
Secure Semi-Supervised Vector Quantization
for Dissimilarity Data

Xibin Zhu, Frank-Michael Schleif, and Barbara Hammer

CITEC - Centre of Excellence,
Bielefeld University, 33615 Bielefeld, Germany
{xzhu, fschleif, bhammer}@techfak.uni-bielefeld.de

Abstract. The amount and complexity of data increase rapidly, how-
ever, due to time and cost constrains, only few of them are fully la-
beled. In this context non-vectorial relational data given by pairwise (dis-
)similarities without explicit vectorial representation, like score-values in
sequences alignments, are particularly challenging. Existing semi-supervised
learning (SSL) algorithms focus on vectorial data given in Euclidean
space. In this paper we extend a prototype-based classifier for dissimi-
larity data to non i.i.d. semi-supervised tasks. Using conformal prediction
the ’secure region’ of unlabeled data can be used to improve the trained
model based on labeled data while adapting the model complexity to
cover the ’insecure region’ of labeled data. The proposed method is eval-
uated on some benchmarks from the SSL domain.
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1 Introduction

Big data are getting more and more challenging by means of storage and analysis
requirements. Besides the amount of data, only few of these data are totally
labeled, and labeling of all these data is indeed very costly and time consuming.
Techniques of data mining, visualization, and machine learning are necessary to
help people to analyse such data. Especially semi-supervised learning techniques,
which integrate the structural and statistical knowledge of unlabeled data into
the training, are widely used for this setting. A variety of SSL methods has
been published [1]. They all focus on vectorial data given in Euclidean space or
representations by means of positive semi-definite (psd) kernel matrices.

Many real world data are non-vectorial, often non-euclidean and given in
the form of pairwise proximities between objects. Such data are also referred
to as proximity or relational data, which are based on pairwise comparisons
of objects providing some score-value of the (dis-)similarity of the objects. For
such data, a vector space is not necessarily available and there is no guarantee
of metric conditions. Examples of such proximity or (dis-)similarity measures
are edit distance based measures for strings or images [5] or popular similarity



measures in bioinformatics such as scores obtained by the Smith-Waterman,
FASTA, or blast algorithm [4]. Such partially labeled relational data are not
widely addressed in the literature of SSL, yet. Only few methods consider SSL
for classification of proximity data without an explicit underlying vector space
and without requesting a metric space [9, 13], this is the topic of this paper.

In this paper we extend a prototype-based classifier proposed in [3] for semi-
supervised tasks of non i.i.d. data employing conformal prediction [14] technique.
For SSL tasks, conformal prediction is used to determine the secure region of
unlabeled data, which can potentially enhance the performance of the training,
and at the same time estimates a so-called insecure region of labeled data which
helps to adapt the model complexity. The proposed method can directly deal
with non-psd proximity multi-class data.

First we will review relational supervised prototype-based learning as recently
introduced by the authors in a specific model, employing conformal prediction
concepts as discussed in [11]. Thereafter we introduce an extension to semi-
supervised learning. We show the effectiveness of our technique on simulated
data, well-known vectorial data sets and biomedical dissimilarity data which are
not psd. Finally we summarize our results and discuss potential extensions.

2 Semi-supervised prototype-based relational learning

Prototype-based relational learning for unsupervised and supervised cases has
been investigated by [3]. For semi-supervised problems, first we will briefly review
the idea of prototype-based learning for relational data, then we will give a short
introduction about conformal prediction for prototype-based learning and finally
show how to extend it for semi-supervised problems.

2.1 Prototype-based relational learning

As mentioned before, in the relational setting, data is not given as vectors, but
as pairwise relation(s) between data points, e.g. distances between two points or
some scores that describe some relations between the data. Let vj ∈ V be a set
of objects defined in some data space, with |V| = N . We assume, there exists a
dissimilarity measure such that D ∈ RN×N is a dissimilarity matrix measuring
the pairwise dissimilarities Dij = d(vi,vj) between all pairs (vi,vj) ∈ V × V.
Any reasonable (possibly non-metric) distance measure is sufficient. We assume
zero diagonal d(vi,vi) = 0 for all i and symmetry d(vi,vj) = d(vj ,vi) for all
{i, j}.

We assume a training set is given where data point vj is labeled lj ∈ L, |L| =
L. The objective is to learn a classifier f such that f(vk) = lk for any given data
point. We use a recently published prototype classifier for dissimilarity data [3]
as basic method in the following. As detailed in [3], these data can always be
embedded in pseudo-euclidean space in such a way that d(vi,vj) is induced by
a synthetic (but possibly not psd) bilinear form.



Classification takes place by means of k prototypes wj ∈ W in the pseudo-
Euclidean space, which are priorly labeled. Typically, a winner takes all rule
is assumed, i.e. a data point is mapped to the label assigned to the prototype
which is closest to the data in pseudo-Euclidean space, taking the bilinear form
in pseudo-Euclidean space to compute the distance. For relational data classifica-
tion, the key assumption is to restrict prototype positions to linear combinations
of data points of the form wj =

∑
i αjivi with

∑
i αji = 1 . Then dissimilarities

between data points and prototypes can be computed implicitly by means of

d(vi,wj) = [D · αj ]i −
1
2
· αtjDαj (1)

where αj = (αj1, . . . , αjn) refers to the vector of coefficients describing the pro-
totype wj , as shown in [3].

Using this observation, prototype classifier schemes which are based on cost
functions can be transferred to the relational setting. We use the cost function
defined in [10]. The corresponding cost function of the relational prototype-based
classifier (RPC) becomes:

ERPC =
∑
i

Φ

(
[Dα+]i − 1

2 · (α
+)tDα+ − [Dα−]i + 1

2 · (α
−)tDα−

[Dα+]i − 1
2 · (α+)tDα+ + [Dα−]i − 1

2 · (α−)tDα−

)
,

where the closest correct and wrong prototypes are referred to, w+ and w−, re-
spectively, corresponding to the coefficients α+ and α−, respectively and Φ(x) =
(1 + exp(−x))−1. A simple stochastic gradient descent leads to adaptation rules
for the coefficients α+ and α− in RPC: component k of these vectors is adapted
as

∆α+
k ∼ − Φ

′(µ(vi)) · µ+(vi) ·
∂

`
[Dα+]i − 1

2
· (α+)tDα+

´
∂α+

k

∆α−k ∼ Φ′(µ(vi)) · µ−(vi) ·
∂

`
[Dα−]i − 1

2
· (α−)tDα−

´
∂α−k

with

µ(vi) =
d(vi,w+)− d(vi,w−)
d(vi,w+) + d(vi,w−)

µ+(vi) =
2 · d(vi,w−)

(d(vi,w+) + d(vi,w−))2

µ−(vi) =
2 · d(vi,w+)

(d(vi,w+) + d(vi,w−))2

The partial derivative yields

∂
(
[Dαj ]i − 1

2 · α
t
jDαj

)
∂αjk

= dik −
∑
l

dlkαjl

After every adaptation step, normalization takes place to guarantee
∑
i αji = 1.

This way, a learning algorithm which adapts prototypes in a supervised manner is



given for general dissimilarity data, whereby prototypes are implicitly embedded
in pseudo-Euclidean space.

The prototypes are initialized as random vectors corresponding to random
values αij which sum to one. It is possible to take class information into account
by setting all αij to zero which do not correspond to the class of the prototype.
Out-of-sample extension of the classification to new data is possible based on the
following observation [3]: For a novel data point v characterized by its pairwise
dissimilarities D(v) to the data used for training, the dissimilarity of v to a
prototype αj is d(v,wj) = D(v)t · αj − 1

2 · α
t
jDαj .

2.2 Conformal Prediction for RPC

RPC can be effectively transferred to a conformal predictor which will be useful
to extend it in a non-trivial way to semi-supervised learning. Conformal predic-
tor introduced in [14] aims at the determination of confidence and credibility
of classifier decisions. Thereby, the technique can be accompanied by a formal
stability analysis. In the context of vectorial data, sparse conformal predictors
have been recently discussed in [6], which we review now briefly.

Conformal prediction Denote the labeled training data zi = (vi, li) ∈ Z =
V × L. Furthermore let vN+1 be a new data point with unknown label lN+1,
i.e. zN+1 := (vN+1, lN+1). For given training data (zi)i=1,...,N , an observed data
point vN+1, and a chosen error rate ε, the conformal prediction computes an
(1 − ε)-prediction region Γ ε(z1, . . . , zl,vN+1) ⊆ L consisting of a number of
possible label assignments. The applied method ensures that if the data zi are
exchangeable1 then

P (lN+1 /∈ Γ ε(z1, . . . , zl,vN+1)) ≤ ε

holds asymptotically for N →∞ for each distribution of Z [14].
To compute the conformal prediction region Γ ε, a non-conformity measure is

fixed A(D, z). It is used to calculate a non-conformity value µ that estimates how
an observation z fits to given representative dataD={z1, . . . , zN}. The conformal
algorithm for classification is as follows: given a non-conformity measure A,
significance level ε, examples z1, . . . , zN , object vN+1 and a possible label l, it
is decided whether l is contained in Γ ε(z1, . . . , zN ,vN+1), see algorithm 1.

For given z = (x, l) and a trained relational prototype-based model, we
choose as non-conformity measure

µ :=
d+(x)
d−(x)

(2)

1 exchangeability is a weaker condition than data being i.i.d. which is readily applicable
to the online setting as well, for example [14]



Algorithm 1 Conformal Prediction (CP)
1: function cp(D, vN+1, ε)
2: for all l ∈ L do
3: zN+1 := (vN+1, l)
4: for i = 1, . . . , N + 1 do
5: Di := {z1, . . . , zN+1}\{zi}
6: µi := A(Di, zi) . eq. 2
7: end for

8: rl :=
|{i=1,...,N+1 | µi≥µN+1}|

N+1

9: end for
10: return Γ ε := {l : rl > ε}
11: end function

with d+(x) being the distance between x and the closest prototype labeled l, and
d−(x) being the distance between x and the closest prototype labeled differently
than l where distances are computed according to Eq. (1).

Confidence and credibility The prediction region Γ ε(z1, . . . , zN,vN+1)
stands in the center of conformal prediction. For a given error rate ε it contains
the possible labels of L. But how can we use it for prediction?

Suppose we use a meaningful non-conformity measure A. If the value ε is
approaching 0, a conformal prediction with almost no errors is required, which
can only be satisfied if the prediction region contains all possible labels. If we raise
ε we allow errors to occur and as a benefit the conformal prediction algorithm
excludes unlikely labels from our prediction region, increasing its information
content. In detail those l are discarded for which the r-value is less or equal ε.
Hence only a few zi are as non conformal as zN+1 = (vN+1, l). This is a strong
indicator that zN+1 does not belong to the distribution Z and so l seems not to
be the right label. If one further raises ε only those l remain in the conformal
region that can produce a high r-value meaning that the corresponding zN+1 is
rated as very typical by A.

So one can trade error rate against information content. The most useful
prediction is those containing exactly one label. Therefore, given an input vi
two error rates are of particular interest, εi1 being the smallest ε and εi2 being
the greatest ε so that |Γ ε(D,vi)| = 1. εi2 is the r-value of the best and εi1 is the
r-value of the second best label. Thus, typically, a conformal predictor outputs
the label l which describes the prediction region for such choices ε, i.e. Γ ε = {l},
and the classification is accompanied by the two measures

confidence : cfi := 1− εi1 = 1− rl2nd (3)

credibility : cri := εi2 = rl1st (4)

Confidence says something about being sure that the second best label and all
worse ones are wrong. Credibility says something about to be sure that the best
label is right respectively that the data point is (un)typical and not an outlier.

2.3 Semi-supervised Conformal RPC

In semi-supervised learning unlabeled data are used to enhance the learned
model based on only labeled data (denoted as T1). A very naive approach is



so-called self-training, which takes iteratively a part of the unlabeled data (de-
noted as T2) as new training data into the retraining process until all labeled
data are considered [15]. The problem of self-training is how to determine the
labels of the unlabeled data which will be taken into the retraining, a simple idea
is using k-NN, i.e. label the k nearest unlabeled data by the trained model and
the predicted labels serve as ’true’ labels of the unlabeled data in the retraining.
For safety normally small k is used to avoid the degeneration of the learning
performance, which can also cause very high computational effort for large data.

In order to get over this problem we combine the self-training approach with
conformal prediction. First of all, to identify the unlabeled data with high con-
fidence and credibility values defined by cci. For a given data vi ∈ T2,

cci := cfi × cri (5)

High cc-values of unlabeled data indicate that with high probability their pre-
dicted labels are the true underlying labels. That means only the unlabeled data
with predicted labels of high probability will be taken into the next retraining.
The region which consists of these unlabeled data with high cci is referred as
’secure region’ (denoted as SR). Therefrom to identify SR we take a fraction
(prc) of the top cc-values of the unlabeled data2.

On the other hand in the retraining the ’insecure region’ (ISR) of the train-
ing data can be found by

ISR :=


vi ∈ T1 : cfi ≤

„
1− 1

L

«
∨ cri ≤

1

L

ff
. (6)

and represented by a new prototype as the median of ISR.This step automati-
cally adapts the complexity of the model, i.e. the number of prototypes. For the
next retraining this new prototype will be also trained with the new training
data. The proposed method is referred to as secure semi-supervised conformal
relational prototype-based classifier (SSC-RPC). See algorithm 2.

During the self-training process the training set T1 is expanded by adding
the secure region SR of unlabeled data to itself while the unlabeled data T2 is
shrunk by discarding its secure region SR. The performance of the retaining is
evaluated based on only labeled data. The method terminates if the improvement
of the performance is not significant (less than 1%) after a given number of
iterations (winmax itr) or the maximal iterations are reached (maxitr) or the
insecure region (ISR) is too small or the unlabeled set T2 is empty. Since the
size of ISR controls the complexity of the model, we found by some independent
experiments, that |ISR| ≤ 5 is a good compromise between too dense or too
sparse models.

2 prc is customizable and in our experiments we set prc = 5% which is a good com-
promise between learning performance and efficiency.



Algorithm 2 secure semi-supervised conformal RPC
1: init: W := ∅, Wnew := ∅, Wbest := ∅, ISR := ∅; SR := ∅
2: T1 := labeled data; T2 := unlabeled data
3: improve = 1% . threshold of improvement: default 1%
4: EvalSet = T1 . Evaluation set, i.e. labeled data
5: itr = 0 . iteration counter
6: ctnbest = 0 . counter for best result
7: maxitr = 100 . maximal total iterations
8: winmax itr = 10 . maximal iterations for a result as winner
9: accbest = 0

10: repeat . self-training process
11: W := W

S
Wnew

12: T1 := T1 ∪ SR, T2 := T2\SR
13: W := train T1 by RPC given W . training with given prototypes
14: acc := evaluation of W on EvalSet;
15: if acc− accbest ≥ improve then
16: Wbest = W , accbest = acc, ctnbest = 0
17: else
18: ctnbest = ctnbest + 1
19: end if
20: AT1 := {µi, ∀i ∈ T1} . µ-values of T1: eq. (2)
21: AT2 := {µi, ∀i ∈ T2}
22: CFT2 := {cfi,∀i ∈ T2}; CRT2 := {cri, ∀i ∈ T2}; . eq. (3),(4)
23: CFT1 := {cfi, ∀i ∈ T1}; CRT1 := {cri, ∀i ∈ T1};
24: generate ISR of T1 based on CFT1 and CRT1 . eq. (6)
25: generate SR of T2 based on CFT2 and CRT2 . eq. (5) and prc = 5%
26: generate Wnew from SR
27: itr = itr + 1
28: until |ISR| ≤ 5 or itr = maxitr or ctnbest = winmax itr or T2 = ∅
29: return Wbest;

3 Experiments

We compare SSC-RPC for SSL and RPC (trainded only on labeled data) on a
large range of tasks including, five well-known UCI binary data sets3, four SSL
binary benchmark data sets4, and two real life non-vectorial multi-class data sets
from bioinformatic domain. Except for i.i.d. labeled data, we also demonstrate
an artificial data set to show the ability of dealing with non i.i.d. labeled data of
SSC-RPC. For vectorial data dissimilarity matrices D have been generated by
using the squared-Euclidean distance. SSC-RPC has been initialized with one
prototype per class, selected randomly from the labeled data set. In order to
keep the comparisons fair we set the number of prototypes for each class for
RPC to the number of prototypes for each class from SSC-RPC’s final result.

Benchmarks and real life data sets

First we evaluate the methods on different UCI data sets, i.e. Diabetes(D1),
German(D2), Haberman(D3), Voting(D4), WDBC(D5), and typical SSL bench-
marks, i.e. Digit1(D6), USPS(D7), G241c(D8), COIL(D9) [1] [7]. For Digit1,
USPS, G241c, COIL, the archive includes twelve data splits with 100 i.i.d. la-
beled data points. In oder to keep the same experimental setting, as for UCI
3 http://archive.ics.uci.edu/ml/datasets.html
4 http://www.kyb.tuebingen.mpg.de/ssl-book



Data D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

SSC-RPC 70.17 71.61 73.30 89.20 92.34 83.57 79.47 73.64 59.24 81.06 78.88
(2.32) (1.14) (5.02) (0.89) (1.19) (8.49) (1.44) (3.53) (5.50) (5.53) (3.28)

RPC 70.00 71.44 70.27 89.20 92.29 83.55 78.25 72.31 57.00 79.37 78.78
(2.20) (1.30) (7.29) (0.90) (1.64) (8.62) (2.43) (5.13) (2.89) (4.78) (3.70)

Table 1: Classification results for different vectorial and non-vectorial data.

data sets (as well as for the real life data sets later on), we randomly select 100
examples of the data to be used as labeled examples, and use the remaining data
as unlabeled data. The experiments are repeated for 12 times and the average
test-set accuracy (on the unlabeled data) and standard deviation are reported.

Further we evaluate the methods on two real life relational data sets, where
no direct vector embedding exists and the data are given as (dis-)similarities.
The SwissProt data set (D10) consists of 5, 791 samples of protein sequences
in 10 classes taken as a subset from the popular SwissProt database of protein
sequences [2] (release 37). The 10 most common classes such as Globin, Cy-
tochrome b, etc. provided by the Prosite labeling. These sequences are compared
using Smith-Waterman[4]. The Copenhagen Chromosomes data (D11) constitute
a benchmark from cytogenetics [8]. 4,200 human chromosomes from 21 classes are
represented by grey-valued images. These are transferred to strings measuring
the thickness of their silhouettes. These strings can directly be compared using
the edit distance based on the differences of the numbers and insertion/deletion
costs 4.5 [8]. The classification problem is to label the data according to the
chromosome type. The results are shown in Table 1. In half of all cases, semi-
supervised learning improves the result, and in the remaining cases it never
degenerates the learning performance, which is also an very important issue in
SSL [12, 15].

Artificial data set: two banana-shaped data clouds

This data set contains two banana-shaped data clouds indicating two classes.
Each banana consists of 300 2-D data points, Fig. 1(a). We select randomly
non i.i.d. a small fraction (ca. 5%) of each banana as labeled data. RPC is
trained only on labeled data with the same number of prototype for each class
which SSC-RPC finally outcomes and can not learn the whole data space very
well (see e.g. 1(d)). However, by means of SR of SSC-RPC the unlabeled data
are considered iteratively by the self-training procedure. Figure 1(b), 1(c) shows
some intermediate results up to convergence. The average accuracy (on unlabeled
data) of 10 times randomly non i.i.d. selected labeled data is reported: SSC-RPC:
94.55%(8.38), RPC: 77.29%(13.13).

4 Conclusions

We proposed an extension of conformal RPC for SSL by means of ’secure region’
of unlabeled data to improve the classifier and ’insecure region’ of labeled data to



(a) two bananas (b) 10. iteration (c) final SSC-RPC (d) final RPC

Fig. 1: (a) The data consist of green/blue labeled data and gray unlabeled data.
Two prototypes are trained by only labeled data and marked with squares. (b)
The secure region SR consists of the unlabeled data marked by stars and the
insecure region ISR contains labeled data rounded by red circles. The new
prototype taken from ISR is marked with a big red cross. During the self-
training process additional prototypes are created. (c) the final result of SSC-
RPC (d) the final result of RPC based only on labeled data

adapt the model complexity. It is a natural multi-class semi-supervised learner
for vectorial and non-vectorial data sets. As a wrapper method it can also be
integrated with other prototype-based methods. Our experiments show that the
approach demonstrates in general superior results compared to standard RPC
based on the labeled data alone, especially for non i.i.d. labeled data. Due to the
lack of classical SSL benchmarks for non i.i.d. data, we will provide more detailed
experiments for these relevant data in later work. Also additional parameter
studies for SSC-RPC focusing on the prc parameter and sparsity aspects to
address large scale problem will be addressed in the future.
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