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Abstract. Recently, an extension of popular learning vector quantiza-
tion (LVQ) to general dissimilarity data has been proposed, relational
generalized LVQ (RGLVQ) [10, 9]. An intuitive prototype based classi-
fication scheme results which can divide data characterized by pairwise
dissimilarities into priorly given categories. However, the technique relies
on the full dissimilarity matrix and, thus, has squared time complexity
and linear space complexity. In this contribution, we propose an intuitive
linear time and constant space approximation of RGLVQ by means of
patch processing. An efficient heuristic which maintains the good classifi-
cation accuracy and interpretability of RGLVQ results, as demonstrated
in three examples from the biomdical domain.

1 Introduction

Learning vector quantization constitutes a popular supervised classification al-
gorithm which represents classes in terms of prototypical vectors [11]. Since pro-
totypes can directly be inspected in the same way as data points, it opens the
way towards intuitive data analysis, unlike many black box alternatives such as
feedforward networks or support vector machines. Prototype-based approaches
are beneficial if human insight is crucial such as in the medical domain [16, 2].

LVQ itself has been proposed on heuristic grounds and its mathematical
investigation is difficult. Several alternatives have been developed which maintain
the intuitive adaptation and classification scheme of LVQ but which can be
derived from an objective function: important examples are generalized LVQ
(GLVQ) which is based on the accumulated hypothesis margin of the classifier
[17], or robust soft LVQ, which is based on probabilities in Gaussian mixture
models [18]. While resulting in high-quality classification, basic LVQ and its
extensions are restricted to Euclidean vector spaces.

In modern application scenarios, data are becoming more and more com-
plex and dedicated dissimilarity measures are often used for their processing.
Examples include dynamic time warping for time series, alignment for symbolic
strings, graph or tree kernels for complex structures, the compression distance
to compare sequences based on an information theoretic ground, and similar.
These settings do not allow a vectorial representation of data at all, rather, data
are given implicitly in terms of pairwise dissimilarities or relations; we refer to a
‘relational data representation’ in the following when addressing data sets which
are represented implicitly by means of pairwise dissimilarities dij of data; D
denotes the corresponding matrix of dissimilarities.

Several popular unsupervised prototype-based clustering methods have been
extended to relational data by means of an implicit embedding of data into
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pseudo-Euclidean space, see e.g. [8]. Recently, this technique has been trans-
ferred to supervised classification by means of GLVQ, resulting in relational
GLVQ (RGLVQ) for general relational data matrices [10, 9]. A very powerful
technique results which determines prototypical representatives of given rela-
tional data such that priorly given categories are met by the cluster labels as
much as possible. The scheme depends on the full dissimilarity matrix, thus
it requires squared time and linear space complexity for training given n data
samples. This makes the technique infeasible for large data sets.

In this contribution, we propose an approximation scheme which relies on a
processing of the data in patches and a subsequent compression of the informa-
tion by means of the learned prototypes. Assuming fixed patch sizes, a linear
time and constant space learning technique results which allows us to deal with
large dissimilarity data sets in reasonable time. We will demonstrate in three
examples from the biomedical domain, that the resulting heuristic maintains
the good classification accuracy of RGLVQ, while considerably speeding up the
techniques. Now we first shortly review prototype based classification, general-
ized learning vector quantization and its relational counterpart. Then we explain
the principle of patch processing and we demonstrate its performance.

2 Prototype based classification

Assume vectorial data x
i ∈ R

n, i = 1, . . . , m are given. Prototypes w
j ∈ R

n, j =
1, . . . , k decompose data into receptive fields R(wj) = {xi : ∀j′ d(xi, wj) ≤

d(xi, wj′ )} based on the squared Euclidean distance d(xi, wj) = ‖xi−w
j‖2. In a

classification task, prototypes are equipped with class labels c(wj) ∈ {1, . . . , L}.
A given data point x

i is mapped to the class of its closest prototype. In a training
scenario, training data x

i are labeled with priorly known classes y
i and the goal

of a learning algorithm is to determine the prototype positions such that the
classification error E =

∑

i,j:xi∈R(wj) δ(yi, c(wj)) is as small as possible where

δ refers to the standard Kronecker-function.

Generalized learning vector quantization Since a direct optimization of
these costs is hard, generalized learning vector quantization (GLVQ) [17] con-
siders the related cost function

EGLV Q =
∑

i

Φ

(

d(xi, w+(xi)) − d(xi, w−(xi))

d(xi, w+(xi)) + d(xi, w−(xi))

)

where Φ is a differentiable monotonic function such as the hyperbolic tangent,
and w

+(xi) refers to the prototype closest to x
i with the same label as x

i,
w

−(xi) refers to the closest prototype with a different label. This way, for every
data point, its contribution to the cost function is small iff the distance to the
closest prototype with a correct label is smaller than the distance to a wrongly
labeled prototype, resulting in a correct classification of the point. It has been
shown in [17] that these costs can be linked to the overall hypothesis margin of
an LVQ classifier which directly influences its generalization ability.

A learning algorithm can be derived thereof by means of a stochastic gradient
descent. After a random initialization of prototypes, data x

i are presented in
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random order and adaptation of the closest correct and wrong prototype takes
place by means of the update rules

∆w
+(xi) ∼ − Φ′(µ(xi)) · µ+(xi) · ∇

w
+(xi)d(xi, w+(xi))

∆w
−(xi) ∼ Φ′(µ(xi)) · µ−(xi) · ∇

w
−(xi)d(xi, w−(xi))

where

µ(xi) =
d(xi, w+(xi)) − d(xi, w−(xi))

d(xi, w+(xi)) + d(xi, w−(xi))
,

µ+(xi) =
2 · d(xi, w−(xi))

(d(xi, w+(xi)) + d(xi, w−(xi))2
,

µ−(xi) =
2 · d(xi, w+(xi)

(d(xi, w+(xi)) + d(xi, w−(xi))2
.

For the squared Euclidean norm, the derivative yields ∇
w

j d(xi, wj) = −(xi −
w

j), leading to Hebbian update rules of the prototypes, i.e. they adapt the
closest prototypes towards / away from a given data point depending on the
correctness of the classification.

Relational generalized learning vector quantization In the following, we
assume that data x

i are not explicitly given as vectors, rather pairwise dissim-
ilarities di,j = d(xi, xj) are available. We assume symmetry dij = dji and zero
diagonal dii = 0. However, we do not require that d refers to a Euclidean data
space, i.e. D does not need to be embeddable in Euclidean space, nor does it
need to fulfill the conditions of a metric. The following observation constitutes
the key to transfer GLVQ to this setting [7, 8]: any such matrix D gives rise to
a so-called pseudo-Euclidean embedding, i.e. a real-vector space equipped with
a symmetric, but not necessarily positive semidefinite form where vectorial rep-
resentations x

i give rise to the dissimilarity matrix D when computed based
on the bilinear form. Further, assuming prototypes are represented as linear
combinations of data points

w
j =

∑

i

αjix
i with

∑

i

αji = 1,

dissimilarities can be computed by means of the formula

d(xi, wj) = ‖xi − w
j‖2 = [D · αj ]i −

1

2
· αt

jDαj

where αj = (αj1, . . . , αjn) refers to the vector of coefficients describing w
j .

This observation gives rise to an extension of GLVQ to relational data, re-
lational GLVQ (RGLVQ), without actually computing the underlying pseudo-
Euclidean embedding of data. We represent prototypes implicitly by means of
coefficients αj and adapt the cost function accordingly:

ERGLVQ =
∑

i

Φ

(

[Dα+]i −
1
2 · (α+)tDα+ − [Dα−]i + 1

2 · (α−)tDα−

[Dα+]i −
1
2 · (α+)tDα+ + [Dα−]i −

1
2 · (α−)tDα−

)

,
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where as before the closest correct and wrong prototype are referred to, indicated
by the superscript + and −, respectively. A stochastic gradient descent directly
leads to adaptation rules for the coefficients α+ and α−: component l of these
vectors is adapted by the rules

∆α+
l ∼ − Φ′(µ(xi)) · µ+(xi) ·

∂
(

[Dα+]i −
1
2 · (α+)tDα+

)

∂α+
l

∆α−

l ∼ − Φ′(µ(xi)) · µ−(xi) ·
∂

(

[Dα−]i −
1
2 · (α−)tDα−

)

∂α−

l

where µ(xi), µ+(xi), and µ−(xi) are as above. The partial derivative yields

∂[Dαj ]i −
1
2 · αt

jDαj

∂αjl

= dil −
∑

l′

dl′lαjl′

After every adaptation step, normalization takes place to guarantee
∑

i αji = 1.
This way, a learning algorithm which adapts prototypes in a supervised manner
similar to GLVQ is given for general dissimilarity data, whereby prototypes are
implicitly embedded in pseudo-Euclidean space. We initialize αij with small
random values such that the sum is one. It is possible to take class information
into account by setting αji := 0 if c(wj) 6= y

i.
The resulting classifier represents clusters in terms of prototypes for general

dissimilarity data. Although these prototypes correspond to vector positions in
pseudo-Euclidean space, they can usually not be inspected directly because the
pseudo-Euclidean embedding is not computed directly. For inspection, we use
an approximation of the prototypes: we substitute a prototype by its K nearest
exemplars as measured by the given dissimilarity.

Out-of-sample extension is as follows: given a novel data point x charac-
terized by its pairwise dissimilarities D(x) to the data used for training, the
dissimilarity to the prototypes is given by d(x, wj) = D(x)t ·αj −

1
2 ·α

t
jDαj . For

an approximation of prototypes by exemplars, obviously, only the dissimilarities
to these exemplars have to be computed, i.e. a very sparse classifier results.

3 Patch relational generalized learning vector
quantization

RGLVQ relies on the full dissimilarity matrix D and represents prototypes im-
plicitly by means of coefficients αji referring of the contribution of data point x

i

to prototype w
j . Thus, the algorithm has squared time complexity and linear

space complexity. Patch processing has been proposed as an alternative approx-
imation scheme. It offers a powerful linear time and limited memory approxi-
mation for streaming data sets with a direct access to the dissimilarities, e.g. by
means of a computation scheme for d(xi, xj) [1]. In the article [8], it has been
used to speed up relational prototype based clustering. The resulting technique
is linear time and constant space. Here we extend it to RGLVQ.

The basic idea of patch processing is: A fixed size of the patches m is chosen,
and data are separated into patches. Then the patches of data are processed
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consecutively using RGLVQ. Given a dissimilarity matrix, the patch p corre-
sponds to the values of the matrix describing the pairwise dissimilarities along
the diagonal: d(xi, xj) where i, j ∈ {p · m + 1, . . . , (p + 1) · m}. In addition to
this part, all previous patches are represented in compressed form by means of
the prototypes found before. This way, the patch does not only represent data
{xpm+1 . . . x(p+1)m} but all data {x1 . . . , x(p+1)m} either explicitly or implic-
itly by taking into account the already extracted prototypes. To apply RGLVQ,
the dissimilarities of data and these prototypes need to be available. In patch
processing, these are retrieved on the fly.

Note that it is not clear how to compute these dissimilarities efficiently if
prototypes are of the general form w

j =
∑

i αjix
i: this representation would,

eventually, refer to the full dissimilarity matrix. Therefore, after processing a
patch, we approximate a prototype by its K-approximation for fixed K. The
K-approximation w

j
K of a prototype w

j based on a given set of points E corre-

sponds to the closest K data points in E: w
j
K := {xi ∈ E |d(xi, wj) ≤ d(xi′ , wj)

for all but K indices i}. This way, the dissimilarity matrix considered in step p
corresponds to a fixed size m + kK matrix, k being the number of prototypes.

Exemplars/K-approximated prototypes representing the previous clustering
results represent a large set of data. Thus, it is vital to weight their relevance
correspondingly. In the patch algorithm, this problem is solved by assigning a
multiplicity to these prototypes which corresponds to the size of its receptive
field divided by K. This means, we assume that the corresponding prototypes
are contained in the data set not only once but multiple times. Note that RGLVQ
can easily be extended to deal with sets where data points are equipped with
multiplicities. For a points x

i with multiplicity mi its contribution to the costs
is simply multiplied by mi. Hence the corresponding step width of a gradient
descent algorithm is simply multiplied with mi. The resulting algorithm, Patch
RGLVQ, is depicted in Algorithm 1

Algorithm 1 Principled algorithm for patch clustering

1: init: E := ∅; ⊲ exemplars/K-approximated prototypes
2: mi := 1 for xi ∈ E; ⊲ multiplicities
3: p := 1; ⊲ patch number
4: repeat
5: Pm,m := {d(xi, xj)} | i, j ∈ {p · m + 1, . . . , (p + 1) · m}}; ⊲ patch size m
6: Pm,|E| := {d(xi, xj) | p · m < i ≤ (p + 1) · m, xj ∈ E};
7: ⊲ dissimilarities of patch and exemplars
8: P|E|,|E| := {d(xi, xj) | xi, xj ∈ E}; ⊲ dissimilarities of exemplars

9: P :=

„

Pm,m Pm,|E|

P t
m,|E| P|E|,|E|

«

; ⊲ full matrix for loop

10: mi := multiplicities for xi ∈ E; ⊲ multiple points
11: mi := 1 for other xi; ⊲ standard points
12: perform Patch RGLVQ with multiplicities for P and mi;
13: approximate prototypes by K closest exemplars;
14: E := set of exemplars obtained this way; ⊲ new exemplars
15: mi := size of receptive field/K counted with multiplicities for xi ∈ E;
16: p:=p+1; ⊲ next patch
17: until all dissimilarities are considered
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4 Experiments

We evaluate the algorithm for three benchmark data sets where data are char-
acterized by pairwise dissimilarities:

1. The Copenhagen chromosomes data set constitutes a benchmark from cy-
togenetics [13]. 4,200 human chromosomes from 22 classes (the autosomal
chromosomes) are represented by grey-valued images. These are transferred
to strings measuring the thickness of their silhouettes. These strings are
compared using edit distance with insertion/deletion costs 4.5 [15].

2. The vibrio data set consists of 1,100 samples of vibrio bacteria populations
characterized by mass spectra. The spectra contain approx. 42,000 mass po-
sitions. The full data set consists of 49 classes of vibrio-sub-species. The mass
spectra are preprocessed with a standard workflow using the BioTyper soft-
ware [14]. As usual, mass spectra display strong functional characteristics
due to the dependency of subsequent masses, such that problem adapted
similarities such as described in [3, 14] are beneficial. In our case, similar-
ities are calculated using a specific alignment measure as provided by the
BioTyper software[14].

3. The SwissProt data set consists of 10,988 samples of protein sequences in 32
classes taken as a subset from the full database [4]. The considered subset
of the SwissProt database refers to the release 37 mimicking the setting as
proposed in [12]. The full database consists of 77,977 protein sequences vary-
ing between 30 to more than 1000 amino acids depending on the sequence.
The 32 most common classes such as Globin, Cytochrome a, Cytochrome b,
Tubulin, Protein kinase st, etc. provided by the Prosite labeling [5] where
taken leading to 10,988 sequences. Due to this choice, an associated classi-
fication problem maps the sequences to their corresponding prosite labels.
These sequences are compared using Smith-Waterman which computes a
local alignment of sequences [6]. Popular alternatives could rely on global
alignment as provided by Needleman-Wunsch, or linear time heuristics such
as BLAST or FASTA [6]. This database is the standard source for identifying
and analyzing protein sequences such that an automated classification and
processing technique would be very desirable.

These three data sets constitute typical examples of non-Euclidean data which
occur in biomedical domains. The dissimilarity measures are inherently non-
Euclidean and cannot be embedded isometrically in a Euclidean vector space.

We compare the results of RLVQ for the full dissimilarity matrix and patch
processing. For comparison, we report the result of a Nyström approximation of
the full dissimilarity matrix. This approximation constitutes a standard low rank
approximation of a similarity or dissimilarity matrix, which has been introduced
in the context of kernel methods in [19]. For RGLVQ, it has been proposed in the
contribution [10]. Like patch processing, it leads to a linear time approximation
technique. The setting is as follows in the experiments:

– Evaluation: We evaluate the result by means of the classification accuracy
obtained in a ten-fold cross-validation with 10 repeats (Chromosomes, Vib-
rio), or a 2-fold cross-validation with 10 repeats (SwissProt).

– RGLVQ: RGLVQ is initialized randomly, and training takes place for 5
epochs. We use 49 (Vibrio), 63 (Chromosomes), and 64 (SwissProt) pro-
totypes evenly distributed among the classes.
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RGLVQ Nyström-RGLVQ Patch - RGLVQ
using 10% K = 1 K = 3 K = 5

Vibrio 1.0 0.992 0.999 1 1
Chromosomes 0.927 0.782 0.867 0.840 0.828
SwissProt 0.823 0.834 0.833 0.824 0.822

speed-up factor 1 7.6 26.2 20 13.2

Table 1. Results on three data sets: RGLVQ, RGLVQ with Nyström, and Patch
RGLVQ are evaluated in a repeated cross-validation. The classification accuracy, and
the speedup factor according to the CPU time are reported.

– Patch processing: For patch processing, ten patches are chosen. The value
K for the K-approximation for patch processing is taken in {1, 3, 5}.

– Nyström approximation: A fraction of 10% of the data is used.
– Implementation: For all data sets, we use a 12 Intel(R) Xeon X5690 ma-

chine with 3.47GHz processors and 48 GB DDR3 1333MHz memory. All
experiments are implemented in Matlab. 1

For Vibrio and SwissProt, the classification accuracy obtained with a linear
time approximation is the same as for full RGLVQ. For Chromosomes, it de-
creases by 6% using patch approximation as compared to almost 25% for the
Nystöm approximation. Interestingly, all patch approximations already yield a
high quality when approximating the prototypes by its closest exemplar (K = 1).
This approximation has the side effect that classes can directly be inspected in
terms of this representative exemplar, i.e. interpretable models result. We mea-
sure the speed-up of the technique for the SwissProt data set which deals with
close to 11, 0002 entries. Original RGLVQ takes 24481 seconds CPU time (i.e.
almost seven hours), which can be accelerated by a factor 26 to 15 minutes using
patch processing – the Nyström approximation requires considerably more time.

5 Conclusions

In this contribution, we proposed a linear time constant space approximation
scheme for supervised prototype based classification by means of relational LVQ.
Apart from a considerable speed-up, training does no longer rely on the full dis-
similarity matrix; rather a linear subpart is required depending on the chosen
patch scheme and the prototypes. Since the computation of the full matrix of-
ten constitutes a major bottleneck for complex dissimilarity measures such as
alignment, this fact offers even greater application potential. The method has
been demonstrated in three examples from the biomedical domain, among those
a large portion of the polular SwissProt data set for proteins.

Acknowledgement Financial support from the Cluster of Excellence 277 Cognitive
Interaction Technology funded in the framework of the German Excellence Initiative
is gratefully acknowledged.

1 The Matlab code of the proposed algorithms can be obtained from Xibin Zhu
(xzhu@techfak.uni-bielefeld.de) on request.
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