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33615 Bielefeld, Germany

E-mail: fschleif@techfak.uni-bielefeld.de

Xibin Zhu

Dept. of Techn., Univ. of Bielefeld, Universitätsstrasse 21-23
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Prototype based learning offers an intuitive interface to inspect large quantities of electronic data in
supervised or unsupervised settings. Recently, many techniques have been extended to data described
by general dissimilarities rather than Euclidean vectors, so-called relational data settings. Unlike the
Euclidean counterparts, the techniques have quadratic time complexity due to the underlying quadratic
dissimilarity matrix. Thus, they are infeasible already for medium sized data sets. The contribution
of this article is twofold: on the one hand we propose a novel supervised prototype based classification
technique for dissimilarity data based on popular learning vector quantization, on the other hand we
transfer a linear time approximation technique, the Nyström approximation, to this algorithm and an
unsupervised counterpart, the relational generative topographic mapping. This way, linear time and
space methods result. We evaluate the techniques on three examples from the biomedical domain.

1. INTRODUCTION

In many application areas such as bioinformat-

ics, technical systems, or the web, electronic data

sets are increasing rapidly with respect to size and

complexity. Machine learning has revolutionized the

possibility to deal with large electronic data sets in

these areas by offering powerful tools to automati-

cally extract a regularity from given data. Popular

approaches provide diverse techniques for data struc-
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turing and data inspection. Visualization, clustering,

or classification still constitute one of the most com-

mon tasks in this context 3,12,37,30.

Topographic mapping such as offered by the self-

organizing map (SOM) 18 and its statistic counter-

part, the generative topographic mapping (GTM) 6

provide simultaneous clustering and data visualiza-

tion. For this reason, topographic mapping consti-

tutes a popular tool in diverse areas ranging from re-

mote sensing or biomedical domains up to robotics or

telecommunication 18,21. As an alternative, learning

vector quantization (LVQ) represents priorly given

classes in terms of labeled prototypes 18. Learning

typically takes place by means of Hebbian and anti-

Hebbian updates. Original LVQ is based on heuristic

grounds while modern alternatives are typically de-

rived from an underlying cost function 33. Similar to

its unsupervised counterpart, LVQ has been success-

fully applied in diverse areas including telecommuni-

cation, robotics, or biomedical data analysis 18,2.

Like many classical machine learning techniques,

GTM and LVQ have been proposed for Euclidean

vectorial data. Modern data are often associated to

dedicated structures which make a representation in

terms of Euclidean vectors difficult: biological se-

quence data, text files, XML data, trees, graphs, or

time series, for example 31,34. These data are in-

herently compositional and a feature representation

leads to information loss. As an alternative, a ded-

icated dissimilarity measure such as pairwise align-

ment, or kernels for structures can be used as the

interface to the data In such cases, machine learning

techniques which can deal with pairwise similarities

or dissimilarities have to be used 24.

Also kernel methods like the Support Vector Ma-

chine (SVM) (see e.g.9) can be used for dissimilar-

ity data, but complex preprocessing steps are neces-

sary as discussed in the following. Kernel methods

are known to be very effective, with respect to the

generalization ability and, using modern approxima-

tion schemes, are also reasonable effective for larger

data sets. In contrast to prototype methods the cost

function is formulated typically by means of a con-

vex problem, such that standard and effective op-

timization techniques can be used. Often they au-

tomatically adapt the model complexity, e.g. by

means of support vectors for SVM, in accordance to

the given supervised problem, which is often not the

case for prototype methods. This strong framework

however, requires a valid positive semi-definite ker-

nel as an input, which is often not directly available

for dissimilarity data. In fact, as discussed in the

work of Pekalska25, dissimilarity data can encode in-

formation in the euclidean and non-euclidean space

and transformations to obtain a valid kernel may be

inappropriate32.

Quite a few extensions of prototype-based learn-

ing towards pairwise similarities or dissimilarities

have been proposed in the literature. Some are based

on a kernelization of existing approaches 7,39,29, while

others restrict the setting to exemplar based tech-

niques 10,19. Some techniques build on alternative

cost functions and advanced optimization methods
35,15. A very intuitive method which directly extends

prototype based clustering to dissimilarity data has

been proposed in the context of fuzzy clustering 17

and later been extended to topographic mapping

such as SOM and GTM 16,14. Due to its direct

correspondence to standard topographic mapping in

the Euclidean case, we will focus on the latter ap-

proach. We will exemplarily look at this relational

extension of GTM to investigate the performance of

unsupervised prototype-based techniques for dissim-

ilarity data. In this contribution, we will propose, as

an alternative, a novel supervised prototype based

classification scheme for dissimilarity data, with ini-

tial work given in 28. Essentially, a modern LVQ

formulation which is based on a cost function will

be extended using the same trick to assess relational

data.

One drawback of machine learning techniques for

dissimilarities is given by their high computational

costs: since they depend on the full (quadratic)

dissimilarity matrix, they have squared time com-

plexity; further, they require the availability of the

full dissimilarity matrix, which is even the more se-

vere bottleneck if complex dissimilarities such as e.g.

alignment techniques are used. This fact makes the

methods unsuitable already for medium sized data

sets.

Here, we propose a popular approximation tech-

nique to speed up prototype based methods for dis-
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similarities: the Nyström approximation has been

proposed in the context of kernel methods as a low

rank approximation of the matrix 38. In 13, prelim-

inary work extends these results to dissimilarities.

In this contribution, we demonstrate that the tech-

nique provides a suitable linear time approximation

for GTM and LVQ for dissimilarities.

Now we first shortly recall the classical GTM

and a variant of LVQ. Then we introduce the gen-

eral concept underlying relational data representa-

tion, and we transfer this principle to GTM (shortly

summarizing the results already presented in 14) and

to LVQ. The latter gives the novel algorithm rela-

tional generalized learning vector quantization. We

recall the derivation of the low rank Nyström approx-

imation for similarities and transfer this principle to

dissimilarities. Linear time techniques for relational

GTM and relational LVQ result. We demonstrate

the behavior of the techniques in applications from

the biomedical domain.

2. TOPOGRAPHIC MAPPING

Generative Topographic Mapping (GTM) has

been proposed in 6 as a probabilistic counterpart to

SOM. It models given data xi ∈ Rn by a constraint

mixture of Gaussians induced by a low dimensional

latent space. More precisely, regular lattice points

w are fixed in latent space and mapped to target

vectors w 7→ t = y(w,W) in the data space, where

the function y is typically chosen as generalized lin-

ear regression model y : w 7→ Φ(w) ·W. The base

functions Φ could be chosen as any set of nonlinear

functions. Typically, equally spaced Gaussians with

bandwidth σ are taken.

These prototypes in data space give rise to a con-

straint mixture of Gaussians in the following way.

Every latent point induces a Gaussian

p(x|w,W, β) =

(
β

2π

)n
2

exp

(
−β

2
‖x− y(w,W)‖2

)
(1)

A mixture of K modes p(x|W, β) =∑K
k=1

1
K p(x|w

k,W, β) is generated. GTM train-

ing optimizes the data log-likelihood with respect to

W and β. This can be done by an EM approach,

iteratively computing responsibilities

Rki(W, β) = p(wk|xi,W, β) =
p(xi|wk,W, β)∑
k′ p(x

i|wk′ ,W, β)
(2)

of component k for point xi, and optimizing model

parameters by means of the formulas

ΦTGoldΦWT
new = ΦTRoldX (3)

for W, where Φ refers to the matrix of base func-

tions Φ evaluated at the lattice points wk, X refers

to the data points, R to the responsibilities, and G is

a diagonal matrix with accumulated responsibilities

Gii =
∑

iRki(W, β). The bandwidth is given by

1

βnew
=

1

ND

∑
k,i

Rki(Wold, βold)‖Φ(wk)Wnew−xi‖2

(4)

where D is the data dimensionality and N the num-

ber of points. GTM is initialized by aligning the

lattice image and the first two data principal com-

ponents.

3. LEARNING VECTOR QUANTIZATION

As before, data xi ∈ Rn are given. Here we

consider the crisp setting. That means, prototypes

wj ∈ Rn, j = 1, . . . ,K in the data space decom-

pose data into receptive fields R(wj) := {xi :

∀k d(xi,wj) ≤ d(xi,wk)} based on the squared Eu-

clidean distance d(xi,wj) = ‖xi −wj‖2 .
For supervised learning, data xi are equipped

with class labels c(xi) ∈ {1, . . . , L} = L. Similarly,

every prototype is equipped with a priorly fixed la-

bel c(wj). Let Wc=
{
wl|c(wl) = c

}
be the subset

of prototypes assigned to class c ∈ L. A data point

is classified according to the class of its closest pro-

totype. The classification error of this mapping is

given by the term
∑

j

∑
xi∈R(wj) δ(c(x

i) 6= c(wj))

with the delta function δ. This cost function cannot

easily be optimized explicitly due to vanishing gradi-

ents and discontinuities. Therefore, LVQ relies on a

reasonable heuristic by performing Hebbian updates

of the prototypes, given a data point 18. Recent al-

ternatives derive similar update rules from explicit

cost functions which are related to the classification

error, but display better numerical properties such
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that efficient optimization algorithms can be derived

thereof 33,26,36.

We introduce two special notations for the pro-

totype which is closest to a given point xi with the

same label: w+ or a different label: w−. The corre-

sponding distance d+i , d−i :

d+i = d(w+,xi) with w+ ∈Wc, c = c(xi),

w+ := wl : d(xi, wl) ≤ d(xi, wj), {wj ,wl} ∈Wc

d−i = d(w−,xi) with w− 6∈Wc, c = c(xi)

w− := wl : d(xi, wl) ≤ d(xi, wj), {wj ,wl} 6∈Wc

Generalized LVQ 26 is derived from a cost func-

tion which can be related to the generalization ability

of LVQ classifiers 33:

EGLVQ =
∑
i

f

(
d+i − d

−
i

d+i + d−i

)
(5)

where f is a differentiable monotonic function such

as the hyperbolic tangent. Hence, for every data

point, its contribution to the cost function is small

if and only if the distance to the closest prototype

with a correct label is smaller than the distance to a

wrongly labeled prototype, resulting in a correct clas-

sification of the point and, at the same time, aiming

at a large hypothesis margin of the classifier, i.e., a

good generalization ability.

A learning algorithm can be derived thereof by

means of standard gradient techniques. After pre-

senting data point xi, its closest correct and wrong

prototype, respectively, are adapted according to the

prescription:

∆w+(xi) ∼ − f ′(µ(xi)) · µ+(xi) · ∇w+(xi)d
+
i

∆w−(xi) ∼ f ′(µ(xi)) · µ−(xi) · ∇w−(xi)d
−
i

where

µ(xi) =
d+i − d

−
i

d+i + d−i
,

µ+(xi) =
2 · d−i

(d+i + d−i )2
,

µ−(xi) =
2 · d+i

(d+i + d−i )2
.

For the squared Euclidean norm, the derivative

yields

∇wjd(xi,wj) = −2(xi −wj),

leading to Hebbian update rules of the prototypes

which take into account the priorly known class in-

formation.

GLVQ constitutes one particularly efficient

method to adapt the prototypes according to a given

labeled data sets. Alternatives can be derived based

on a labeled Gaussian mixture model, see e.g. 36.

Since the latter can be highly sensitive to model

meta-parameters 5, we focus on GLVQ.

4. DISSIMILARITY DATA

Due to improved sensor technology or dedicated

data formats, for example, data are becoming more

and more complex in many application domains.

To account for this fact, data are often addressed

by a dedicated dissimilarity measure which respects

the structural form of the data such as alignment

techniques for bioinformatics sequences, functional

norms for mass spectra, or the compression distance

for texts 8. The work in 25 is focused on the the-

oretical analysis of dissimilarity data and pseudo-

euclidean data spaces and motivated our proposed

method.

Prototype-based techniques such as GLVQ are re-

stricted to Euclidean vector spaces such that their

suitability for complex non-Euclidean data sets is

highly limited. Here we propose an extension of

GLVQ to general dissimilarity data.

We assume that data xi, i = 1, . . . , N are charac-

terized by pairwise dissimilarities dij = d(xi,xj). N

denotes the number of data points. D refers to the

corresponding dissimilarity matrix in RN×N . We as-

sume symmetry dij = dji and zero diagonal dii = 0.

However, D need not correspond to Euclidean data

vectors, i.e. it is not guaranteed that data vectors xi

can be found with dij = ‖xi − xj‖2.

For every dissimilarity matrix D of this form,

an associated similarity matrix is induced by S =

−JDJ/2 where J = (I − 11T /N) with identity ma-

trix I and vector of ones 1. D is Euclidean if and

only if S is positive semi-definite (pdf). In general,

S displays eigenvectors with p positive eigenvalues,
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q negative eigenvalues, and N − p− q eigenvalues 0,

(p, q,N − p− q) is referred to as the signature.

For kernel methods such as SVM, a correction of

the matrix S is necessary to guarantee pdf. Three

different techniques are very popular: the spectrum

of the matrix S is changed, possible operations being

clip (negative eigenvalues are set to 0), flip (absolute

values are taken), or shift (a summand is added to all

eigenvalues) 8. Interestingly, some operations such

as shift do not affect the location of local optima of

important cost functions such as the quantization er-

ror 20, albeit the transformation can severely affect

the performance of optimization algorithms 16. As

an alternative, data points can be treated as vectors

which coefficients are given by the pairwise similarity.

These vectors can be processed using standard, e.g.

linear or Gaussian kernels. In 8 an extensive compar-

ison of these preprocessing methods in connection to

SVM is performed for a variety of benchmarks.

Alternatively, one can directly embed data in the

pseudo-Euclidean vector space determined by the

eigenvector decomposition of S. Pseudo-Euclidean

space is a vector space equipped with a (possible in-

definite) symmetric bilinear form which can be used

to compute similarities and dissimilarities of data

points. More precisely, a symmetric bilinear form is

induced by 〈x,y〉p,q = xT Ip,qy where Ip,q is a diag-

onal matrix with p entries 1 and q entries −1. Tak-

ing the eigenvectors of S together with the square

root of the absolute value of the eigenvalues, we ob-

tain vectors xi in pseudo-Euclidean space such that

dij = 〈xi−xj ,xi−xj〉p,q holds for every pair of data

points. If the number of data is not limited a pri-

ori, a generalization of this concept to Krein spaces

which similarly decompose into two possibly infinite

dimensional Hilbert spaces is possible 25.

Vector operations can be directly transferred to

pseudo-Euclidean space, i.e. we can define prototypes

as linear combinations of data in this space. Hence

we can perform techniques such as GLVQ explicitly

in pseudo-Euclidean space since it relies on vector op-

erations only. One problem of this explicit transfer

is given by the computational complexity of the em-

bedding which is O(N3), and, further, the fact that

out-of-sample extensions to new data points charac-

terized by pairwise dissimilarities are not immediate.

Because of this fact, we are interested in efficient

techniques which implicitly refer to this embedding

only. As a side product, such algorithms are invari-

ant to coordinate transforms in pseudo-Euclidean

space.

The key assumption is to restrict prototype po-

sitions to linear combinations of data points of the

form

wj =
∑
i

αjix
i with

∑
i

αji = 1 .

Since prototypes are located at representative points

in the data space, it is a reasonable assumption to

restrict prototypes to the affine subspace spanned by

the given data points. In this case, dissimilarities can

be computed implicitly by means of the formula

d(xi,wj) = [D · αj ]i −
1

2
· αT

j Dαj (6)

where αj = (αj1, . . . , αjn) refers to the vector of co-

efficients describing the prototype wj implicitly, as

shown in 16. Neither the prototypes nor the orig-

inal points, related to the dissimilarity matrix, are

expected to exist in a vectorial space. This observa-

tion constitutes the key to transfer GTM and GLVQ

to relational data without an explicit embedding in

pseudo-Euclidean space.

5. RELATIONAL GENERATIVE TOPO-

GRAPHIC MAPPING

GTM has been extended to general dissimilarities

in 14. We shortly recall the approach for convenience.

As before, targets tk in pseudo-Euclidean space in-

duce a mixture distribution in the data space based

on the dissimilarities. Targets are obtained as im-

ages of points wk in latent space via a generalized

linear regression model where, now, the mapping is

to the coefficient vectors α which implicitly represent

the targets:

y : w 7→ α = Φ(w) ·W

with images in RN according to the dimensionality

of the coefficients α.

The restriction∑
i

[Φ(wk) ·W]i =
∑
i

αki = 1
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is automatically fulfilled for optima of the data log

likelihood. Hence the likelihood function can be com-

puted based on (1) and the distance computation can

be performed indirectly using (6). An EM optimiza-

tion scheme leads to solutions for the parameters β

and W, and an expression for the hidden variables

given by the responsibilities of the modes for the data

points. Algorithmically, Eqn. (2) using (6) and the

optimization of the expectation∑
k,i

Rki(Wold, βold) ln p(xi|wk,Wnew, βnew)

with respect to W and β take place in turn. The

latter yields model parameters which can be deter-

mined in analogy to (3,4) where, now, functions Φ

map from the latent space to the space of coefficients

α and X denotes the unity matrix in the space of co-

efficients. We refer to this iterative update scheme as

relational GTM (RGTM). Initialization takes place

by referring to the first MDS directions of D. See 14

for details.

6. RELATIONAL LEARNING VECTOR

QUANTIZATION

We use the same principle to extend GLVQ to

relational data. Again, we assume a symmetric dis-

similarity matrix D with zero diagonal is given. We

assume that a prototype wj is represented implicitly

by means of the coefficient vectors αj . Then we can

use the equivalent characterization of distances (6)

in the GLVQ cost function (5) leading to the costs

of relational GLVQ (RGLVQ):

ERGLVQ =
∑
i

f

(
ξ(i)+ − ζ(i)+ − ξ(i)− + ζ(i)−

ξ(i)+ − ζ(i)+ + ξ(i)− − ζ(i)−

)
ξ(i)+ = [Dα+]i

ξ(i)− = [Dα−]i

ζ(i)+ =
1

2
· (α+)TDα+

ζ(i)− =
1

2
· (α−)TDα−

where as before the closest correct and wrong proto-

type are referred to, corresponding to the coefficients

α+ and α−, respectively. A simple stochastic gradi-

ent descent leads to adaptation rules for the coeffi-

cients α+ and α− in relational GLVQ: component k

of these vectors is adapted as

∆α+
k ∼ −Φ′(µ(xi))

(µ+(xi))−1
·
∂
(
[Dα+]i − 1

2 (α+)TDα+
)

∂α+
k

∆α−k ∼ Φ′(µ(xi))

(µ−(xi))−1
·
∂
(
[Dα−]i − 1

2 (α−)TDα−
)

∂α−k

where µ(xi), µ+(xi), and µ−(xi) are as above. The

partial derivative yields

∂
(
[Dαj ]i − 1

2 · α
T
j Dαj

)
∂αjk

= dik −
∑
l

dlkαjl

Naturally, alternative gradient techniques such as

line search can be used in a similar way.

After every adaptation step, normalization takes

place to guarantee
∑

i αji = 1. This way, a learning

algorithm which adapts prototypes in a supervised

manner similar to GLVQ is given for general dissim-

ilarity data, whereby prototypes are implicitly em-

bedded in pseudo-Euclidean space. The prototypes

are initialized as random vectors, i.e we initialize αij

with small random values such that the sum is one.

It is possible to take class information into account

by setting all αij to zero which do not correspond to

the class of the prototype.

For both, RGTM and RGLVQ, out-of-sample ex-

tension of the model to new data is possible imme-

diately. It can be based on an observation made in
16: given a novel data point x characterized by its

pairwise dissimilarities D(x) to the data vectors xi

used for training, the dissimilarity of x to a proto-

type represented by αj is

d(x,wj) = D(x)T · αj −
1

2
· αT

j Dαj .

This can be directly used to compute responsibili-

ties for RGTM or the closest prototype for RGLVQ,

respectively.

7. THE NYSTRÖM APPROXIMATION

Both techniques, RGTM and RGLVQ depend on

the full dissimilarity matrix D. This is of size N2,

hence the techniques have quadratic complexity with

respect to the given number of data points. This is

infeasible for large N : restrictions are given by the

main memory (assuming double precision and 12 GB

main memory, the limit is currently at about 30,000
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data points), and the time necessary to compute dis-

similarities and train the models based thereon (as-

suming 1ms for one dissimilarity computation, which

is quite reasonable for complex dissimilarities e.g.

based on alignment techniques, a matrix of less than

10,000 data points can be computed in 12 h on a dual

core machine.) Therefore, approximation techniques

which reduce the effort to a linear one would be very

desirable.

7.1. Nyström approximation for similarity

data

Nyström approximation technique has been pro-

posed in the context of kernel methods in 38. Here,

we give a short review of this technique.

One well known way to approximate a N × N

Gram matrix, is to use a low-rank approximation.

This can be done by computing the eigendecompo-

sition of the kernel K = UΛUT , where U is a ma-

trix, whose columns are orthonormal eigenvectors,

and Λ is a diagonal matrix consisting of eigenval-

ues Λ11 ≥ Λ22 ≥ ... ≥ 0, and keeping only the

m eigenspaces which correspond to the m largest

eigenvalues of the matrix. The approximation is

K ≈ UN,mΛm,mUm,N , where the indices refer to the

size of the corresponding submatrix. The Nyström

method approximates a kernel in a similar way, with-

out computing the eigendecomposition of the whole

matrix, which is an O(N3) operation.

By the Mercer theorem kernels k(x,y) can be

expanded by orthonormal eigenfunctions ψi and non

negative eigenvalues λi in the form

k(x,y) =

∞∑
i=1

λiψi(x)ψi(y).

The eigenfunctions and eigenvalues of a kernel are

defined as the solution of the integral equation∫
k(y,x)ψi(x)p(x)dx = λiψi(y),

where p(x) is the probability density of x. This in-

tegral can be approximated based on the Nyström

technique by sampling xk i.i.d. according to p(x):

1

m

m∑
k=1

k(y,xk)ψi(x
k) ≈ λiψi(y).

Using this approximation and the matrix eigenprob-

lem equation

K(m)U(m) = U(m)Λ(m)

of the corresponding m×m Gram sub-matrix K(m)

we can derive the approximations for the eigenfunc-

tions and eigenvalues of the kernel k

λi ≈
λ
(m)
i

m
, ψi(y) ≈

√
m

λ
(m)
i

kyu
(m)
i , (7)

where u
(m)
i is the ith column of U(m). Thus, we can

approximate ψi at an arbitrary point y as long as we

know the vector ky = (k(x1,y), ..., k(xm,y))T .

For a given N ×N Gram matrix K we randomly

choose m rows and respective columns. The cor-

responding indices are also called landmarks, and

should be chosen such that the data distribution is

sufficiently covered. A specific analysis about selec-

tion strategies was recently discussed in 40. We de-

note these rows by Km,N . Using the formulas (7) we

obtain K̃ =
∑m

i=1 1/λ
(m)
i ·KT

m,Nu
(m)
i (u

(m)
i )TKm,N ,

where λ
(m)
i and u

(m)
i correspond to the m×m eigen-

problem. Thus we get, K−1m,m denoting the Moore-

Penrose pseudoinverse,

K̃ = Kt
m,NK−1m,mKm,N . (8)

as an approximation of K. This approximation is

exact, if Km,m has the same rank as K.

7.2. Nyström approximation for dissimilarity

data

For dissimilarity data, a direct transfer is possi-

ble, see 13 for preliminary work on this topic. Ac-

cording to the spectral theorem, a symmetric dis-

similarity matrix D can be diagonalized D = UΛUT

with U being a unitary matrix whose column vectors

are the orthonormal eigenvectors of D and Λ a diag-

onal matrix with the eigenvalues of D, which can be

negative for non-Euclidean distances. Therefore the

dissimilarity matrix can be seen as an operator

d(x,y) =

N∑
i=1

λiψi(x)ψi(y)
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where λi ∈ R correspond to the diagonal elements of

Λ and ψi denote the eigenfunctions. The only dif-

ference to an expansion of a kernel is that the eigen-

values can be negative. All further mathematical

manipulations can be applied in the same way.

Using the approximation (8) for the distance ma-

trix, we can apply this result for RGTM. It allows

to approximate dissimilarities between a prototype

wk represented by a coefficient vector αk and a data

point xi in the way

d(xi,wk) ≈
[
DT

m,N

(
D−1m,m (Dm,Nαk)

)]
i

(9)

−1

2
·
(
αT

k DT
m,N

)
·(

D−1m,m (Dm,Nαk)
)

with a linear submatrix of m rows and a low rank

matrix Dm,m. Performing these matrix multiplica-

tions from right to left, this computation is O(m2N)

instead of O(N2), i.e. it is linear in the number of

data points N , assuming fixed approximation m.

We use this approximation directly in RGTM and

RGLVQ by taking a random subsample of m points

to approximate the dissimilarity matrix. The per-

centage m is differed during training showing the ef-

fect of the approximation on the percentage used for

the approximation.

A benefit of the Nyström technique is that it can

be decided priorly which linear parts of the dissim-

ilarity matrix will be used in training. Therefore,

it is sufficient to compute only a linear part of the

full dissimilarity matrix D to use these methods. A

drawback of the Nyström approximation is that a

good approximation can only be achieved if the rank

of D is kept as much as possible, i.e. the chosen sub-

set should be representative. We will see that the

method can be used in many (though not all) set-

tings leading to a considerable speed-up.

8. EXPERIMENTS

We evaluate the techniques on three benchmarks

from the biomedical domain:

• The Copenhagen Chromosomes data set consti-

tutes a benchmark from cytogenetics 22. A set

of 4,200 human chromosomes from 21 classes

(the autosomal chromosomes) are represented

by grey-valued images. These are transferred

to strings measuring the thickness of their sil-

houettes. These strings are compared using

edit distance with insertion/deletion costs 4.5.

• The vibrio data set consists of 1,100 samples

of vibrio bacteria populations characterized by

mass spectra. The spectra encounter approx.

42,000 mass positions. The full data set con-

sists of 49 classes of vibrio-sub-species. The

mass spectra are preprocessed with a standard

workflow using the BioTyper software 23. Ac-

cording to the functional form of mass spectra,

dedicated similarities as provided by the Bio-

Typer software are used 23.

• Similar to an application presented in 19, we

extract roughly 11,000 protein sequences of the

SwissProt data base according to 32 functional

labels given by PROSITE 11. Sequence align-

ment is done using local alignment by means

of the Smith-Waterman algorithm.

We compare the two different prototype-based meth-

ods, RGTM and RGLVQ and the Nyström approxi-

mations thereof. The following parameters are used:

• Evaluation is done by means of the gener-

alization error in a ten fold repeated cross-

validation with ten repeats. (Only two-fold

cross-validation and five repeats for Swis-

sProt.) For RGTM, posterior labeling on the

test set is used.

• The number of prototypes is chosen roughly

following the number of priorly known classes.

For RGLVQ, we use 63 prototypes for the

Chromosomes data set, 49 prototypes for the

Vibrio data set, and 64 prototypes for the Swis-

sProt data set. For RGTM, to account for the

topological constraints which result in proto-

types outside the convex hull of the data, we

use lattices of size 20×20 for Chomosomes and

Vibrio and 40× 40 for SwissProt. 10× 10 base

functions are used in both cases.

• Training takes place until convergence which is

50 epochs for the small data sets and 5 epochs

for SwissProt.
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• For the Nyström approximation, we report the

results obtained when sampling 1% and 10% of

the data.

• For the SwissProt data set, the speed up of

the method can clearly be observed due to

the large size of the data set. We also report

the CPU time in seconds taken for one cross-

validation run on a 24 Intel(R) Xeon X5690

machine with 3.47GHz processors and 48 GB

DDR3 1333MHz memory. The experiments are

implemented in Matlab.

The results of the techniques are collected in

Tab. 1. The transformations for the SVM are done

in accordance to 8 with results taken form 27 †. Since

there is not yet a best way to do this eigenvalue cor-

rection, all approaches have to be tried on the train-

ing data and the best results is chosen. Most of these

transformation require a singular value decomposi-

tion of the similarity matrix, with a complexity of

(O(N3)). In contrast the proposed relational meth-

ods do not require any kind of preprocessing but can

be applied directly on the given, symmetric, dissim-

ilarity matrices.

For both data sets, Chromosomes and Vibrio, the

classification accuracy of RGLVQ is better as com-

pared to the unsupervised RGTM which can be at-

tributed to the fact that the primal can take the

priorly known class information into account during

training. Interestingly, the results of the Nyström

approximation are quite diverse. In some cases, the

classification accuracy is nearly the same as for the

original method, in others, the accuracy even in-

creases when taking the Nyström approximation. In

some cases, the result drops down by more than

40%. Interestingly, the result is not monotonic with

respect to the size used to approximate the data,

and it is also not consistent for the two algorithms.

While Nyström approximation is clearly possible for

RGLVQ and the Vibrio data set, the quality de-

pends very much on the approximation parameters

for RGTM.

Thus it seems that the quality of the approxima-

tion is not necessarily better the larger the fraction

of the data taken for approximation, and it seems

that the techniques are affected to a different degree

by this approximation quality.

To shed some light on this aspect, we directly

evaluate the quality of the Nyström approximation

as follows: we repeatedly sample a different fraction

of the data set and evaluate the distance of the ap-

proximated matrix and the original one. Since both

methods do not depend on the exact size of the dis-

similarities, but rather the ranking induced by the

values is important, we evaluate the spearman cor-

relation of the resulting columns. The results are

depicted in Fig. 1,2. Interestingly, the resulting qual-

ity is not monotonic with respect to the size of the

subsample taken for the approximation. Rather, the

spearman correlation drops down for all settings and

larger percentage of the subsample for all three cases.

This can probably be attributed to the fact that, for

larger values, noise in the data accounts for random

fluctuations of the ranks rather than an approxima-

tion of the underlying order. Hence it can be advis-

able to test different, on particular also comparably

small subsamples to arrive at a good approximation.

The speed-up of the techniques by means of the

approximation has been evaluated for the SwissProt

data set as a comparably large data set. Note that

the current limit regarding memory restrictions for

a standard memory size of 12 GB would allow at

most 30,000 samples, hence the SwissProt data data

also in the order of magnitude of this limit. Interest-

ingly, the speed-up is more than 2.5 if 10% are taken

and close to six if only 1% is chosen for RGLVQ.

Hence the Nyström approximation can contribute to

a considerable speed-up in these cases, while not de-

teriorating the quality for RGLVQ or RGTM.

9. CONCLUSIONS

Relational GTM offers a highly flexible tool to

simultaneously cluster and order dissimilarity data

in a topographic mapping. It relies on an implicit

pseudo-Euclidean embedding of data such that dis-

similarities become directly accessible. We have pro-

posed a similar extension of supervised prototype

based methods, more precisely GLVQ, to obtain a

high quality classification scheme for dissimilarity

†SVM results are obtained by a standard C++ implementation, while the other experiments are done in pure matlab, hence the
CPU time is not comparable here.
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Chromosome Vibrio SwissProt CPU
RGTM 88.10 (0.7) 94.70 (0.5) 69.90 (2.5) 9656
RGTM (Ny 0.01) 87.80 (2.70) 54.70 (3.10) 74.40 (2.70) 786
RGTM (Ny 0.10) 51.60 (6.60) 93.90 (0.70) 82.20 (4.50) 1631

RGLVQ 92.70 (0.20) 100.00(0.00) 82.30(0.00) 24481
RGLVQ (Ny 0.01) 78.40 (0.10) 99.10(0.10) 87.00(0.00) 4179
RGLVQ (Ny 0.10) 78.20 (0.40) 99.20(0.20) 83.40(0.20) 9696

SVM∗ 92.50 (3.30) 100.00(0.00) 98.40(0.10) -
SVM∗ (Ny 0.01) 95.60 (1.30) 85.27(4.32) 86.30(0.10) -
SVM∗ (Ny 0.1) 68.80 (1.90) 99.82(0.57) 63.00(1.50) -

Table 1: Results of the methods on the three data sets, the generalization error is reported, the standard deviation
is given in parentheses. For SwissProt, we also report the CPU time for one run in seconds.
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Figure 1: Quality of the Nyström approximation as evaluated by the Spearman correlation of the rows of the
approximated matrix and the original one. The approximation is based on a different fraction of the data set as
indicated by the x-axis. The graphs show the result for the Chromosomes (left) and Vibrio (right).
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Figure 2: Quality of the Nyström approximation as evaluated by the Spearman correlation for SwissProt.

data.

Due to the dependency on the full matrix, both

methods requires squared time complexity and mem-

ory to store the dissimilarities. We have proposed

a speed-up techniques which leads to linear effort:

the Nyström approximation. Using three examples

from the biomedical domain, we demonstrated that

already for comparably small data sets the technique

can largely enhance speed while not loosing too much

information contained in the data.

Interestingly, the quality of the Nyström tech-

nique does not scale monotonously with the sample

size taken for the approximation. Rather, depending

on the data characteristics, smaller samples might

lead to a better job. Therefore, it is always worth-

while to test different sample sizes to achieve the

optimum balance of accuracy and speed.
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