results are valid in the limitη → 0 and for
infinitely many training steps. In practice, learning ratesη > 0
and stoppingafter a finite number of updates will result in a
matrix Λ with rank(Λ) > 1, in general. As confirmed in
the examples of Sec. (III),Λ is dominated by one leading
eigenvector~v1, generically, but several others also contribute
weakly. The incorporation of the penalty term, cf. Eq. (10),
preventsΛ from becoming singular, and hence has a similar
effect on the resulting eigenvalue spectrum.

Extending the generic update equation (17) by the penalty
term gives

Ω ∝ Ω− η GΩ + η µΩ−T . (22)

Its presence complicates the stationarity condition, details of
the analysis are presented in [33]. We restrict ourselves to
presenting the results with respect to two specific limits:

For very strong penalty,µ→∞, one obtains the stationary

Λ =
∑

k

~vk~v
⊤
k /N = I/N.

All eigenvectors contribute equally in this case and the dis-
tance reduces to the standard Euclidean measure in original
feature space, apart from the normalization factor1/N .
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Fig. 5. Influence of the penalty term on the GMLVQ system with three
prototypes per class in the landsat data. Upper left panel: visualization for
µ = 0.01, upper right: the same withµ = 0.1. For a legend see Fig. 4.
Lower left panel: eigenvalues forµ = 0.01, lower right: eigenvalues for
µ = 0.1.

The solution becomes particularly transparent for very weak
penalization of singularity. As detailed in [33], the self-
consisent stationary relevance matrix has the form

Λ =



1−
∑

i≥2

µ

ρi − ρ1



 ~v1~v
⊤
1 +

∑

i≥2

µ

ρi − ρ1

~vi~v
⊤
i (23)

in the limit µ → 0. As expected, the eigendirection corre-
sponding toρ1 still dominates the distance measure for small
but non-zeroµ. The influence of all other eigenvectors~vk

increases withµ and is inversely proportional to(ρk − ρ1).
Here we assumedρ1 < ρ2, the extension to degenerate
smallest eigenvalues is analogous to the above.

Example results presented in the previous section confirm
our theoretical findings qualitatively. More detailed quantita-
tive comparisons will be presented in a forthcoming study.

We have shown that, also in GMLVQ, the obtained pro-
jections can be formulated as the solution of a modified
eigenvalue problem. In contrast to PCA and LDA, however,
neither the corresponding matrix nor the solution can be
constructed from a given data set in a straightforward fashion.
On the contrary, it results from the iterative process after
many steps and depends on initialization and the positioning
of prototypes in the course of the training.

V. CONCLUSION

We have demonstrated that Generalized Matrix Learning
Vector Quantization constitutes a powerful method for the
visualization of labeled data sets. The framework combines
the flexibility and discriminative power of prototype-based



classification with the conceptually simple but versatile low-
dimensional representation of feature vectors by means of lin-
ear projection. Comparison with classical methods of similar
complexity like LDA and PCA illustrate the usefulness and
flexibility of the appraoch.

Furthermore, we have presented an analytic treatment of
the matrix updates close to stationarity. Like for LDA and
PCA, the outcome of GMLVQ can be formulated as a modified
eigenvalue problem. However, its characteristic matrix cannot
be determined in advance from the data; it depends on the
actual training dynamics, including the prototype positions.
Consequently, the mathematical treatment of stationarityre-
quires a self-consistency assumption. We have extended the
analysis to a variant of GMLVQ which introduces a penalty
term as to enforce non-singularity of the projection. It controls
the role of higher-order eigenvalues and allows to influence
properties of the visualization systematically.

Locally linear extensions of the method which combine
global, low rank projections with class-specific relevance
matrices defined in the low-dimensional space are currently
investigated. This modification can enhance discriminative
power significantly, yet retains the conceptual simplicityof
the visualization.

Our findings indicate that GMLVQ is a promising tool
for discriminative visualization. In particular, we expect a
variety of interesting applications in the interactive analysis
of complex data sets. In the context of similarity based
retrieval, for instance, extensions along the line of the PicSOM
approach [35] appear promising. The adaptation of the distance
measure based on user-feedback instead of pre-defined labels
constitutes another promising application of the approach.
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Eds. Cambridge, MA: MIT Press, 2006, pp. 1473–1480.

[17] T. Cover and P. Hart, “Nearest neighbor pattern classification,” Informa-
tion Theory, IEEE Transactions on, vol. 13, no. 1, pp. 21–27, 1967.

[18] K. Bunte, P. Schneider, B. Hammer, F.-M. Schleif, T. Villmann, and
M. Biehl, “Limited rank matrix learning, discriminative dimension
reduction and visualization,”Neural Networks, vol. 26, pp. 159–173,
2012.

[19] B. Hammer and T. Villmann, “Generalized relevance learning vector
quantization,”Neural Networks, vol. 15, no. 8-9, pp. 1059–1068, 2002.

[20] C. M. Bishop,Neural Networks for Pattern Recognition, 1st ed. Oxford
University Press, 1995.

[21] C. Darken, J. Chang, J. C. Z, and J. Moody, “Learning rateschedules
for faster stochastic gradient search,” inNeural Networks for Signal
Processing 2 - Proceedings of the 1992 IEEE Workshop. IEEE Press,
1992.

[22] P. Schneider, K. Bunte, H. Stiekema, B. Hammer, T. Villmann,and
M. Biehl, “Regularization in matrix relevance learning,”IEEE Transac-
tions on Neural Networks, vol. 21, pp. 831–840, 2010.

[23] K. B. Petersen and M. S. Pedersen, “The matrix cookbook,”
http://matrixcookbook.com, 2008.

[24] R. Fisher, “The use of multiple measurements in taxonomic problems,”
Annals of Eugenics, vol. 7, pp. 179–188, 1936.

[25] K. Fugunaga,Introduction to Statistical Pattern Recognition, 2nd ed.
Academic Press, 1990.

[26] R. Duda, P. Hart, and D. Stork,Pattern Classification, 2nd ed. Wiley-
Interscience, 2000.

[27] H. Gao and J. Davis, “Why direct LDA is not equivalent to LDA,”
Pattern Recognition, vol. 39, pp. 1002–1006, 2006.

[28] L. van der Maaten, “Matlab toolbox for dimensionality reduction,
v0.7.2,” http://homepage.tudelft.nl/19j49/, 2010.

[29] E. Oja, “Neural networks, principal components, and subspaces,”Jour-
nal of Neural Systems, vol. 1, pp. 61–68, 1989.

[30] T. Sanger, “Optimal unsupervised learning in a single-layer linear feed-
forward neural network,”Neural Networks, vol. 2, pp. 459–473, 1989.

[31] W. Arlt, M. Biehl, A. Taylor, S. Hahner, R. Lib́e, B. Hughes,
P. Schneider, D. Smith, H. Stiekema, N. Krone, E. Porfiri, G. Opocher,
J. Bertherat, F. Mantero, B. Allolio, M. Terzolo, P. Nightingale,
C. Shackleton, X. Bertagna, M. Fassnacht, and P. Stewart, “Urine steroid
metabolomics as a biomarker tool for detecting malignancy in adrenal
tumors,” Journal of Clinical Endocrinology & Metabolism, vol. 96, pp.
3775–3784, 2011.

[32] D. J. Newman, S. Hettich, C. L. Blake, and C. J.
Merz, “UCI repository of machine learning databases,”
http://archive.ics.uci.edu/ml/, 1998.

[33] M. Biehl, B. Hammer, F.-M. Schleif, P. Schneider, and T. Villmann, “Sta-
tionarity of Relevance Matrix Learning Vector Quantization,” University
of Leipzig, Machine Learning Reports, Tech. Rep. MLR 01/2009, 2009.

[34] W. Boehm and H. Prautzsch,Numerical Methods. Vieweg, 1993.
[35] J. Laakonen, M. Koskela, S. Laakso, and E. Oja, “PicSOM -content-

based image retrieval with self-organizing maps,”Pattern Recognition
Letters, vol. 21, pp. 1199–1207, 2000.


