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Prototype based classifiers are effective algorithms in modeling classification problems and have been ap-
plied in multiple domains. While many supervised learning algorithms have been successfully extended
to kernels to improve the discrimination power by means of the kernel concept, prototype based classi-
fiers are typically still used with Euclidean distance measures. Kernelized variants of prototype based
classifiers are currently too complex to be applied for larger data sets. Here we propose an extension of
Kernelized Generalized Learning Vector Quantization (KGLVQ) employing a sparsity and approximation
technique to reduce the learning complexity. We provide generalization error bounds and experimental
results on real world data, showing that the extended approach is comparable to SVM on different public
data.

1. INTRODUCTION

The dramatic growth in data generating applica-

tions and measurement techniques has created many

high-volume and high-dimensional data sets. Most

of them are stored digitally and need to be effi-

ciently analyzed to be of use. Clustering and clas-

sification methods are very important in this set-

ting and have been extensively studied in the last

decades 17,35,33,1,24,36,10. Challenges are mainly in

the timely, memory efficient and accurate processing

of such data also in the case of non linearly separable

data with multiple thousand items.

Kernelized learning vector quantization

(KGLVQ) was proposed in the approach28 as an

extended approach of Generalized Learning Vector

Quantization (GLVQ) 29 with the goal to provide

modeling capabilities for learning vector quantiz-

ers and to improve the performance in classification

tasks. While the approach was quite promising it

∗corresponding author



Efficient kernelized prototype based classification

has been used only rarely due to its complexity. One

challenge is the storage of a large kernel matrix and

additionally the storage and update of a combinato-

rial coefficient matrix Ψ, implicitly representing the

prototypes. This makes the approach inapplicable

already for data with a comparably small number of

items.

Data analysis using kernel methods is an active

field of research 3,6,25 offering solutions for the analy-

sis of complex problems. The involved kernel matrix

needs, in its original form, quadratic space with the

number of samples and involves usually cubic time

complexity which can be quite demanding for large

problems. This pose a big challenge on practical ap-

plications.

Modern approaches in discriminative ker-

nel based learning like Sequential Minimal

Optimization27 and other try to avoid the direct

storage and usage of the full kernel matrix or re-

strict the underlying optimization problem to sub-

sets thereof27,35,37. For the KGLVQ approach such

a strategy has not been proposed so far.

The Nyström-Approximation of Gram matrices

constitutes a classical approximation scheme 41,22,

permitting the estimation of the kernel matrix by

means of a low dimensional approximation. We will

employ this method for the approximation of the

distance calculations based on the kernel matrix as

the key element of our accelerated kernelized GLVQ

(AKGLVQ). A further issue with kernel methods is

the model complexity by means of the stored data

points. In case of the well known support vector

machine (SVM) 38, these are the so called support

vectors (SV). The number of SVs can become quite

large for complex problems. Novel learning methods

for the SVM try to shrink this value 19.

In case of KGLVQ the prototypes are implicitly

modeled by a coefficient matrix over all data points

which is typically dense. This however is not neces-

sary for most data sets.

Sparsity is a natural concept in the encoding of

data 26 and can be used to obtain compact sparse

models. This concept has been used in many ma-

chine learning methods 21,16 and different measures

of sparsity have been proposed 26,16. Taking this

into account we propose to integrate a sparsity con-

straint into KGLVQ allowing the explicit control of

the sparsity of the coefficient matrix.

Both optimization concepts, Nyström and spar-

sity, are used to improve the complexity of KGLVQ

such that it becomes applicable for large data sets.

In Sec. 2 we present a short introduction into ker-

nels and give the notations used throughout the pa-

per. Subsequently we present the KGLVQ algorithm

and its approximated variant AKGLVQ by means of

the Nyström approximation and the additional spar-

sity constraint. We show the efficiency of the novel

approach for experiments on artificial and real life

data. Finally, we conclude with a discussion.

2. PRELIMINARIES

We consider a set of vectors vi ∈ XD with XD ⊆
RD, D denoting the dimensionality and |X| = N the

number of samples. Further we introduce prototypes

wj ∈ WD, with |WD| = M which induce a cluster-

ing of XD by means of their receptive fields consist-

ing of the points v for which d(v,wj) ≤ d(v,wl)

holds for all j 6= l and d denoting a distance mea-

sure, typically the Euclidean distance. Further we

introduce c(v) ∈ L as the label of input v, and c(w)

as the label of the prototype w, respectively. L de-

notes the set of labels (classes) with #L = NL. Let

Wc= {wl|c(wl) = c} be the subset of prototypes as-

signed to class c ∈ L.

We also introduce two special notations for the

prototype which is closest to a given point vi with

the same label: w+ or a different label: w−. The

corresponding distance d+i , d−i :

d+i = d(w+,vi) with w+ ∈Wc, c = c(vi), (1)

w+ := wl : d(vi, wl) ≤ d(vi, wj), {wj ,wl} ∈Wc(2)

d−i = d(w−,vi) with w− 6∈Wc, c = c(vi) (3)

w− := wl : d(vi, wl) ≤ d(vi, wj), {wj ,wl} 6∈Wc

Equation (2) is sometimes also referred as the winner

takes all (wta) rule restricted to the w of the same

class as v.

Complex data are often not linearly separable in

the Euclidean space and it was suggested to map the

data X into a high dimensional Hilbert space H using

a mapping function φ : X → H to separate the data

in a linear manner 33. The explicit definition of an
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appropriate mapping φ can be complex for the high-

dimensional feature space. As pointed out in 33 this

explicit formulation is often not necessary, if we are

able to express the calculation in our learning algo-

rithm by means of inner products. If we have a pos-

itive semi-definite inner product function κ (v,v′),

fulfilling the Mercer conditions we can expand it by

means of its eigenvalues and eigenfunctions:

κ (v,v′) =

∞∑
i

λiφi(v)φi(v
′) = 〈φ (v) , φ (v′)〉F (4)

Now we can express the inner products in the fea-

ture space based on the kernel function κ calculated

in the Euclidean space using e.g. a Gaussian kernel

κ (v,v′) = exp(−‖v−v′‖2/σ2) 8. The calculation in

the GLVQ can be done based on inner products such

that (4) is applicable as used to derive the KGLVQ28.

3. ALGORITHM

Learning vector quantization (LVQ) is a super-

vised learning scheme. It was introduced as a generic

concept for intuitive prototype-based classification

algorithms 20. Several variants were developed to

improve the standard algorithms 13,29,34. LVQ al-

gorithms are based on the empirical risk minimiza-

tion (ERM) principle and describe the data space by

means of prototypical representants (vectors), which

are in general elements of the original data space.

The main benefit, beside of its good generalization

performance 14, is the direct access to the model

constituents by means of the prototypes. The pro-

totypes can be directly inspected and provide hu-

man interpretable information about typical aspects

of the represented data classes.

Generalized Learning Vector Quantization

(GLVQ) is an extension of the standard LVQ pro-

viding a cost function 29 recently extended in two

kernelized variants 28,31. It is a margin optimization

method 7 and can inherently deal with multi class

data. Moreover, it is effective also under different

distance measures and objectives 11. The kernelized

variants of GLVQ, namely KGLVQ and differen-

tiable kernelized GLVQ (D-KGLVQ) are effective

extensions of the original GLVQ concept but suffer

from its high complexity or limitations regarding

the kernel choice 31. Subsequently, we briefly review

the concepts of GLVQ and KGLVQ which will be

extended, by two optimization techniques, yielding

AKGLVQ later on.

3.1. Standard GLVQ

The cost function for GLVQ is given as

E = CostGLVQ =

N∑
i

µ(vi) µ(vi) =
d+i − d

−
i

d+i + d−i
(5)

which is optimized with respect to the free param-

eters (here the prototypes), by stochastic gradient

descent. Note that the classifier function µ(v) is

positive if the vector v is misclassified and negative

otherwise.

The learning rule of GLVQ is obtained taking the

derivatives of the above cost function with respect

to the parameters w. Using ∂µ(vi)
∂w+ = ξ+

∂d+i
∂w+ and

∂µ(vi)
∂w− = ξ−

∂d−i
∂w− with†

ξ+ =
2 · d−i

(d+i + d−i )2
ξ− =

−2 · d+i
(d+i + d−i )2

(6)

one obtains for the weight updates 12:

4w+ = ε+ · ξ+ · ∂d
+
i

∂w+
4w− = ε− · ξ− · ∂d

−
i

∂w−
(7)

with ε+/− as learning rates, which are typically in

the range of 10−5.

3.2. Kernelized GLVQ

We now briefly review the main concepts used

in Kernelized GLVQ (KGLVQ) as given in the pa-

per of Qin28. The KGLVQ makes use of the same

cost function as GLVQ but with the distance calcu-

lations done in the kernel space. Under this setting

the prototypes cannot explicitly be expressed as vec-

tors in the feature space due to lack of knowledge

about the feature space. Instead Qin28 models the

feature space as a linear combination of all images

φ(v) of the datapoints v. Thus a prototype vector

may be described by some linear combination of the

†Divisions including vectors are used element-wise throughout the paper.
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feature vectors: wj =
∑N
l=1 ψj,lφ(vl), ψj ∈ RN is

the corresponding coefficient vector. The distance in

feature space for a given φ(vi) and wj is computed

as:

d2i,j = ‖φ(vi)−wj‖2 = ‖φ(vi)−
N∑
l=1

ψj,lφ(vl)‖2

= k(vi,vi)− 2

N∑
l=1

k(vi,vl) · ψj,l (8)

+

N∑
s,t=1

k(vs,vt) · ψj,sψj,t

The update rules of GLVQ can be modified by sub-

stituting the Euclidean distance by Equation (8) and

taking derivatives with respect to the coefficients

ψj,l. The detailed equations are available in 28, a sim-

plified version for the coefficient update is given later

on. The final model consists of the pre-calculated

kernel matrix and the combinatorial coefficient ma-

trix for the ψ coefficients.

3.3. Approximation of the kernel matrix by

Nyström

As pointed out in the paper of Zhang41, different

strategies have been proposed to overcome the com-

plexity problem caused by the kernel matrix K in

modern machine learning algorithms. One promis-

ing approach is the Nyström approximation.

It originates from the numerical treatment of in-

tegral equations of the form
∫
P(y)k(x, y)φi(y)dy =

λiφi(x) where P(·) is the probability density func-

tion, k is a positive definite kernel function, and

λ1 ≥ λ2 ≥ . . . ≥ 0 are the eigenvalues with φ1, φ2, . . .

the respective eigenfunctions of this integral equa-

tion. Given a set of i.i.d. samples {x1, . . . , xq} drawn

from P(·), the basic idea is to approximate the inte-

gral by the empirical average

1/q

q∑
j=1

k(x, xj)φi(xj) ≈ λiφi(x)

which can be written as the eigenvalue decomposi-

tion: Kφ = qλφ. Kq×q = [Ki,j ] = [k(xi, xj)] is the

kernel matrix defined on X, and φ = [φi(xj)] ∈ Rq.

Solving this equation we can calculate φi(x) as

φi(x) ≈ 1/(qλ)

q∑
j=1

k(x, xj)φi(xj)

which is costly. To reduce the complexity, one may

use only a subset of the samples which is commonly

known as the Nystöm method.

Suppose the sample set V = {vi}Ni=1, with the

corresponding N×N kernel matrix K. We randomly

choose a subset Z = {zi}qi=1,Z ⊂ V, q << N of land-

mark points and a corresponding kernel sub matrix

Qq×q = [k(zi, zj)]i,j . We calculate the eigenvalue

decomposition of this sub matrix: Qφz = qλzφz and

obtain the corresponding eigenvector φz ∈ Rq and

the eigenvalue qλz. Subsequently we calculate the

interpolation matrix K̂N×q = [k(vi, zj)]i,j to extend

the result to the whole set V . We approximate the

eigen-system of the full KφK = φKλK by 39:

φK ≈
√

q

N
K̂φZλ

−1
Z , λK ≈

N

q
λZ.

K can be subsequently reconstructed as

K ≈
(√

q

N
K̂φZλ

−1
Z

)(
N

q
λZ

)(√
q

N
K̂φZλ

−1
Z

)′
= K̂Q−1K̂′

To integrate the Nyström approximation into

KGLVQ we only need to modify the distance cal-

culation between a prototype wj and a data point vi

which can be expressed using the Nyström approxi-

mation. In KGLVQ the prototypes are expressed by

means of a linear combination of the datapoints in

the feature space as shown in 28. Hence it is sufficient

to update the coefficients of this linear combination.

The original update equation for the coefficient ma-

trix in KGLVQ read as:

ψt+1
±,r′ =


[1∓ ε · 4·d∓i

d±i +d∓i
] · ψt±,r′ if vr′ 6= vi

[1∓ ε · 4·d∓i
d±i +d∓i

] · ψt±,r′

+ε · 4·d∓i
d±i +d∓i

if vr′ = vi

with t + 1 indicating the coefficient ψ after the up-

date. A single prototype update has a complexity

of O(N2), due to the double sum in (8). The in-

dex or superscript ± corresponds to the prototype

with the same (+) or different (−) label as the data

point vi as already defined previously. The point
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vi is the current point used in the iterative gradi-

ent descend optimization. The index r′ refers to the

considered datapoint in the linear combination (the

column index of Ψ). The KGLVQ update above is

almost identical for the AKGLVQ but the distance

calculations are done using the Nyström approxima-

tion with Equation (9):

d·,i = K(i, i)− 2 · T·,i + diag(Ψ · T ′) (9)

with Tj,· = ((ψj · K̂) ·Q−1) · K̂′ (10)

where diag provides diagonal elements of the asso-

ciated matrix. Using Nyström-approximation, the

complexity in AKGLVQ is reduced to O(q3 + qN),

caused by the SVD (for some recent work on SVD

see18) to calculate the inverse of the matrix in the

Nyström-approximation and the remaining distance

calculation costs 39.

3.4. Sparse coefficient matrix

In the paper of Olshausen26, sparsity has been

found to be a natural concept in the visual cortex of

mammals. This work motivated the integration of

sparsity concepts into many machine learning meth-

ods to obtain sparse and efficient models. Here we

will integrate sparsity as an additional constraint on

the coefficient matrix Ψ such that the amount of

non-zero coefficients is limited. This leads to a more

compact descriptions of the prototypes, by means of

a smaller linear mixture model. The used sparsity

measure is the one as given in Olshausen26. The

sparsity S of a row of α is measured as

S(ψj) = −
N∑
l=1

S

(
ψj,l
σ

)
(11)

with σ as a scaling constant. The function S can

be of different type, here we use S(x) = log(1 + x2).

We extend the energy function of the KGLVQ by an

additional term:

EAKGLVQ (γ) = EKGLVQ (γ)− βS(ψj) (12)

The updates for the coefficients of wi are structurally

similar to those given in the standard KGLVQ using

the Nyström formula to approximate the Gram ma-

trix but include the additional term

∂S
∂ψj,l

= − 2/σ2 · ψj,l
1 + (ψj,l/σ)

2 ,

we restrict the coefficients to be ψj,i ∈ [0, 1] and

bound them by
∑
i ψj,i = 1.

The effect of the sparsity constraint in AKGLVQ

on the UCI iris data 4 with one prototype per class is

shown in Figure 1. Both models achieve an accuracy

of ≈ 90% using a linear kernel. The sparsity con-

straint effectively helps to reduce the necessary mem-

ory of the matrix Ψ. Yet, the associated parame-

ters have to be chosen adequately to balance sparsity

and classification accuracy. The sparsity constraint

could also be used to speed up the algorithm, by ex-

plicit omit operations involving multiplications with

zero. This, however, requires a very careful and effi-

cient implementation of the sparsity handling which

is not easily accessible within the used runtime Mat-

lab. During the classification step a sparse matrix Ψ

can significantly limit the number of distance calcu-

lations necessary to map a new item in the feature

space and to calculate the distance to a prototype.

In the worst case with a dense matrix Ψ we get linear

complexity O(M × N) to calculate the inner prod-

ucts for a new point, whereas a sparse matrix Ψ will

typically scale in constant complexity O(k×M), as-

suming e.g. a k-approximation of the prototypes.

3.5. Generalization ability of KGLVQ

It has been shown in the approaches 7,32 that gen-

eralization bounds for LVQ schemes can be derived

based on the notion of the hypothesis margin of the

classifier µ, independently of the input dimensional-

ity. Rather the margin, i.e. the difference of the dis-

tance of points to its closest correct and wrong proto-

type, determine the generalization ability. This fact

makes the algorithm particularly suitable for kernel-

ization: essentially, the generalization ability trans-

fers directly to the kernel version because of the fixed

implicit embedding into the feature space. Thereby,

large margin bounds are of particular interest due to

the usually high dimensionality of the feature space.

Bounds which depend on the number of free param-

eters would likely yield very weak bounds in such

cases. For GLVQ as a large margin approach, a

straightforward transfer of the bounds as provided

in the approaches 7,32 based on techniques as given

in the article 2 is possible.
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Figure 1: Effect of the sparsity constraint for the UCI iris data shown by means of the Ψ-matrix (normalized
for better comparison). With sparsity (left), without sparsity right. Dark values indicated high loaded or high
lighted data points for the considered prototype in the Ψ matrix. Data points with very low values over all
prototypes can be safely removed from the model.

For convenience, we shortly review the setting as

formalized e.g. in the derivation 32. For simplicity,

a classification by a kernelized prototype-based net-

work into two classes is considered. We label proto-

types corresponding to the two classes with + and −,

respectively. Classification takes place by a winner

takes all rule (2), i.e., taking the kernel into account,

a data point is mapped to the class

f : v 7→ sgn

(
min
w+
‖Φ(v)−w+‖ −min

w−
‖Φ(v)−w−‖}

)
(13)

where sgn selects the sign of the term. A trainable

KGLVQ network corresponds to a function f in this

class with M prototypes. We can assume that data

v are bounded in size. Thus, also the images Φ(v)

and the possible location of prototype vectors are

bounded in size, we refer to the bound by B.

As usual, generalization bounds aim at limiting

the generalization error EP (f) = P (f(v) 6= c(v))

where P refers to a (probably unknown) probability

distribution P . The margin of the classification is

obtained by dropping the sign in (13) leading to the

related function Mf . For a fixed positive value of the

margin ρ and the associated loss

L : R→ R, t 7→

 1 if t ≤ 0
1− t/ρ if 0 < t ≤ ρ
0 otherwise

a connection of the generalization error and the em-

pirical error on m samples

ÊLm(f) =

m∑
i=1

L(cv ·Mf (v))/m (14)

can be established with probability δ > 0 simultane-

ously for all functions f using techniques of 2:

EP (f) ≤ ÊLm(f) +
2

ρ
Rm(MF ) +

√
ln(4/δ)

2m

Rm(MF ) denotes the so-called Rademacher com-

plexity of the class of functions implemented by

KLVQ networks with function Mf . The quantity

can be upper bounded, using techniques of 32 and

structural properties given in 2, by a term

O

(
N2/3B3 +

√
ln(1/δ)√

m

)
The quantity B depends on the kernel and can be es-

timated depending on the data distribution. Thus,

generalization bounds for KGLVQ with arbitrary

kernel result which are comparable to generalization

bounds for GLVQ. Note that the only difference as

compared to the derivation as provided in 32 consists

in the fact that data are implicitly embedded in the

feature space such that B depends on the given data

points and the kernel.

4. EXPERIMENTS

We analyze our approach using artificial and real

life data. The simulated data shall be considered as a

toy data set to show the possibility to deal with non-

linear separable data distributions, which is a typi-

cal application field of kernel methods. Subsequently

we provide some analysis for very well known stan-

dard test data, followed by more complicated data
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sets which can not be processed by KGLVQ under

reasonable time and memory settings. It should be

pointed out that KGLVQ can be applied to very dif-

ferent types of problems, ranging from life-science

data 40 to e.g. image processing tasks 23, as long as

a valid kernel can be provided.

4.1. Simulated data

We start with the non-linear separable ring data

set (DS1) and an RBF kernel in the distance mea-

sure. The data consist of 800 data points with 400

per ring in 2 dimensions as shown in Figure 2. The

first ring has a radius of r = 10 and the second r = 4,

points are randomly sampled in [0, 2π]. The data set

has been normalized inN(0, 1). We also analyzed the

ring data using the additional sparsity constraint. In

the original model 53% of the weights, averaged over

the prototypes are almost 0 (values ≤ 1e − 5). In

the sparsity approach we used σ2 as the variance of

the data scaled by 0.01 and a β = 1 and obtained

a much sparser model with now 75% of the points

close to zero.

4.2. Small sample size data

Now we present a comparison for 3 benchmark

datasets taken from the UCI repository 4, namely the

breast cancer data (wdbc), a diabetes study (pima)

and the heart data set, used to predict a heart dis-

ease. All these data sets are two class examples with

N < 1000, details are given in Table 1.

We analyze the performance of KGLVQ,

AKGLVQ and SVM using the recently proposed Ex-

treme Learning Kernel (ELM) 9. The ELM kernel

is actually a defacto parameter free kernel with the

same classification performance as the RBF kernel

with optimal σ 9, it has been fixed to 1e10 in this

study. SVM models are obtained by use of a Sequen-

tial Minimization Optimization (SMO) optimizer as

proposed in 27 and the ELM kernel.

All AKGLVQ and KGLVQ models are obtained

with 1 prototype per class, using C = 100 cycles and

with a nyström approximation of q = 0.1 × N of

the original kernel matrix for the AKGLVQ variant,

sparsity was switched off. The value of the nyström

approximation is not so critical but should be not

lower than 10% to keep sufficient approximation ac-

curacy. It has mainly an influence on the runtime

performance as long as the data space is sufficiently

densely sampled.

The results of AKGLVQ compare favorable in

comparison to KLVQ or SVM but especially the

runtime is significantly improved with respect to

KGLVQ see Table 1. We find that the prediction per-

formance of AKGLVQ and KGLVQ are quite similar,

and both are competitive to SVM. KGLVQ however

is not really applicable for larger data sets due to the

costly distance calculations using the full kernel.

4.3. Complexity and runtime analysis

The original KGLVQ algorithm employs a full,

quadratic kernel matrix in the distance calculations

and is optimizing the M × N coefficient matrix

Ψ. The selected underlying iterative optimization

scheme is gradient descend. The optimization is done

for C cycles as an upper limit and often independent

of the data chosen as C = 100. The number of pro-

totypes is typically chosen independent to the real

data set size and in general much smaller than N ,

such that the memory complexity of Ψ is linear in

O(M × N). Taking this into account KGLVQ has

a memory complexity of roughly O(N2). Each dis-

tance calculation involves matrix/vector operations

with a N2 matrix which has to be done for all N data

point and for C cycles. Hence the runtime complex-

ity is in the range of O(N3).

The AKGLVQ algorithm provides two ap-

proaches to optimize runtime and memory complex-

ity, namely the Nyström approximation and the

sparsity constraint as pointed out before. Using the

Nyström approximation the memory complexity of

the kernel matrix is reduced to O(q×N). Hence the

necessary memory to store the kernel matrix as well

as the number of matrix operation is directly reduced

depending on q. For most data sets it is reasonable

to set q to a small fraction of N e.g. 10%. The mem-

ory complexity of the matrix Ψ is unaffected. This

leads to an estimated linear memory consumption of

O((q +M)×N). To obtain the two matrices of the

Nyström approximation a (pseudo) inverse has to be

calculated and for the Nyström based distance cal-

culation additional multiplications by a q×N matrix
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Figure 2: Ring data set (1st plot), KGLVQ model (2nd plot), the outer ring is shown in red and using ’o’ while
the inner ring is plotted in blue ?. The 3rd plot shows the cluster boundaries of the model from the 2nd plot. The
model was calculated without sparsity. It can be clearly seen that the AKGLVQ with an rbf kernel successfully
separated these two clusters and also the cluster boundaries are very well approximated with a large margin
between the two rings.

Dim Size KGLVQ AKGLVQ SVM
#PT #PT #SV

Breast Cancer 32 569 92.97±01.87 2 92.27±03.43 2 97.71±01.45 512
Diabetes 8 768 71.88±04.79 2 71.56±06.19 2 76.42±04.20 691
Heart 13 270 81.85±05.91 2 81.11±06.16 2 84.07±08.38 243

Table 1: Generalization accuracy and model complexity (averaged) for the datasets. The AKGLVQ makes use
of the Nyström approximation with 10% of the distances, sparsity has been switched off. The memory used to
store the kernel matrix for AKGLVQ is ≈ 95% less then for KGLVQ and a speedup of 2 to 7 could be observed
in average. The generalization of AKGLVQ is almost the same like for KGLVQ and is also quite good compared
to SVM. #PT refers to the number of prototypes, whereas #SV provides the number of support vectors in the
final model.

from both sides are necessary. This leads to a linear

runtime complexity of O(q3 + qN). The full run-

time complexity of AKGLVQ is however quadratic

because the operations have to be done for all N

data points, so we finally get a quadratic setting of

O(N2). A runtime analysis of the ring data set with

a maximum number of 3000 point is depicted in Fig-

ure 3.

By employing the new sparsity measure it is also

possible to reduce the complexity of the model and to

reduce the amount of memory necessary to store Ψ.

The associated parameter β can be estimated by a

cross-validation scheme on a sub set of the data using

a grid search within a reasonable range of [0, . . . , 50].

In Figure 4 the effect of the sparsity approach with

respect to prediction accuracy on a test set and the

time complexity is shown. The accuracy and mem-

ory complexity is given in % whereas for the time

complexity the maximal necessary time is normalized

to 1 to allow for better comparison. Using the spar-

sity constraint and sparse matrices the initial amount

of necessary memory is higher than without sparsity

due to the overhead caused by the management of

sparse matrices. The sparsity constraint is not a hard

control parameter for the memory complexity of the

model hence it is not possible to provide theoretical

guarantees of the memory consumption.

Analyzing Figure 4 we observe that the predic-

tion accuracy is smoothly decreasing with increased

β. The optimal β value is around β = 19 with around

79% accuracy and 40% less consumed memory. An

analysis of the other data sets showed that, as ex-
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Figure 3: Runtime analysis of AKGLVQ using an extended ring data set for different values of q in the Nyström
approximation. The number of samples is changed within 100 − 3000 on the x-axis, with the relative runtime
given on y. The different curves are obtained by changing the Nyström approximation from 10% - 100%. The
KGLVQ curve is given with o on the sampling points.
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Figure 4: Complexity analysis of AKGLVQ using the sparsity constraint for the heart data set (profiles are
similar for the other data sets). The measures are calculated from the observed training model, the memory
consumption refers to the matrix Ψ only.
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pected, the β parameter is data set specific. It should

be optimized based on an independent test set and

used to balance accuracy and model complexity.

As an overall observation we found that the run-

time of the algorithm is increased by around 20%

using the sparsity measure due to additional nor-

malization steps and the effort to manage the sparse

matrices. Considering the prior analysis it is obvi-

ous that the sparsity constraint can not directly used

to speedup the learning time or to reduce (continu-

ously) the consumed memory. Instead it should be

used to simplify the final model. This is especially

relevant if we focus on interpretable models and a

small number of non-vanishing coefficients provides

easier access to the interpretation of the prototypes,

analyzing the linear combination.

4.4. Medium sample size data

In a further study we analyze the accelerated

KGLVQ and SVM on medium and large data sets

with multiple thousand samples. Thereby we make

use of the UCI spam-data set4 which contains mea-

surements to predict if a obtained email is to classify

as spam. Further we use the usps-data set, contain-

ing 16 × 16 gray-scale images of handwritten digits,

provided in15 and the CMU faces-data from the UCI

database 4, which contains 640 b/w images of people

taken with varying pose, expression, eyes presenta-

tion and size. The later two are multiclass data sets.

The standard KGLVQ can not any longer be ap-

plied for these data under valid settings, without sig-

nificant sub-sample selections on the training data,

which has a negative impact on the results. For the

USPS data we took a commonly used subset of 2000

samples randomly sampled. All results are obtained

in a 10-fold cross validation using the ELM kernel

with 100 cycles for AKGLVQ. Multiclass classifica-

tion for SVM was done using a 1 vs rest scheme.

Results are shown in Table 2.

We observe that the AKGLVQ was quite efficient

in modeling the given problems but the prediction

performance is significantly lower than the one ob-

tained by SVM also the overall runtime is worse than

that of SVM which is typically a magnitude faster

than AKGVLQ. However we would like to point out

again that our objective is to improve kernel based

prototype methods, namely KGLVQ rather to com-

pete directly with SVM. The most interesting prop-

erty of prototype classifiers may not be the prediction

accuracy, although it is quite good in general, but

more the interpretability and other aspect as shown

in the following.

The higher runtime complexity of AKGVLQ is

expected because it is an online learning algorithm

in contrast to SVM. AKGLVQ still scales quadratic

as pointed out before, if no additional techniques

like active learning 30 are employed, which however

does not provide guarantees. On the other hand

this also allows an easy retraining in case of novel

data which is not directly accessible using SVM ap-

proaches. Interestingly the quite good prediction re-

sults of AKGLVQ are already obtained with very

few prototypes leading to compact models. An in-

crease of the number of prototypes up-to a factor of

10 does not change the prediction accuracy signifi-

cantly. SVM however has used at least 10% of the

data or like for the USPS data the whole training

data set, making the model very complex.

The KGLVQ and its approximated variant are

prototype based methods and the prototypes are

constructed by means of a linear combination of the

data points in the coefficient matrix Ψ. By analyzing

the coefficient matrix Ψ of the models shown in Ta-

ble 2, it is possible to identify items from the original

data set which are considered to be most characteris-

tic and important for the voronoi cell generated by a

specific prototype, this is in contrast to SVM models

because their model parameters are extreme points

rather prototypes. For the USPS dataset which con-

sists of digit images and the faces data set with im-

ages of faces it is possible to obtain direct reconstruc-

tions of the prototypes which can be easily visualized

and interpreted. In Figure 6 the visualizations of the

digits ′0′,′ 2′,′ 8′ are shown using either the median of

the class, the prototype reconstruction or the median

support vector reconstruction for support vectors of

the corresponding class.

Figure 5 shows different digits of the USPS data

set 5. The Figure has been regenerated as described

in 5 for the public available USPS data set using

the NeXOM algorithm, which is a specific variant of

neighborhood embedding, comparable e.g. to Multi-
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Figure 5: Different USPS symbols in a two dimensional projection using the NeXOM algorithm.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Reconstruction of digit representants. The first row shows reconstructions of the digit ′0′, the second
of the digit ′2′ and the last of the digit ′8′. The plot (a) is always the median image of the corresponding class,
(b) the learned prototype representation, (c) the support vector reconstruction.
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#C Dim Size AKGLVQ AKGLVQ-Complexity SVM SVM-Complexity
ø-T #PT ø-T ø-#SV

Spam 2 57 4601 86.57± 02.64 130.73 0.43% (2) 91.92± 02.01 00.56 33.13% (469)
USPS 10 256 2000 81.70± 01.55 18.95 2.22% (40) 91.35± 02.46 00.32 100% (1800)
Faces 20 15360 640 81.09± 06.39 01.20 3.47% (20) 94.84± 03.83 00.67 10.95% (63)

Table 2: Generalization accuracy and model complexity (averaged) for the small datasets. ø − T refers to the
mean runtime in minutes, #PT denotes the number of prototypes and #SV the number of support vectors,
respectively. Note that the complexity values are calculated with respect to the training data.

(a) (b) (c)

Figure 7: Reconstruction of faces representants for one of the faces classes. The plot (a) is the median image of
the corresponding class, (b) the learned prototype representation, (c) the support vector reconstruction.

Dimensional Scaling (MDS)15‡. Analyzing the USPS

data for the digits ′2′ and ′8′ we find that the cross-

ings of the arcs are quite well defined independent

of the specific writer but the position of the arcs in

the outer regions of the digit differ. This is reflected

by the median reconstructions, plots (a) which show

holes for these regions. In contrast the learned proto-

types for ′2′ and ′8′ do not suffer from this error but

show a more realistic, prototypical representation of

the digit. For the SVM we would expect that the

items at the decision borders are pronounced most,

such that the most atypical items are represented.

Indeed the plots (c) appear to be quite blurred and

are hard to interpret. For the digit ′0′ one observes

that the median and prototype reconstruction are

almost identical, which is caused by a strong homo-

geneity in the data. The rare abnormal ′0′s in the

data are either wrong oriented, with an open loop,

very tight or almost without the hole, appearing as a

bold blot. These examples are selected by the SVM

as the model parameters and hence the reconstruc-

tion in (c) is hard to interpret as well§.

For the faces data, exemplary results are shown

in Figure 7. The shown person moved the head in

the different recordings, so more or less only the

background and the body shape are stable. This

is reflected by all reconstructions. The median plot

(a) shows the raw shape of the person but the face

is blurred. The prototype reconstruction (b) is less

blurred and reflects also the movement of the head,

showing also traces of the turned heads in the image.

The prototype is actually so accurate that also the

sun-glasses and the lips, nose and ears can be iden-

tified. The reconstruction of the SVM (c) is again

hard to interpret. The raw shape is preserved but

the shown picture is clearly not representative but

more a mixture of the abnormal cases in the data, as

expected.

Considering the model complexity we find that

with very few prototypes for all datasets the

AKGLVQ performs quite well. Using the Nyström

approximation the memory consumption of the ker-

nel matrix can be substantial reduced such that

AKGLVQ becomes an interesting, efficient and pro-

totype based complement to SVM. This is especially

interesting if an interpretable prototype of a class is

‡The picture is not identical but similar due to random effects in the initialization of NeXOM
§The SVM model of the USPS data contains all points, because all α-weights are significant different from 0, but the extreme symbols
have the largest α weights.
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needed like for image retrieval systems to label the

underlying data by a typical image. Also in other

cases of interpretable data like clinical recordings,

the prototypical model parameters are much easier

accessible for the domain expert. It also helps to get

a better understanding of the information encoded

in the model. If the model fails to classify specific

items in the data or assigns them constantly to one

wrong class, the prototype can help to interpret the

reason for this. In that way the system can be im-

proved by incorporating additional knowledge in an

user interactive manner.

Overall we found that AKGLVQ is now capable

to learn also very complex data sets with multiple

1000 of items and due to the Nyström approxima-

tion and the integrated sparsity constraint the mem-

ory complexity of the model is quite low. AKGLVQ

allows, like all prototype methods, explicit control

over the model complexity by specifying the number

of prototypes. For the considered data the prediction

accuracy of AKGLVQ was similar to that of KGLVQ

but with a significant reduced model complexity and

a substantial speed up in the calculations. In com-

parison to SVM the AKGLVQ models are very com-

pact but were less efficient in prediction for the large

data set while comparable effective for the exper-

iments with the more simple data. The obtained

prototypes of the KGLVQ- and AKGLVQ-model are

much easier to interpret, whereas for SVM the model

is less informative.

5. CONCLUSIONS

In this paper we proposed an extended variant
of kernelized learning vector quantizer with a sig-
nificantly reduced model complexity through the in-
tegration of the Nyström method and sparse learn-
ing. The obtained models use much less memory
due to a compact, approximated kernel representa-
tion and a sparse coefficient matrix Ψ. Further we
compared the efficiency of our new approach with
KGLVQ and SVM considering prediction accuracy,
model complexity and interpretability. We found
that the generalization capability of AKGLVQ is sim-
ilar to those of KGLVQ and less to SVM. AKGLVQ
is much quicker than KGLVQ and needs markable
less memory. AKGLVQ and KGLVQ provides in-
terpretable models in contrast to SVM. If not only
prediction accuracy but also compactness and inter-

pretability matters AKGLVQ provide an interesting
alternative to the considered standard kernel learn-
ing methods and is now applicable for medium-sized
sets of data, which was not possible before. One
very important subject of future works will be to
further decrease runtime and memory requirements
while parallel increase the prediction efficiency for
extremely large data sets.
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