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Abstract

Proteomic profiling based on mass spectrometry is an important tool for studies at
the protein and peptide level in medicine and health care. Thereby, the identification
of relevant masses, which are characteristic for specific sample states e.g. a disease
state is complicated. Further, the classification accuracy and safety is especially
important in medicine. The determination of classification models for such high di-
mensional clinical data is a complex task. Specific methods, which are robust with
respect to the large number of dimensions and fit to clinical needs, are required. In
this contribution two such methods for the construction of nearest prototype classi-
fiers are compared in the context of clinical proteomic studies, which are specifically
suited to deal with such high-dimensional functional data. Both methods are suit-
able to the adaptation of the underling metric, which is useful in proteomic research
to get a problem adequate representation of the clinical data. In addition they allow
fuzzy classification and for one of them allows fuzzy classified training data. Both
algorithms are investigated in detail with respect to their specific properties. A per-
formance analyzes is taken on real clinical proteomic cancer data in a comparative
manner.

Key words: fuzzy classification, learning vector quantization, metric adaptation,
mass spectrometry, proteomic profiling



1 Introduction

During last years proteomic 1 profiling based on mass spectrometry (MS) be-
came an important tool for studying cancer at the protein and peptide level in
a high throughput manner. MS based serum profiling is under development as
a potential diagnostic tool to distinguish between patients suffering from can-
cer and healthy subjects. Reliable classification methods, which can cope with
typically high-dimensional characteristic profiles, constitute a crucial part of
the system. Thereby, a good generalization ability and interpretability of the
results are highly desirable. Prototype based classification is intuitive approach
based on representatives (prototypes) for the respective classes.

Kohonen’s Learning Vector Quantization (LVQ) belongs to the class of su-
pervised learning algorithms for nearest prototype classification (NPC) [2]. It
relies on a set of prototype vectors (also called codebook vectors), which are
adapted by the algorithm according to their respective classes. Thus, it forms
a very intuitive local classification method with very good generalization abil-
ity also for high-dimensional data [3], which constitutes an ideal candidate
for an automatic and robust classification tool for high throughput proteomic
patterns.

However, original LVQ is only heuristically motivated and shows instable be-
havior for overlapping classes. Recently a new method, Soft Nearest Prototype
Classification (SNPC), has been proposed by Seo et al. [4] based on the for-
mulation as a Gaussian mixture approach, which yields soft assignments of
data. This algorithm can be extended by local and global metric adaptation
(called relevance learning) to (L)SNPC-R [5] and applied in profiling of mass
spectrometric data in cancer research. In addition, the learning of the pro-
totype labels has been changed to support fuzzy values, which finally allows
fuzzy prototype labels yielding fuzzy SNPC (FSNPC) [6]. The approach is
well suited to deal with high-dimensional data focusing on optimal class sep-
arability. Further, it is capable to determine relevance profiles of the input,
which can be used for identification of relevant data dimensions. In addition,
the metric adaptation parameters may be further analyzed with respect to
clinical knowledge extraction.

The second algorithm also refers to the class of LVQ networks but was origi-
nally motivated as an unsupervised clustering approach, named Neural GAS
introduced in [7]. This algorithm distributes the prototypes such that the data
density is estimated by minimizing some description error aiming at unsuper-

∗ Frank-Michael Schleif: Bruker Daltonik GmbH, Permoserstrasse 15, D-04318
Leipzig, Germany, Tel: +49 341 24 31-408, Fax: +49 341 24 31-404, fms@bdal.de
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vised data clustering. Prototype based classification as a supervised vector
quantization scheme is dedicated to distribute prototypes in such a manner
that data classes can be detected, which naturally is influenced by the data
density, too. Taking this into account the Fuzzy Labeled Neural GAS algo-
rithm (FLNG) has been introduced in [8,9]. This algorithm will be used as a
second prototype based classification approach in this contribution. The capa-
bilities of different variants of FSNPC and FLNG are demonstrated for differ-
ent cancer data sets: the Wisconsin Breast Cancer (WBC)[10], the leukemia
data set (LEUK) provided by [11] and two other non-public proteomic data
obtained from [12].

The paper is organized as follows: the crisp SNPC is reviewed in section 2 fol-
lowed by the extension of metric adaptation (relevance learning (SNPC-R)).
Thereafter the concept of fuzzy classification is derived for the SNPC algo-
rithm and also combined with the relevance concept. In section 3 the FLNG
algorithm will be presented. Subsequently, application results of the algorithms
are reported in a comparative manner. The article concludes by a short dis-
cussion of the methods and shows the benefits of the metric adaptation as well
as of fuzzy classification for clinical data.

2 Soft nearest prototype classification

Usual learning vector quantization is a prototype based classification method-
ology, mainly influenced by the standard algorithms LVQ1. . .LVQ3 introduced
by Kohonen [2]. Several derivatives have been developed to ensure faster
convergence, a better adaptation of the receptive fields to optimum Bayesian
decision, or an adaptation for complex data structures [13,14,4]. Any of the
above algorithms LVQ1. . .LVQ3, does not possess a cost function in the con-
tinuous case; it is based on the heuristic to minimize misclassifications using
Hebbian learning. The first version of learning vector quantization based on a
cost function, which formally assesses the misclassifications, is the Generalized
LVQ (GLVQ) [15]. GLVQ resp. its extensions Supervised Neural GAS (SNG)
and Supervised Relevance Neural GAS (SRNG) as introduced in [16] will be
used for comparison in this article.

First, basic notations for LVQ schemes are introduced. Inputs are denoted by
v with label cv ∈ L. Assume L is the set of labels (classes) with #L = NL

and V ⊆ R
DV a finite set of inputs v. LVQ uses a fixed number of proto-

types (weight vectors, codebook vectors) for each class. Let W = {wr} be
the set of all codebook vectors and cr be the class label of wr. Furthermore,
let Wc= {wr|cr = c} be the subset of prototypes assigned to class c ∈ L. The
classification of vector quantization is implemented by the map Ψ as a winner-
take-all rule, i.e. a stimulus vector v ∈ V is mapped onto that neuron s ∈ A
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the pointer ws of which is closest to the presented vector v,

ΨV→A : v 7→ s (v) = argmin
r∈A

d (v,wr) (2.1)

with d (v,w) being an arbitrary distance measure, usually the squared eu-
clidean metric. The neuron s is called winner or best matching unit. The subset
of the input space Ωr = {v ∈V : r = ΨV →A (v)}, which is mapped to a par-
ticular neuron r according to (2.1), forms the (masked) receptive field of that
neuron. Standard LVQ training adapts the prototypes such that for each class
c ∈ L, the corresponding codebook vectors Wc represent the class as accu-
rately as possible, i.e. the set of points in any given class Vc = {v ∈V |cv = c},
and the union Uc =

⋃

r|
wr∈Wc

Ωr of receptive fields of the corresponding pro-
totypes should differ as little as possible. This is either achieved by heuristics
as for LVQ1. . . LVQ3 [2], or by the optimization of a cost function related to
the mismatches as for GLVQ [15] and SRNG as introduced in [16].

Soft Nearest Prototype Classification (SNPC) has been proposed as alterna-
tive stable NPC learning scheme. It introduces soft assignments for data vec-
tors to the prototypes, which have a statistical interpretation as normalized
Gaussians. In the original SNPC as provided in [4] one considers

E (S) =
1

NS

NS
∑

k=1

∑

r

uτ (r|vk)
(

1 − αr,cvk

)

(2.2)

as the cost function with S = {(v, cv)} the set of all input pairs, NS = #S.
The class assignment variables αr,cvk

equals one if cvk
= cr and 0 otherwise, i.e.

the assignments are crisp. uτ (r|vk) is the probability that the input vector vk

is assigned to the prototype r. A crisp winner-takes-all mapping (2.1) would
yield uτ (r|vk) = δ (r = s (vk)).

In order to minimize (2.2), in [4] the variables uτ (r|vk) are taken as soft
assignment probabilities. This allows a gradient descent on the cost function
(2.2). As proposed in [4], the probabilities (soft assignments) are chosen as
normalized Gaussians

uτ (r|vk) =
exp

(

−d(vk,wr)
2τ2

)

∑

r′ exp
(

−d(vk,w
r′ )

2τ2

) (2.3)

whereby d is the distance measure used in (2.1) and τ is the bandwidth which
has to be chosen adequately. Then the cost function (2.2) can be rewritten as

E (S) =
1

NS

NS
∑

k=1

lc ((vk, cvk
)) (2.4)
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with local costs

lc ((vk, cvk
)) =

∑

r

uτ (r|vk)
(

1 − αr,cvk

)

(2.5)

i.e., the local error is the sum of the class assignment probabilities αr,cvk
to

all prototypes of an incorrect class, and, hence

lc ((vk, cvk
)) ≤ 1 (2.6)

with local costs depending on the whole set W. Because the local costs
lc ((vk, cvk

)) are continuous and bounded, the cost function (2.4) can be min-
imized by stochastic gradient descent using the derivative of the local costs:

△wr =



























1
2τ2 uτ (r|vk) · lc ((vk, cvk

)) · ∂dr

∂wr
if cvk

= cr

− 1
2τ2 uτ (r|vk) · (1 − lc ((vk, cvk

))) · ∂dr

∂wr
if cvk

6= cr

(2.7)

where
∂lc

∂wr

= −uτ (r|vk)
(

(1 − αr,cvk
) − lc ((vk, cvk

))
)

·
∂dr

∂wr

(2.8)

This leads to the learning rule

wr = wr − ǫ (t) · △wr (2.9)

with learning rate ǫ (t) fulfilling
∑∞

t=0 ǫ (t) = ∞ and
∑∞

t=0 (ǫ (t))2
< ∞ as usual.

All prototypes are adapted in this scheme according to the soft assignments.
Note that for small bandwidth τ , the learning rule is similar to LVQ2.1.

A window rule like for standard LVQ2.1 can be derived for SNPC, too, which
is necessary for numerical stabilization [2],[4]. The update is restricted to all
weights for which the local value

η = lc ((vk, cvk
)) · (1 − lc ((vk, cvk

))) (2.10)

is less than a threshold value η with 0 ≪ η < 0.25 [4]. The justification for
this fact is given in [4] (page 4).

2.1 Relevance learning for SNPC

Like all NPC algorithms, SNPC heavily relies on the metric d, usually the
standard euclidean metric. For high-dimensional data as occur in proteomic
patterns, this choice is not adequate since noise present in the data set ac-
cumulates and likely disrupts the classification. Thus, a focus on the (priory
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not known) relevant parts of the inputs, would be much more suited. Rel-
evance learning as introduced in [17] offers the opportunity to learn metric
parameters, which is called relevance learning. This concept now is included
into the above SNPC and well be referred as SNPC-R: A parameter vector
λ = (λ1, . . . , λm) is assigned to the metric d (vk,wr) denoted as dλ (vk,wr),
which now is used in the soft assignments (2.3). One popular example is the
scaled Euclidean metric

dλ (vk,wr) =
DV
∑

i=1

λi(v
i
k − wi

r)
2. (2.11)

Parallelly to the usual prototype adaptation the relevance parameters λj can
be adjusted according to the given classification problem, taking the respective
derivative of the cost function. Doing so the derivative of the local costs (2.5)
becomes

∂lc ((vk, cvk
))

∂λj

=
1

2τ 2

∑

r

uτ (r|vk) ·
∂dλ

r

∂λj

·
(

αr,cvk
+ lc ((vk, cvk

)) − 1
)

(2.12)

followed by a subsequent normalization of the λj.

It is worth to emphasize that SNPC-R can also be used with individual metric
parameters λr for each prototype wr or with a classwise metric shared within
prototypes with the same class label cr as it is done here, referred as localized
SNPC-R (LSNPC-R). If the metric is shared by all prototypes, LSNPC-R is
reduced to SNPC-R. The respective adjusting of the relevance parameters λ

can easily be determined in complete analogy to (2.12).

It has been pointed out in [3] that NPC classification schemes, which are
based on the euclidean metric, can be interpreted as large margin algorithms
for which dimensionality independent generalization bounds can be derived.
Instead of the dimensionality of data, the so-called hypothesis margin, i.e. the
distance, the hypothesis can be altered without changing the classification on
the training set, serves as a parameter of the generalization bound. This result
has been extended to NPC schemes with adaptive diagonal metric in [16].
This fact is quite remarkable, since DV new parameters, DV being the input
dimension, are added this way, still, the bound is independent of DV . This
result can even be transferred to the setting of individual metric parameters
λr for each prototype or class such that a generally good generalization ability
of this method can be expected [18]. Despite from the fact that (possibly local)
relevance factors allow a larger flexibility of the approach without decreasing
the generalization ability,they are of particular interest for proteomic pattern
analysis because they indicate potentially semantically meaningful positions.
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2.2 Fuzzy classification for SNPC-R

In Fuzzy Labeled SNPC (FSNPC) one now allows fuzzy values for αr,c to
indicate the responsibility of weight vector wr to class c such that now

0 ≤ αr,c ≤ 1

in contradiction to the crisp case and under the normalization condition
∑NL

c=1 αr,c = 1. These labels should be adjusted automatically during train-
ing. However, doing so, the crisp class information for prototypes, assumed in
the learning dynamic of SNPC (2.7) (or generally required in LVQ) [4], is no
longer available. However, a corresponding learning dynamic can be derived:
In complete analogy to the original SNPC with the same cost function (2.4)
one gets

△wr = −
T

2τ 2
·

∂dr

∂wr

(2.13)

with
T = uτ (r|vk) ·

(

1 − αr,cvk
− lc (vk, cvk

)
)

.

Thereby, the loss boundary property (2.6) remains valid. Parallelly, the fuzzy

labels αr,cvk
can be optimized using

∂lc(vk,cvk)
∂αr,cvk

:

△αr,cvk
= −uτ (r|vk) (2.14)

followed by subsequent normalization.

To adjust the window rule to now fuzzified values αr,cvk
one considers T . Using

the Gaussian form (2.3) for uτ (r|vk), the term T can be rewritten as

T = (ηlc − ηα) · Π
(

αr,cvk

)

with

Π
(

αr,cvk

)

=
exp

(

−d(vk,wr)
2τ2

)

∑

r′

(

1−αr,cvk
−α

r′,cvk

)

exp

(

d(vk,w
r′)

2τ2

)

(2.15)

and ηα = αr,cvk

(

1 + αr,cvk

)

and ηlc in according to (2.10).

As in the original SNPC,

0 ≤ lc (vk, cvk
) (1 − lc (vk, cvk

)) ≤ 0.25

because lc (vk, cvk
) fulfills the loss boundary property (2.6) [4]. Hence, one gets

−2 ≤ T ≤ 0.25
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using the fact that αr,cvk
≤ 1 [6]. Further, the absolute value of the factor T

has to be significantly different from zero to have a valuable contribution in
the update rule [4]. This yields the window condition 0 ≪ |T |, which can be
obtained by balancing the local loss lc (vk, cvk

) and the value of the assignment
variable αr,cvk

.

Subsequently the idea of metric adaptation is incorporated into FSNPC too
[6],[19] now applying a local prototype dependent parametrized similarity mea-
sure d (vk,wr). Again, metric adaptation takes place as gradient descent on
the cost function with respect to the relevance parameters λr (relevance learn-
ing):

△λr = −
∂lc (vk, cvk

)

∂λr

(2.16)

with
∂lc (vk, cvk

)

∂λj (r)
= −

T

2τ 2
·
∂dλr

r (vk,wr)

∂λj (r)
(2.17)

using the local cost (2.5) and subsequent normalization of the λj (r). In case
of λ = λr for all r (global parametrized metric) one gets

∂lc (vk, cvk
)

∂λj

= −
∑

r

T

2τ 2
·
∂dλ (vk,wr)

∂λj

(2.18)

In the following this variant is referred as FSNPC-R. In case of local relevance
parameters the algorithm is denoted as FLSNPC-R. The computational com-
plexity of the (F)SNPC methods can be estimated only roughly due to the
nature of the stochastic gradient descent. To train an (L)(F)SNPC network
for each cycle and for each datapoint of the training set |W| steps accounting
for calculations related to prototype updates are needed. The number of cycles
is typically related to the number of training samples, e.g. for 1000 samples
1000 training cycles maybe executed. For larger datasets (>> 1000 samples)
in general only a random subset is selected and used for the optimization
procedure. Especially the total number of sample queries used to train SNPC
variants can be significantly reduced by use of active learning strategies as
recently proposed in [20].

3 Supervised Neural GAS for fuzzy labeled data

Recently another fuzzified supervised LVQ algorithm has been proposed which
is based on the well known Neural Gas algorithm as introduced in [21] and
concepts taken from the Supervised Relevance Neural GAS [17]. This new
algorithm is known as Fuzzy Labeled Neural GAS (FLNG) [9] and will be
reviewed in the following, compared with the above given FSNPC approach.
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It differs from the above SNPC variants in such a way that the assumption of
crisp classification for training data can be relaxed, i.e. a unique assignment of
the data to the classes is no longer required. This is highly demanded in real
world applications. For example, in medicine a clear (crisp) classification of
data for training may be difficult or impossible: Assignments of a patient to a
certain disorder frequently can be done only in a probabilistic (fuzzy) manner.
Hence, it is of great interest to have a classifier which is able to manage this
type of data.

We shortly review unsupervised Neural GAS and explain thereafter the su-
pervised modification FLNG. We complete this part by transferring the ideas
of relevance learning to FLNG too.

3.1 The neural gas network

Neural gas is an unsupervised prototype based vector quantization algorithm.
It maps data vectors v from a (possibly high-dimensional) data manifold
V ⊆R

d onto a set A of neurons i formally written as ΨV →A : V → A. Thereby
the notations as introduced in the section 2 are kept. Also in this case it is only
supposed that the used distance measure d(v,wi) is a differentiable symmetric
similarity measure.

During the adaptation process a sequence of data points v ∈ V is presented to
the map with respect to the data distribution P (V ). Each time the currently
most proximate neuron s according to (2.1) is determined, and the pointer
ws as well as all pointers wi of neurons in the neighborhood of ws are shifted
towards v, according to

△wi = −ǫhσ (v,W, i)
∂d (v,wi)

∂wi

. (3.1)

The property of “being in the neighborhood of ws” is captured by the neigh-
borhood function

hσ (v,W, i) = exp

(

−
ki (v,W)

σ

)

, (3.2)

with the rank function

ki (v,W) =
∑

j

θ
(

d (v,wi) − d
(

v,wj

))

(3.3)

counting the number of pointers wj for which the relation ‖v − wj‖ <

‖v −wi‖ is valid [21]. θ (x) is the Heaviside-function. It should be mentioned
that the neighborhood function is evaluated in the input space. The adaptation
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rule for the weight vectors follows in average a potential dynamic according
to the potential function [21]:

ENG =
1

2C (σ)

∑

j

∫

P (v)hσ (v,W, j)d
(

v,wj

)

dv (3.4)

with C (σ) being a constant. It will be dropped in the following. It was shown
in many applications that the NG shows a robust behavior together with a
high precision of learning.

3.2 Fuzzy Labeled NG

One can switch from the unsupervised scheme to a supervised scenario, i.e.
each data vector is now accompanied by a label. According to the aim as
explained above, the label is fuzzy: for each class k one has the possibilistic
assignment xk ∈ [0, 1] collected in the label vector x = (x1, . . . , xNc

). Nc is the
number of possible classes. Further, fuzzy labels are introduced for each pro-
totype wj: yj=

(

y
j
1, . . . , y

j
Nc

)

. Now, the original unsupervised NG is adapted
such that it is able to learn the fuzzy labels of the prototypes according to a
supervised learning scheme. Thereby, the behavior of the original NG should
be integrated as much as possible to transfer the excellent learning proper-
ties. This new algorithm is denoted as Fuzzy Labeled Neural Gas (FLNG).
To include the fuzzy label accuracy into the cost function of FLNG a term to
the usual NG cost function will be added, which judges the deviations of the
prototype fuzzy labels from the fuzzy label of the data vectors:

EFLNG = ENG + βEFL (3.5)

The factor β is a balance factor, which could be under control or simply chosen
as β = 1. For a precise definition of the new term E one has to differentiate
between discrete and continuous data, which becomes clear during the deriva-
tion. The different situations are detailed in [9] and will not be reconsidered
in the following. From the numerical analysis in [9] one can conclude that a
Gaussian approach in modeling the rank replacement is suitable. Hence, only
this specific variant of FLNG will be considered.

3.3 Gaussian kernel based FLNG

In the Gaussian approach, one weights the label error by a Gaussian kernel
depending on the distance. Hence, the second term EFL is chosen as

EFL =
1

2

∑

j

∫

P (v) gγ

(

v,wj

) (

x − yj

)2
dv (3.6)
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where gγ

(

v,wj

)

is a Gaussian kernel describing a neighborhood range in the
data space:

gγ

(

v,wj

)

= exp



−
d
(

v,wj

)

2γ2



 (3.7)

Note that gγ

(

v,wj

)

depends on the prototype locations, such that EFL is
influenced by both w and y. Investigating this cost function, again, the first
term ∂ENG

∂wi
of the full gradient ∂EF LNG

∂wi
is known from usual NG. The new

second term now contributes according to

∂EFL

∂wi

= −
1

4γ2

∫

P (v) gγ (v,wi)
∂d (v,wi)

∂wi

(x − yi)
2
dv (3.8)

which takes the accuracy of fuzzy labeling into account for the weight update.
Both terms define the learning rule for the weights.

For the fuzzy label one simply obtains ∂EF LNG

∂yi
= ∂EF L

∂yi
, where

∂EFL

∂yi

= −
∫

P (v) gγ (v,wi) (x − yi) dv (3.9)

which is, in fact, a weighted average of the data fuzzy labels of those data
belonging to the receptive field of the associated prototypes. However, in com-
parison to usual NG the receptive fields are different because of the modified
learning rule for the prototypes and their resulting different locations. The
resulting learning rule is

△yi = ǫlgγ (v,wi) (x − yi) (3.10)

3.4 Relevance Learning for FLNG (FLNG-R)

In the theoretical derivation of the algorithm a general distance measure has
been used, which can, in principle, be chosen arbitrarily, but sufficiently differ-
entiable. Hence, a parametrized distance measure can be used as before in case
of SNPC-R and FSNPC-R. For this purpose the derivatives are investigated

∂EFLNG

∂λk

=
∂ENG

∂λk

+ β
∂EFL

∂λk

(3.11)

One obtains:

∂ENG

∂λk

=
1

2C (σ)







∑

j

∫

P (v) hσ (v,W,j)
∂dλ(v,wj)

∂λk
dv

+
∑

j

∫

P (v) dλ

(

v,wj

)

∂hσ(v,W,j)
∂λk

dv





 (3.12)
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with ∂hσ(v,W,j)
∂λk

= −hσ(v,W,j)
σ

·
∂kj(v,W)

∂λk
. It is taken into account that the defi-

nition (3.3) of kj (v,W) with the derivative of the Heaviside-function θ (x) is
the delta distribution δ (x). In this way one gets

∂kj (v,W)

∂λk

=
∑

l

δ (△λ (v,wj,wl)) ·
∂ △λ (v,wj,wl)

∂λk

(3.13)

with △λ (v,wj,wl) = dλ

(

v,wj

)

−dλ (v,wl). Hence in the second term (3.12)

vanishes because δ is symmetric and non-vanishing only for dλ

(

v,wj

)

=

dλ (v,wl). Thus

∂ENG

∂λk

=
1

2C (σ)

∑

j

∫

P (v)hσ (v,W, j)
∂dλ

(

v,wj

)

∂λk

dv (3.14)

Now one pays attention to the second summand ∂EF L

∂λk
one has

∂EFL

∂λk

= −
1

4γ2

∑

j

∫

P (v) gγ

(

v,wj

) ∂dλ

(

v,wj

)

∂λk

(

x − yj

)2
dv (3.15)

It should be mentioned that local relevance learning for FLNG-R can be in-
troduced similar as within FSNPC-R but is not considered in the following.
The computational complexity of the FLNG variants is mainly determined by
the number of sample queries during the training of the networks. For each
sample approximately O(|W| + |W| · log(|W|)) steps for prototype, metric
and label calculations are needed. Thereby the term |W| refers to the typical
calculation needed for each LVQ variant and the log(|W|) refers to the rank
calculation which is a specific step for Neural GAS networks. The number
of cycles is typically less or equal to the number of training samples. Again
only a random subset query selection strategy may be applied for very large
datasets (>> 1000) such that the number of queries can be limited by some
prior knowledge about the data distribution.

4 Experiments and Applications

In the following experimental results for the application of the different devel-
oped variants of SNPC and Fuzzy Labeled Neural GAS are given. Thereby the
SNPC results are compared with standard methods such as SNG and SVM,
followed by a comparison of FSNPC with FLNG variants. Thereby, the usual
Euclidean distance is applied. Further we investigate the behavior of the rel-
evance learning variants using the scaled Euclidean metric (2.11). Then the
parameter vector λ modifies the weighting of individual input dimensions with
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respect to the underlying optimization problem. Input dimensions with low
relevance for the classification task are scaled which can be considered as a
linear scaling of the input dimension restricted by a normalization constraint
such that λi ∈ [0, 1] with i = 1, . . . , Dv. For λi ≈ 0 the input dimensions are
pruned in fact. This can be geometrically interpreted as a linear projection of
the high dimensional data onto a lower dimensional data space. This choice
allows a direct interpretation of the relevance parameters as a weighting of
importance of the spectral bands for cancer detection, which may give a hint
for potential biomarkers. In the analysis of the fuzzy algorithms we consider
also the label error as a more specific indicator of the learning error which is
defined as

ȳ2 =
1

|V|

|W|
∑

r=1

|Ωr|
∑

i=1

NL
∑

j=1

(xj
i − yj

r)
2 with xi ∈ Ωr : i = 1, . . . , |Ωr|

This error measure is also given for some crisp calculation on the test sets.
It should be noted that in the crisp case a miss classification counts simple
as 2 giving label errors ȳ2 ∈ [0.0, 2.0]. For the fuzzy classification there is no
such obvious relation between the classification and the label error because
the classification error is obtained using a majority voting scheme and the
labels can be arbitrary fuzzy.

4.1 Clinical data and experimental settings

The different clinical data sets used to show the capabilities of the algo-
rithms are the Wisconsin Breast Cancer (WBC)[10], the leukemia data set
(LEUK) provided by [11] and two other non-public Matrix Assisted Laser
Desorption/Ionization mass spectrometry (MALDI-MS) proteomic data ob-
tained from [12]. The WBC data set consists of 100 training samples and 469
test data, whereby for the training samples exactly half the data set is to
cancer state. The spectra are given as 30-dimensional vectors. Detailed de-
scriptions of the data including facts about preprocessing can be found in [10]
for WBC. The LEUK data are obtained from plasma samples. A mass range
between 1 to 10kDa was used. Details for the LEUK data can be found in [11].

The MALDI-MS data (PROT1, PROT2) are obtained by spectral analysis
of serum of patients suffering from different cancer types and corresponding
control probands. For the clinical preparations MB-HIC C8 Kits (Bruker Dal-
tonik, Bremen, Germany) has been used. All purifications were performed in
a one-step procedure according to the product description. Sample prepara-
tion onto the MALDI-TOF Anchor Chip target are done using alpha-cyano-
4-hydroxy-cinnamic acid (HCCA) as matrix. Profiling spectra were generated
on an autoflex MALDI-TOF MS (Bruker Daltonik, Bremen, Germany) in
the linear mode for the PROT I data and on an UltraFlex MALDI-TOF MS
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SNPC SNG SVM

train test ȳ2 train test train test

WBC 98% 85% 0.3 67% 63% 97% 95%

LEUK 100% 100% 0.0 33% 30% 100% 96%

PROT1 95% 97% 0.06 52% 52% 100% 88%

PROT2 94% 80% 0.2 39% 37% 100% 82%

Table 1
Classification accuracy for the different cancer data sets for SNPC, SNG, SVM

(Bruker Daltonik, Bremen, Germany) for the PROT II data set. The obtained
spectra were first processed using the standardized workflow as given in [22].
After preprocessing the LEUK spectra one obtains 145-dimensional vectors of
peak areas. Thereby the LEUK data set consists of 74 cancer and 80 control
samples. The PROT1 data set consists of 94 samples in two classes of nearly
equal size and 124 dimensions originating from the obtained peak areas. The
PROT2 data are given by 203 samples in three classes with 78 dimensions.

For crisp classifications, 6 prototypes for WBC data and 2 prototypes for
LEUK data were used. The PROT1 data set has been analyzed with 6 proto-
types and the PROT2 data set using 9 prototypes, respectively. All training
procedures has been done upto convergence with an upper limit of 5000 cycles.
For the fuzzy variants of FLNG the number of prototypes has been changed
in accordance to its data distribution dependent prototype learning property
such that the LEUK and WBC model has been obtained using 6 prototypes,
the PROT1 model using 12 prototypes and the PROT2 model using 15 pro-
totypes.

The classification results for the standard crisp classification without metric
adaptation are given in Tab. 1 and in Tab. 2 for crisp methods with metric
adaptation. Clearly, metric adaptation significantly improves the classification
accuracy. Some typical relevance profiles are depicted in Fig. 1. High relevance
values refer to greater importance of the respective spectral bands for classi-
fication accuracy and, therefore, hints for potential biomarkers.

One can observe that SNPC-R is capable to generate suitable classification
models typically leading to prediction rates above 91%. The results are in
parts better than those obtained by ordinary SNPC. The results are reliable in
comparison with SVM and SRNG. Besides the good prediction rates obtained
from SNPC-R one gets additional information from the relevance profiles. For
metrics per class one gets specific knowledge on important input dimensions
per class.

Subsequently FSNPC and FLNG are considered with and without metric
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SNPC-R LSNPC-R SRNG

train test ȳ2 train test ȳ2 train test ȳ2

WBC 98% 94% 0.12 100% 96% 0.08 99% 94% 0.12

LEUK 100% 100% 0.0 100% 100% 0.0 100% 100% 0.0

PROT1 97% 91% 0.18 95% 76% 0.48 96% 90% 0.2

PROT2 95% 81% 0.38 96% 86% 0.28 82% 80% 0.4

Table 2
Classification accuracy for the different cancer data sets for SNPC-R, LSNPC-R,
SRNG

Fig. 1. Relevance profiles for the WBC (left) and LEUK (right) data set using
SNPC-R

FSNPC FLNG

train ȳ2 test ȳ2 train ȳ2 test ȳ2

WBC 99% 0.02 97% 0.06 88% 0.16 86% 0.18

LEUK 100% 0.0 93% 0.13 92% 0.11 79% 0.24

PROT1 98% 0.03 92% 0.16 83% 0.24 89% 0.18

PROT2 90% 0.17 70% 0.44 80% 0.28 78% 0.34

Table 3
Classification accuracy and label error for the labels (ȳ2) for the different cancer
data sets for FSNPC, FLNG

adaptation for the different data sets. As a first result from the simulations
one can found that both algorithm need in general longer runtimes upto con-
vergence, especially to sufficiently learn the underlying labeling. This can be
explained due to the label learning of the prototypes, which not any longer is
fixed from the startup such that the number of prototypes dedicated to rep-
resent a class can be determined during learning. The results depicted in Tab.
3 show reliable but a bit worse results with respect to the non fuzzy methods.
FSNPC and FLNG behave similar but it should be mentioned that FSNPC
is driven by a Gaussian mixture model approach whereas FLNG is motivated
by statistical data clustering with neighborhood cooperation.

Also for the fuzzy methods one can in general observe an improvement of the
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FSNPC-R FLSNPC-R FLNG-R

train ȳ2 test ȳ2 train ȳ2 test ȳ2 train ȳ2 test ȳ2

WBC 98% .03 99% .02 99% .03 99% .02 91% .13 92% .14

LEUK 98% .04 93% .12 100% .0 93% .13 88% .18 96% .14

PROT1 98% .03 97% .05 97% .06 94% .1 83% .22 79% .21

PROT2 95% .09 81% .35 95% .07 87% .28 78% .29 70% .41

Table 4
Classification accuracies for cancer data sets using FSNPC-R, FLSNPC-R and
FLNG-R. A classification of a data point is accounted for that class with the highest
possibilistic value. The FSNPC derivatives behave similar to their crisp variants but
a bit better than in comparison to FLNG. To obtain a reliable recognition accuracy
for the LEUK, PROT1 and PROT2 data the number of prototypes had to be in-
creased to 3, 6, 5 per class. Mean square error for the labels (ȳ2) are given for the
training and test data.

recognition and prediction accuracy by incorporating metric adaptation as
depicted in Tab. 4. For the FLNG algorithm it could be observed that reliable
models (measured on the recognition accuracy) needs typically twice as much
prototypes as for FSNPC or other prototype based algorithms. This reflects,
that the FLNG optimization is not just with respect to a given classification
but also to the data distribution, which becomes a more critical factor for
higher dimensional data.

Fig. 2. Typical convergence curve for label error (LE) using FLNG-R (left) and
FSNPC-R (right) for the WBC data. To get a more stable analysis the algorithms
has been trained fix with 5000 cycles to obtain these LE curves using 6 prototypes.

For the fuzzy methods an additional measurement of convergence and accu-
racy, the label error (LE) becomes important. If the data could be sufficiently
well represented by the prototype model the LE is a comparable measure for
different models originating from prototype fuzzy classifiers. An initial result
is depicted in Figure 2 giving a first impression of LE behavior for the FLNG-
R and FLSNPC-R algorithm. The LE in combination with the classification
accuracy can be used as an indicator for the raw number of prototypes which
should be used to get a sufficient modeling of the underlying data labeling
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and by considering this measure over time is a less raw measure for the cur-
rent algorithm convergence than the pure accuracy, which typically is constant
over large periods of learning. In Figure 2 one can see the LE’s for FSNPC-R
and FLNG-R in a comparison. Both algorithms show an overall convergence
of the LE and end up with a similar error value. However for the FSNPC-R
one finds a less stable behavior reflected by strong fluctuations in the middle
of the learning task, which are vanishing in the convergence phase. For the
FLNG-R changes in the LE are much smoother than for FSNPC-R. One can
also observe that both algorithms get low LE’s already at a very early cycle.
Thereby the LE for FSNPC-R is finally a bit lower than for the FLNG-R
algorithm within the different data sets. Considering the fuzzy labeling of the
final prototype sets one can observe that both algorithms were capable to learn
the labeling from the given training data. One finds prototypes with a very
clear labeling, close to 100% for the corresponding class and hence a quite
clear voronoi tessellation induced by this prototypes. But one can also find
prototypes with lower safety in its class modeling and even prototypes, which
show split decisions. Especially the last one are interesting in the sense that
one immediately knows that decisions taken by those prototypes are doubtful
and should be questioned.

5 Conclusion

The usual SNPC has been extended by relevance learning as one kind of metric
adaptation and by fuzzy classification. A new adaptation dynamic for metric
adaptation and prototype adjustment according to a gradient descent on a
cost function has been derived. This cost function is obtained by appropriate
modification of the SNPC. As demonstrated, this new soft nearest prototype
classification with relevance learning can be efficiently applied to the classifica-
tion of proteomic data and leads to results, which are competitive to results as
reported by alternative state of the art algorithms. The extension of SNPC to
fuzzy classification has been compared with the FLNG algorithm. The FSNPC
algorithm with its motivation from Gaussian mixture approaches performed
very well in the different experiments but contains some critical parameters
such as the one in the window rule, which may need to be adapted for some
data by additional analysis. Also the estimations based on a Gaussian mix-
ture approach may be inappropriate for non Gaussian data distributions. The
FLNG in contrast strongly depends on the β control. In our analysis however
it was observed that the proposed settings are in general well suited and the
algorithms behave sufficiently stable with respect to these parametrization. It
was found that the SNPC derivatives showed in parts better performance re-
garding classification. Using the label error as a more specific indicator of the
learning behavior, the FSNPC algorithm shows a less stable learning behavior
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than FLNG, but better final LE values. This is probably referred to the specific
learning dynamic of FSNPC, which is closely related to that of standard LVQ
algorithms. The FLNG algorithm however does not any longer migrates the
update behavior of LVQ algorithms and hence behaves different. This however
brings the new possibility to allow learning of potentially fuzzy labeled data
points, which was not possible in a direct way with prototype methods so far.
From a practical point of view one can conclude that relevance learning in gen-
erally improves the classification accuracy of the algorithm and can be used to
distinguish class specific input dimensions from less important features, which
directly supports the search for biomarker candidates. Local relevance learn-
ing gives only small additional improvements for the prediction accuracy but
can be useful to identify class specific properties of the data. Finally the fuzzi-
ness introduced in FSNPC and by FLNG gives the algorithm an additional
freedom in determining the number of prototypes spend to a class. In case of
FLNG one is now further able to support fuzzy labeled data as well, which
allows the clinicians to keep the diagnosis fuzzy if necessary instead making
it unnecessary strict. The presented prototype based classifiers are applicable
also in non-clinical domains but they show some properties which make them
very desirable in the context of clinical applications. The prototype approach
generates simple easy interpretable models leading to group specific proteom
profiles in case of proteomic data. The supported relevance learning allows a
ranking of the importance of the individual input dimensions with respect to
the classification task and can therefore be used to determine biomarker can-
didates. Also in the context of life long learning prototype based approach are
well suited because they can be easily retrained if new (clinical) data become
available. The new fuzzy properties are a further benefit for questions with
unsafe labeled data or fuzzy decision processes as they often occur for clinical
experiments.
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