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Abstract Soft competitive learning is an advanced k-means like clustering approach
overcoming some severe drawbacks of k-means, like initialization dependence and
sticking to local minima. It achieves lower distortion error than k-means and has
shown very good performance in the clustering of complex data sets, using various
metrics or kernels. While very effective, it does not scale for large data sets which is
even more severe in case of kernels, due to a dense prototype model. In this paper,
we propose a novel soft-competitive learning algorithm using core-sets, significantly
accelerating the original method in practice with natural sparsity. It effectively deals
with very large data sets up to multiple million points. Our method provides also an
alternative fast kernelization of soft-competitive learning. In contrast to many other
clustering methods the obtained model is based on only few prototypes and shows
natural sparsity. It is the first natural sparse kernelized soft competitive learning
approach. Numerical experiments on synthetical and benchmark data sets show the
efficiency of the proposed method.

1 Introduction

Clustering algorithms are successful unsupervised machine learning algorithms par-
titioning a data set into groups. They are able to deal with complex data sets by em-
ploying appropriate distance measures. Soft-Competitive-Learning (SCL), an exten-
sion of k-means, is a very effective clustering algorithm [10]. It has been success-
fully applied in different domains like time series prediction [10], image and signal
processing [8], bioinformatics and others. In [11, 12] different kernelizations and
improvements thereof were proposed, leading to models, competitive to e.g. kernel
k-means [15].
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Kernel clustering methods got much attention in the last years [3, 4]. The basic
idea of kernel methods is to map the low-dimensional data into a high-dimensional
feature space, induced by a kernel function, to obtain linear separability. For SCL
this is either done by directly kernelizing the original method [11], its batch variant
[7], or by using specific differentiable kernel-functions [13].

For other methods, e.g. kernel k-means, also the support vector description was
used [3], referred to as kernel-grower. Kernel grower is based on the classical k-
means algorithm and the one-class SVM concept. It maps the data to the kernel-
induced feature space and processes the data in an iterative strategy like k-means
until a stopping criterion is met. However, instead of computing the centers directly
based on the data it computes the smallest sphere enclosing the data by means of
the support vector data description (SVDD) [17]. While very effective and flexible
from a theoretical point of view it is inefficient for large data sets. Liang et al. [9]
proposed to use the core-set concept instead of SVDD in kernel-grower leading to
an efficient kernelized core-set clustering with linear complexity in the number of
points.

Kernel k-means and its extensions suffer from initialization dependence, which is
still subject of research [19]. These issues are fundamental in the k-means algorithm
and also kernel-grower and scaled kernel-grower are affected by this.

SCL provides an interesting alternative to achieve less initialization dependent
clustering solutions in a k-means like manner [10] but the kernelized approaches of
SCL like [11, 13] suffer from its high complexity. Kernel-SCL (KSCL) [11] repre-
sents the prototypes or cluster centers by a linear combination of the data points,
using a learned coefficient matrix. This coefficient matrix is typically dense such
that a lot of data points contribute to the representation of a prototype. Also acceler-
ations of kernel SCL and the introduction of additional sparsity costs in the kernel
SCL cost function (see [12]) still do not scale for (very) large data.
In this paper we propose a new algorithm for the kernelization of SCL by means of
the core-set technique, which we call core-SCL. The main innovation is to calculate
the center, or prototypes of a cluster by means of a small core-set of points which
can be efficiently identified by the core-set algorithm. However, the final centers are
not directly obtained from the core-set solution like in [9] but by calculating a soft
competitive learning solution as detailed in the following. In our algorithm the com-
petitive learning update has much lower complexity, because it is based only on a
typically very small set of points defined by the core-set solutions. The overall com-
plexity of our algorithm is still C×O(N) for a full training procedure, which is the
same as for classical SCL but the constant costs C are substantially lower, leading
to feasible runtime under practical conditions in contrast to the classical SCL. Core-
SCL permits the clustering of up to multiple million of points with linear complexity
and is less sensitive to initialization or local minima.

The obtained clustering model is finally based on the adapted core-set informa-
tion of each cluster. The number of core-set points is typically very small compared
to the original cluster size. The underlying coefficient matrix is more sparse com-
pared to KSCL. The cluster centers are determined using these few coefficients.
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We evaluate our new approach on synthetic and real life data and compare with
different alternative clustering techniques. The paper is organized as follows. In sec-
tion 2 and 3 we give some preliminary information, followed by a review of kernel
soft-competitive learning (kernel-SCL). Section 4 presents the core-SCL algorithm.
In section 5, an empirical evaluation on different benchmarking data are shown. We
conclude with an outlook and open problems in section 6.

2 Soft Competitive Learning

Let V = {v1, . . . ,vN} be a data set with vectors v j ∈ Rd , d denoting the dimension-
ality, N the number of samples. We call codebook the set W = {w1, . . . ,wn} with
each elements wi ∈Rd and n as the number of codebook vectors or prototypes. Typ-
ically n� N and scales in the expected number of clusters. vi are represented by
one prototype w j as explained in more detail subsequently. The prototypes induce a
clustering by means of their receptive fields which consist of the points v for which
d(v,wi)≤ d(v,wj) holds for all j 6= i, d(·, ·) denoting a distance measure, typically
the Euclidean distance.

Kernel methods are attractive approaches to analyze complex data which are not
linear separable e.g. in the Euclidean domain. The data are mapped using a non-
linear transformation function Φ : V →F into a potentially high-dimensional fea-
ture space where a linear separation of the data can be achieved. Typically this is
done implicitly using the so called kernel trick [14] and a kernel function.

A kernel function κ : Rd×Rd →R is implicitly induced by the feature mapping
Φ into some possibly high dimensional feature space F such that

κ (v1,v2) = 〈Φ (v1) ,Φ (v2)〉F (1)

holds for all vectors v1 and v2, where the inner product in the feature space is consid-
ered. Hence κ is positive semi-definite. Using the linearity in the Hilbert-space, we
can express dot products of elements of the linear span of Φ in the form ∑i αiΦ(vi)
and images Φ(v) via the form ∑i αiκ (vi,v). This property is used in [11], to derive
a kernelization of soft competitive learning but also many other prototype based
approaches have been extended by kernel concepts [4].

3 The Soft Competitive Learning Network

The SCL algorithm is a type of vector quantizer providing a compact representa-
tion of the underlying data distributions [10]. Its goal is to find prototype locations
wi such that these prototypes represent the data V , distributed according to P, as
accurately as possible, minimizing the energy function:
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ESCL (γ) =
1

C (γ,n)

N

∑
i=1

∫
P(v) ·hγ (vi,W) · (v−wi)

2 dv (2)

with neighborhood function of Gaussian shape:

hγ (vi,W) = exp(−ri (v,W)/γ) (3)

ri (v,W) yields the number of prototypes w j for which the relation d (v,w j) ≤
d (v,wi) is valid, i.e. the winner rank. C (γ,n) is a normalization constant depend-
ing on the neighborhood range γ . The SCL learning rule is derived by stochastic
gradient descent:

4wi = ε ·hγ (vi,W) · (v−wi) (4)

with learning rate ε . Typically, the neighborhood range γ is decreased during train-
ing.

We now briefly review the main concepts used in Kernelized Soft Competitive
Learning (kernel-SCL) proposed in [11]. Kernel-SCL optimizes the same cost func-
tion as SCL but with the Euclidean distance substituted by a distance induced by a
kernel. Since the feature space is unknown, prototypes are expressed implicitly as
linear combination of feature vectors

wi =
N

∑
l=1

αi,lΦ(vl) (5)

αi,· ∈ RN is the corresponding coefficient vector. The coefficient vector are stored
in a matrix Γ ∈ Rn×N . Distance in feature space for Φ(v j) and wi is computed as:

d2
i, j = ‖Φ(v j)−wi‖2 = ‖Φ(v j)−

N

∑
l=1

αi,lΦ(vl)‖2 (6)

= k(v j,v j)−2
N

∑
l=1

k(v j,vl) ·αi,l +
N

∑
s,t=1

k(vs,vt) ·αi,sαi,t (7)

The update rules of SCL can be modified by substituting the Euclidean distance
by the formula (6) and taking derivatives with respect to the coefficients αi,l . Fur-
ther, substituting the prototypes by linear combinations, the adaptation rule of the Γ

matrix becomes

α jl := α jl(1−ηhσ (ri j)) if l 6= i (8)
α ji := α ji(1−ηhσ (ri j))+ηhσ (ri j) (9)

For a Gram matrix, we can w.l.o.g. restrict the coefficients such that prototypes are
contained in the convex hull of the data points in the feature space, i.e. the coeffi-
cients are non-negative and sum up to one. It should be noted that the kernel-SCL
and its batch variant [7] have a complexity of O(N2), each. Both methods repre-
sent the prototypes by linear combinations of the data points. The coefficients αi j
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are stored in the matrix Γ which is typically dense. Therefore the distance calcu-
lations between a prototype and a datapoint requires almost all points due to the
reconstruction of the prototype via the linear combination.

4 Core Soft Competitive Learning

The notion of core-sets appears in solving the approximate minimum enclosing ball
(MEB) problem in computational geometry [1].

Definition 1 (Minimum enclosing ball problem). Let {v1, . . . ,vm} ∈ Rd a set of
points. The objective is to find a minimum enclosing ball with radius R and center
point c such that ‖c−vi‖2 ≤ R2 ∀i. Hence B(c,R) = {v|R≥ ‖c−v‖,v ∈V}.

As shown in [18], the MEB problem can be equivalently express as a quadratic dual
optimization problem:

MEB = min
αi≥0,∑αi=0

αKα
>−∑

i
αiK(i, i)

with K the kernel matrix defined on V

and c and v represented in a kernel space as shown before. The radius R is obtained
by solving R = ∑i αiK(i, i)−αKα>. The center is used only in the distance calcu-
lation which can be expressed using the kernel trick and the linear combination of c
based on the obtained α-vector, c = ∑i=1 αiφ(vi) as shown for kernel-SCL.

Definition 2 (Core set). Let S = {v1, . . . ,vk} ⊆ V , then Q ⊂ S is a core set, if S ⊂
B(c,(1+ ε)R) and B(c,R) = MEB(Q).

An encouraging property of core-sets is that the number of elements in it is indepen-
dent of the data dimensionality and size [1]. The main concepts involved in core-sets
are illustrated in Figure 1 (left).

The core-SCL algorithm can be calculated in the Euclidean space or using a
kernel-induced feature space. In the following we will present core-SCL for the
more generic case of arbitrary kernels. The core-SCL clustering is initialized by
specifying the number of prototypes n and an initial coefficient matrix Γ = n×N.
We initialize the matrix Γ randomly such that for each row (αi) two entries have
a value of 0.5. Further a learning rate and neighborhood cooperation is initialized
equivalently to the standard SCL and a copy of the Γ -matrix, Γ̂ is stored for later
use in the update. The αi encode the prototype positions using Equation (5). In
the learning phase the Γ -matrix is adapted such that the prototype positions are
optimized following the optimization scheme of SCL. The algorithm iterates the
following steps:

1. calculate the receptive fields using Eq. (6) with Γ̂

2. if the receptive field has not changed, continue with step 4
3. calculate the core-set for each receptive field using the algorithm of [1]
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4. calculate distances between W and all core-set points using Eq. (6)
5. calculate the corresponding neighborhood function using Eq. (3)
6. apply Eq. (8) to Γ using Γ̂ with respect to the core-set points
7. store Γ as Γ̂ , continue with step 3

Like in [9] we limit the influence of potential outliers in the current approximation
of the receptive field, by modifying the step 3 in the prior algorithm such that a
fraction τ of the points can be left out during the core-set approximation. Further
we use probabilistic speedup [18]. The overall algorithm stops if the receptive fields
did not change for a number of iterations or an upper number of cycles is reached. In
each cycle the learning rate and neighborhood range is adapted in the same manner
as for kernel-SCL.

Fig. 1 (Left) Core-Set schema: Minimum enclosing ball solution of a set of data points. The core-
set consists of the points indicated by squares, implying a minimum enclosing ball of radius R and
its approximation with a radius (1+ ε) ·R (outer circle). The outer circle includes all points of the
data within a tolerance of (1+ ε) ·R. In this example 1000 points are described by a circle defined
upon 3 core-set points. (Right) Runtime analysis of core-SCL varying N on a checkerboard data
set. Note that the x-axis uses log-scale. A linear fit (red) agrees well with the expected complexity
of O(N).

4.1 Runtime analysis

The core-SCL calculates prototype positions for a constant number of cycles. In
each cycle the receptive fields have to be calculated, with n×N distance calcula-
tions and n sorting operations to determine the winner. Hence step 3 has a com-
plexity of O(N). This is a substantial difference to kernel-SCL or batch kernel-SCL
where these calculations have O(N2) complexity. The quadratic complexity of these
algorithms also remains if a k-approximation of the Γ matrix is done (e.g. only the
k largest alpha values are kept), because this can only be applied after an initial
number of steps, typically 10 cycles or in the final model to ease later interpretation.

The core set calculation (step 3) of each receptive field has worst case runtime
complexity of O(N). This is because in each core-set iteration a new core-set vector
is added until the MEB is found, which requires the test R≥ ‖c−v‖,v ∈V for each
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point in the receptive field which is not yet within the MEB. Employing probabilistic
speedup [18], this complexity can be substantially reduced in practice, checking
only a random subset of the points. As discussed in [18], it is sufficient to select one
(or multiple) random subsets of 59 points v ∈ S, with some moderate assumptions
on the distance distribution. As shown in [16] by using a small random sample S′

from S the closest point obtained from S′ is with probability 95% among the closest
5% of points from the whole S.

The distance and rank calculations between the prototypes and the core-set points
is done in O(n×Z) including sorting in O(logn), where Z is the size of all points
which are core-set points. The obtained ranks are used to update Γ using Γ̂ .

Note that the number of core-set points per MEB calculation is bounded by O( 1
ε2 )

[1] and hence remains small with respect to each cluster. Due to the small number
of core-set points per cluster we have Z� N. Hence we have a complexity of O(N)
for the steps 4 to 6.

Summarized, the overall complexity is linear O(N) in N, since n� N. This is
also reflected by the runtime analysis shown in Figure 1 (right).

4.2 Memory complexity analysis

The consumed memory is mainly determined by the size of the kernel-matrix K =
N×N and the coefficient-matrix Γ which is n×N. The full kernel matrix does not
need to be calculated but only a sub-part is necessary in each iteration. In core-SCL
the distance between the n prototypes and all N datapoints needs to be calculated. At
this step the corresponding kernel sub-matrix has to be calculated. It consist of the
rows of the non-vanishing αi j for a row i. And relates directly to the identified core-
sets indices causing the non-vanishing alphas. If we define Sall = {S1, . . . ,Sn} as the
unique list of core-set index sets for each cluster, the corresponding sub-matrix in
the calculation of the receptive field i is roughly |Si|×N, which is typically much
smaller than N2 and hence remains linear. The number of core-set points in an MEB
calculation is bounded by O( 1

ε2 ) [1]. This calculation can potentially be further
simplified by using the Nyström approximation as shown e.g. in [12]. The Γ matrix
has a complexity of n×N, which can probably be reduced further using appropriate
storage-classes due to the sparsity of Γ . Accordingly, the memory complexity is
roughly linear in O(N).

5 Experiments

In the following we show the efficiency of core-SCL on some artificial and real life
data sets and compare with results reported in [9]. First we start with a checker-board
simulation of 3×3 fields. Each cluster is Gaussian with clear separation between the
means and a small variance, causing small overlap. The 9 prototypes are initialized
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randomly in the data and the objective is to position each prototype in a cluster. In
Figure 2 we show a run of standard kernel k-means and core-SCL on the checker-
board data using a linear kernel. One observes a classical problem of kmeans which
is efficiently overcome with the use of soft-competitive learning. K-means sticks in
local minima and is unable to obtain a reasonable solution. As a further example

Fig. 2 Results for the checkerboard data with 100 points per cloud, black markers indicated the
prototypes. Left: kmeans - obviously fails to point one prototype per cluster due to initialization
problems and dead-lock situations. Right:core-scl, each cluster is represented by a prototype.

we use the classical ring data set which consist of two rings which are not linearly
separable. Each ring has 4000 points with added Gaussian noise in N(0,0.25). The
core-SCL needs 10 steps and an RBF kernel with σ = 0.5 to separate the two rings as
shown in Figure 3. In a 10-fold crossvalidation core-SCL was always able to obtain
a perfect clustering, 0%-error and the mean sparsity of the model was around 92%,
hence ≈ 300 points have been used to describe the prototypes in each model. Also
scaled kernel-grower achieved a perfect clustering for these data and the sparsity
was even better using only ≈ 11 points per model to represent the prototypes.
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Fig. 3 Core-SCL with 2 prototypes applied to ring dta (inner - circles, outer - diamond). Perfect
post-labeling at iteration 10 with the inner ring, separated from the outer ring.

In the following we show the effectiveness of core-SCL for two real life, stan-
dard data sets taken from the UCI machine learning repository [2] and compare to
different clustering approaches. For comparison we consider, affinity propagation,
a generic clustering approach based on a factor-graph model [6]. It provides natural
sparsity, since the model consists of exemplars in the original data space, equiva-
lent to the number of requested clusters. However AP does not scale for larger data
sets and even in the range of about a thousand data points the algorithm is already
slow. Additionally we consider a batch variant of K-SCL [7]. In the batch version
all data points are processed in one step. This is very efficient, but can not be done
for extremely large data sets (N� 10000) without approximation or sub-sampling.
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We consider the Landsat satellite data with 36 dimensions, 6 classes, and 6435
samples, the Phoneme data with 20 dimensions, 13 classes, and 3656 samples and
the spam dataset with two classes, 57 dimensions and 4601 samples. The results are
given in Table 11.

To show the effectiveness of our approach also for large data sets we consider
a large version of the checkerboard data, as described above, but with ≈ 1 million
points and the KDD-intrusion detection taken from [18] with training data of ≈
5 million points. It contains connection records of network traffic. The task is to
separate normal connections from attacks on the preprocessed raw data as detailed
in [18]. The results for these large scale experiments are shown in Table 2 for core-
SCL only, since the other methods took too long for the complete experiments.

In all experiments K-SCL and core-SCL are initialized randomly. For AP we
used the standard settings described in [6]. Experiments run until convergence, with
an upper limit of 100 cycles. We use the standard linear kernel and the ELM ker-
nel, a defacto parameter-free, optimal RBF kernel as discussed in [5]. The number
of clusters and used kernel are: LANDSAT (100,linear), PHONEME (100,linear),
SPAM (2,ELM), CHECKER (9,linear), INTRUSION (2,linear).

core-SCL AP K-SCL (batch)

Landsat
accuracy 86.00%±1.3 86.3%±0.2 86.1%±0.2
runtime 126.43 1478 329
q-error 1704 1568 1545
sparsity 0.11% − 3.6%

Phoneme
accuracy 84.05%±1.8 87.1%±0.2 87.9%±0.3
runtime 92.41 1237 104
q-error 2656 2578 2487
sparsity 0.23% − 3.6%

Spam
accuracy 82.29%±4.4 76.00%±4.0 84.35%±1.7
runtime 13.92 304 77
q-error 420.26 606 588.25
sparsity 0.4% − 100%

Table 1 Mean classification accuracy (± standard dev.) of core-SCL to other methods within a
5-fold cross-validation. The runtime is given in seconds. The dual costs are given for the test data
averaged over all runs. The sparsity is the percentage of points used to reconstruct all prototypes.

6 Conclusions

We proposed a novel kernelization of Soft Competitive Learning employing core-
sets. The approach automatically leads to sparse models with low memory con-
sumption compared to the traditional kernel-SCL. The results show that the runtime

1 The number of examples in AP is the same as the number of cluster, hence the AP model is
always the most sparse model possible.
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Checker Intrusion

accuracy 100±%0 93.84%±0.21
runtime 107.63 434.50
q-error 1334 15267
sparsity 0.03% 1e−7%

Table 2 Mean classification accuracy (± standard dev.) of core-SCL for the large data within a
5-fold cross-validation. The runtime is given in seconds. The dual costs are given for the test data
averaged over all runs. The sparsity is the percentage of points used to reconstruct all prototypes.
AP and K-SCL did not get feasible runtimes.

could be substantially improved using core-sets, avoiding the consecutive updates
for all data points per iteration as in the traditional online kernel-SCL, but also com-
pared to batch kernel-SCL, for larger data sets. The algorithm is similarly efficient
with respect to the dual-quantization error and post-labeling accuracy compared to
the other methods. While AP and K-SCL cannot be used to analyze very large data
sets, core-SCL can be easily applied for such data.
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