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1. Introduction

The generation of classification models, is a common task in
multiple fields of experimental research such as bioinformatics,
medicine, satellite remote sensing or chemometrics [23, 25].
Reliability estimation of the obtained classification models is
frequently required. In traditional statistics this information is
usually provided by significance levels whereas for machine
learning models such estimators are rare. Recently a learn-
ing theoretical approach for this problem was proposed by [33],
called conformal prediction. We adapt this model for utilization
of prototype-based classifiers like Learning Vector Quantiza-
tion (LVQ) namely Supervised Relevance Neural Gas (SRNG)
[32]. This model classifies each sample prototype-based and
additionally offers a level of its classification reliability.

We demonstrate the capabilities of this method for classifi-
cation of satellite remote sensing spectral data. For this type of
data true color images allow a visual control of classification
accuracy [8]. In this specific application another aspect is given
by the functional character of the data which requires an ade-
quate handling [19, 23, 29]. In particular we favor the usage
of functional distances for similarity determination instead of
standard euclidean metric.

The paper is organized as follows. First we briefly intro-
duce the main ingredients for our model. We start with a short
review of the Supervised Relevance Neural GAS (SRNG) for
prototype based classification [32] and demonstrate how this
approach can deal with different types of metrics including a
functional metric. Thereafter the method of conformal predic-
tion [33] is discussed in the light of prototype based classifiers.
It is shown how a thresholding approach can be employed in
the analysis of functional spectral data combining the two mea-
sures of confidence and credibility as derived from conformal
predictions. The experimental settings of our approach are de-
fined. In the experimental section we apply our framework on
data obtained from remote satellite imaging. The data are ana-
lyzed in detail and some new findings are made which have not
been reported so far. The paper is closed by a summary and a
discussion of open points and research directions.

2. Material and Methods

2.1. Supervised Neural Gas for functional Data
Supervised Neural Gas (SNG) [10] is considered as a rep-

resentative for prototype based classification approaches as in-
troduced by K [15]. Different prototype classifiers have
been proposed so far [10, 15, 21] as improvements of the orig-
inal approach. The SNG combines the idea of neighborhood
cooperativeness during learning from the unsupervised Neu-
ral Gas algorithm (NG)introduced in [18] with the supervised
Generalized learning vector quantizer (GLVQ) as given in [21].
Subsequently we give the basic notations and some remarks
to the integration of alternative metrics into Supervised Neu-
ral Gas (SNG). Details on SNG including convergence proofs
can be found in [10].

Let us first clarify some notations: Let cv ∈ L be the label of
input v, L a set of labels (classes) with #L = NL. Let V ⊆ RDV

be a finite set of inputs v. LVQ uses a fixed number of proto-
types (weight vectors, codebook vectors) for each class. Let
W = {wr} be the set of all codebook vectors and cr be the class
label of wr. Furthermore, let Wc= {wr|cr = c} be the subset of
prototypes assigned to class c ∈ L and Wc is the cardinality of
Wc.

In vector quantization a stimulus vector v ∈ V is mapped
onto that neuron s ∈ A the pointer ws of which is closest to the
presented stimulus vector v,

Ψλ
V→A : v 7→ s (v) = argminr∈Adλ (v,wr) (1)

dλ (v,w) is an arbitrary differentiable similarity2 measure,
which may depend on a parameter vector λ. For the moment
we take λ as fixed. The neuron s (v) is called winner or best
matching unit. The subset of the input space

Ωλ
r = {v ∈V : r = ΨV→A (v)} (2)

which is mapped to a particular neuron r according to (1), forms
the (masked) receptive field of that neuron forming a Voronoi
tessellation. If the class information of the weight vector is
used, the boundaries ∂Ωλ

r generate the decision boundaries for
classes. A training algorithm should adapt the prototypes such
that for each class c ∈ L, the corresponding codebook vectors
Wc represent the class as accurately as possible. This means
that the set of points in any given class Vc = {v ∈V |cv = c},
and the unionUc =

⋃
r|wr∈Wc

Ωr of receptive fields of the corre-
sponding prototypes should differ as little as possible.

We suppose to have m data vectors vi. As pointed out in
[10], the neighborhood learning for a given input vi with label
c is applied to the subset Wc. The respective cost function is

CostS NG (γ) =

m∑
i=1

∑
r|wr∈Wci

hγ
(
r, vi,Wci

)
· f (µλ(r, v))

C
(
γ,Kci

) (3)

with f (x) =
(
1 + exp (−x)

)−1 , hγ (r, v,W) = exp
(
−

kr(v,W)
γ

)
and

µλ(r, v) =
dλr−dλr−
dλr +dλr−

whereby dλr− is defined as the squared distance
to the best matching prototype but labeled with cr− , cv, say
wr− and dλr = dλ (v,wr). For a detailed formal analysis of SNG
we refer to [10].

2.1.1. Incorporation of a functional metric to SNG
As pointed out before, the similarity measure dλ (v,w) is only

required to be differentiable with respect to λ and w. The trian-
gle inequality has not to be fulfilled necessarily. This leads to
a great freedom in the choice of suitable measures and allows
the usage of non-standard metrics in a natural way. We now
review a functional metric as given in [16]. This type of metric
is especially suited in case of functional data because it takes
consecutive points into account which is a natural property in
case of functional data. In [16] a successful application of this

2A similarity measure is a non-negative real-valued function, which, in con-
trast to a distance measure does not necessarily fulfill the triangle inequality
and the symmetry property.
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type of metric was shown using the well known tecator data
provided in [2].

The corresponding derivations can be plugged into the above
equations leading to SNG with a functional metric, whereby the
data are functions represented by vectors and, hence, the vector
dimensions are spatially correlated. A similar situation can be
observed for satellite spectra as demonstrated in [26].

Common vector processing does not take the spatial order of
the coordinates into account. As a consequence, the functional
aspect of spectral data is lost. For proteom spectra the order of
signal features (peaks) is due to the nature of the underlying bio-
logical samples and the measurement procedure. The masses of
measured chemical compounds are given ascending and peaks
encoding chemical structures with a higher mass follows chem-
ical structures with lower masses. In addition multiple peaks
with different masses may encode parts of the same chemical
structure and hence are correlated.

L proposed a distance measure taking the functional struc-
ture into account by involving the previous and next values of
xi in the i-Th term of the sum, instead of xi alone. Assuming a
constant sampling period τ, the proposed norm is:

LFCC
p (v) =

 D∑
k=1

(Ak (v) + Bk (v))p


1
p

(4)

with

Ak (v) =

 τ
2 |vk | if 0 ≤ vkvk−1

τ
2

v2
k

|vk |+|vk−1 |
if 0 > vkvk−1

(5)

Bk (v) =

 τ
2 |vk | if 0 ≤ vkvk+1

τ
2

v2
k

|vk |+|vk+1 |
if 0 > vkvk+1

(6)

are respectively of the triangles on the left and right sides of
xi. Just as for Lp, the value of p is assumed to be a positive
integer. At the left and right ends of the sequence, x0 and xD are
assumed to be equal to zero. The derivatives for the functional
metric taking p = 2 are given in [16]. Now we consider the
scaled functional norm where each dimension vi is scaled by a
parameter λi > 0 λi ∈ (0, 1] and

∑
i λi = 1. Then the scaled

functional norm is:

LFCC
p (λv) =

 D∑
k=1

(Ak (λv) + Bk (λv))p


1
p

(7)

with

Ak (λv) =

 τ
2λk |vk | if 0 ≤ vkvk−1

τ
2

λ2
k v2

k
λk |vk |+λk−1 |vk−1 |

else
(8)

Bk (λv) =

 τ
2λk |vk | if 0 ≤ vkvk+1

τ
2

λ2
k v2

k
λk |vk |+λk+1 |vk+1 |

else
(9)

The corresponding derivations can be found in [26]. Using this
parametrization one can emphasize/neglect different parts of the
function for classification. This distance measure can be put
into SNG as shown above and has been applied subsequently
in the analysis of the spectra. SNG with a parametrized metric

is subsequently referred as SRNG. The functional metric will
be just referred as FUNC and will be always used with metric
adaptation if not stated otherwise.

2.2. Conformal prediction - Reliability estimation
In the analysis of spectral data the determination of a clas-

sifier is a difficult task. The data are functional and in general
high dimensional and only few assumptions about the specific
nature (e.g. distributions) of the data can be made. Due to
this reasons an analysis using classical statistics such as statis-
tical tests for group comparisons, Linear discriminant analysis
or partial least squares methods (see e.g. [12] for an overview)
can not be applied, in general. Alternatively so called soft meth-
ods, with only minor assumptions about the specific properties
of the data, are used. Typical representants of these type are
prototype based classifiers such as the formerly mentioned Su-
pervised Relevance Neural Gas [11] and variants or the famous
Support Vector Machines (SVM) [28]. These methods have al-
ready proven to be appropriate for the analysis of spectral data
[22, 24] also in case of very high dimensional complex prob-
lems. A drawback of these methods, in contrast to classical
statistics, is the lack of reliability measures, which similar to
the well known p− or q-values can be used to judge the sig-
nificance or reliability of a taken decisions. Only few attempts
were made to give reliability estimates for these methods (see
e.g. [5, 7]). Thereby the reliability estimate can be helpful to
judge on the reliability of a decision but also in a more generic
framework to improve the overall performance of the classifier.
Reliability sometimes also referred as confidence, has been sub-
ject of a quite new theory called conformal prediction as intro-
duced in [33]. These theory directly aims on the determination
of confidence and as a second measure credibility of classifier
decisions. The stability of the algorithm presented here follows
immediately from the stability analysis of conformal prediction
as provided in [33] because our approach is directly derived
from it. According to this analysis the algorithm is stable in
stochastic sense. Thereby the type of the classifier is not much
limited but it is assumed that a so called non-conformity mea-
sure is available, revealing relevant knowledge of the classifi-
cation decision. Subsequently we introduce the relevant parts
of the conformal prediction approach and detail how it can be
used in the analyzed experiments.

2.2.1. Settings
For the introduction to conformal prediction we switch to a

more practical notation. Let the training data zi = (xi, yi) ∈ Z =

X ×Y, i = 1 . . . L be given by the data points xi ∈ X = RDV and
their labels yi ∈ Y = {1, 2, . . . ,NL} belonging to one of the NL
classes. Furthermore let xL+1 be a new observed data point with
unknown label yL+1 and classification / prediction ŷL+1.

For conformal prediction we need the following terms: con-
formal prediction algorithm, prediction region, nonconformity
measure,r-value, error rate ε, confidence & credibility, ex-
changeability and validity which are explained in more detail
subsequently.

In our setting the conformal prediction algorithm com-
putes for the given training data (zi)i=1,...,L, the observed data
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point xL+1 and a chosen error rate ε the prediction region
Γε(z1, . . . , zl, xL+1) ⊂ Y consisting of 0 to n possible labels. The
applied method ensures us that if the zi are exchangeable3 then

P(yL+1 < Γε(z1, . . . , zl, xL+1)) ≤ ε (10)

holds asymptotically for L→ ∞ for each distribution of Z. One
says that the predictor is asymptotically valid. It is important
to mention, that the probability is an unconditional one what
means, that if we repeat the process of drawing samples xL+1
and generating Γε n times we will find with respect to statistical
fluctuations that in less than ε × n cases the real label yL+1 is
not under the predicted labels of Γε . It does not mean, that for
a certain xL+1 yL+1 is in Γε with probability > 1 − ε. As counter
example one considers an empty prediction region for which
this conditional probability becomes exactly zero. Such cases
may happen if the observed sample xL+1 is extremely rare in X
(Z) in such a way, that it is not typical with respect to the given
training data. So it does not effect the error rate (10).

The conformal prediction algorithm is illustrated in Figure 1
and (11)-(15). The non conformity measure A(Di, zi) is used to
calculate a non conformity value αi that estimates how badly zi

fits to the representative data Di={z1, . . . , zL+1
zi}. For a certain prediction ŷ one calculates its r-value by
adding zL+1 = (xL+1, ŷ) (11) to the training data (12), calculating
the αi by checking each zi against the rest (13) and retrieving rŷ

as the relative amount of samples that are as bad or worse con-
formal to all remaining examples (14). For a reasonable non
conformity measure A αL+1 should be small if xL+1 is typical
and the prediction ŷ is right and typical for the data point xL+1.
This involves a high rŷ and a membership of ŷ in Γε for most
ε. If xL+1 is untypically or ŷ is wrong A should detect this mis-
match and generate a big αL+1. In this case only a few examples
of the training data have a greater nc-value such that rŷ will be
quiet small. As a consequence ŷ will only be contained in Γε

for smaller ε.

∀ŷ ∈ Y

zL+1
def
= (xL+1, ŷ) (11)

∀i ∈ {1, . . . L + 1}
Di = {z1, . . . , zL+1} \ {zi} (12)
αi = A(Di, zi) (13)

rŷ =
|{αi : αi ≥ αL+1|

L + 1
(14)

Γε = {y : rŷ > ε} (15)

2.2.2. Non Conformity Measure
As explained in the previous section the non conformity mea-

sure should evaluate the fit of a test example zi to representative
data Di. It is those part of the method that can incorporate de-
tailed knowledge about the data distribution. In our setting its

3exchangeability is a weak condition: e.g. independently and identically
distributed random variables are exchangeable [33]

Figure 1: Schema of cooperating parts in conformal prediction. As it can be
seen the conformal prediction algorithm uses the training data and an arbitrary
non conformity measure to generate valid prediction regions. Normally one
wants to incorporate a neural map to calculate meaningful nc values.

the place to use the learned neural map (as A in Figure 1). Nev-
ertheless one can use any arbitrary real valued function 4 (10)
but maybe with negative impact on prediction efficiency (see
2.2.3). To apply this on a prototype based situation one has to
think about how the match between arbitrary zi and Di could be
managed. A obvious solution, to learn a neural map with each
individual Di and match zi against it, would entail high compu-
tational costs, because this has to be done for all the L one left
out multi-sets Di for each of the NL test objects (xL+1, ŷ j=1,...,NL )
in the conformal prediction algorithm. Our solution lies in the
arbitrariness of A 5. We can ignore matching zi exactly against
Di but instead use the whole training data without zL+1, there-
fore learning must be performed only once. The lost amount of
information will be small if the number of training data is high,
so that adding zi but leaving out zL+1 will not change learning
results dramatically.

Obvious measures for prototype based methods are k nearest
neighbor methods for example:

αi =

∑k
j=1 d+

i j∑k
j=1 d−i j

(16)

with d+
i j being the given distance between xi and the j-th near-

est prototype with identical label yi and d−i j being the given dis-
tance between xi and the j-th nearest prototype with a label dif-
ferent to yi. Other measures are conceivable.

2.2.3. Prediction Region
The prediction region Γε(z1, . . . , zl, xl+1) stands in the center

of conformal prediction. It contains for a given error rate ε the

4Any measureable function on Z(∗) ×Z taking values in extended real line is
called a non conformity measure

5This could be a constant function or a relatively to zi fixed random value
leaving out Di at all
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possible labels of Y that ensures (10). But how can we use it
and how will it change for different values ε and different A?

Suppose we are using a meaningful non conformity measure
A. If we would set ε nearly to 0 then conformal prediction has to
produce Γ’s that makes nearly no error at all, which can only be
satisfied if Γ contains all possible labels. Of course such a pre-
diction bears no information. But if we slowly raise ε we allow
some rare errors to occur and as a benefit the conformal pre-
diction algorithm excludes some unlikely labels from our pre-
diction region and increasing its information content. In detail
those ŷ are discarded whose r-value is less equal ε, that means
only a few zi are as non conformal as zL+1 = (xL+1, ŷ). This is
a strong indicator that zL+1 does not belongs to the distribution
Z and so ŷ seams not to be the right label. If one further raises
ε only those ŷ will remain in Γ that can produce a high r-value
meaning that the corresponding zL+1 is rated as very typical by
A.

So one can trade the error rate against information content.
The most useful prediction is those containing exactly one la-
bel. Therefore two error rates are of particular interest, ε1 being
the smallest ε and ε2 being the greatest ε so that |Γε | = 1. ε2 is
the r-value of the best and ε1 is the r-value of the second best
label y. So the prediction can be summarized as

ζ(confidence) = 1 − ε1 = 1 − ry2nd (17)
κ(credibility) = ε2 = ry1st (18)

Confidence says something about being sure that the second
best label and all worse ones are wrong. Credibility says some-
thing about to be sure that the best label is right respectively
that the data point is (un)typical and not an outlier.

As mentioned in 2.2.2 the non conformity measure has a di-
rect impact on the efficiency of the prediction region. A good,
informative measure will exclude wrong labels for small error
rates and will reject typical data only for great error rates, mean-
ing that ε2 − ε1 being large for typical data. That means, that a
good measure can give useful information already for an en-
sured (10) small error rate ε1 and on the other hand one would
have to face up a high average error rate ε2 to exclude the right
label from the prediction region.

For practical applications here we are only interested on pre-
diction regions with |Γε | = 1. For these regions natural mea-
sures of confidence and credibility become available by appli-
cation of the conformal prediction methodology. These two
values combined with the conformal prediction (predicted la-
bel) can be employed subsequently not only to estimate the
pointwise reliability of the classification but also to improve the
classifier system, by means of a thresholding approach.

2.2.4. Recall/Precision/Thresholding with Conformal Predic-
tion

Recall-Precision graphs are very common in the field of in-
formation retrieval (IR) to estimate the performance of the con-
sidered IR-system [17]. Here we use this graphs in combina-
tion with a thresholding to improve the overall classifier perfor-
mance. Thereby the recall R and the precision P are defined as:

ID frequency range label resolution bits
1 0.45–0.52 blue 30 × 30 8
2 0.52–0.60 green 30 × 30 8
3 0.63–0.69 red 30 × 30 8
4 0.76–0.90 near IR 30 × 30 8
5 1.55–1.75 mid IR 30 × 30 8
7 2.08–2.35 mid IR 30 × 30 8

Table 1: Characteristics of the Landsat imaging device

R =
C
L
P =

C+

C
(19)

with C as the number of classified (not rejected) data points and
C+ as the number of correct classified data points. Further we
introduce a so called rejection set Sr and an acceptance set Sa

Sr = {xi : ζi < ζt∨κi < κt} Sa = {xi : ζi ≥ ζt∧κi ≥ κt}(20)

with ζt/κt as the user defined confidence/credibility thresholds.
For a chosen threshold pair ζt/κt the definitions for recall R
and the precision P are adapted in the natural way using the
acceptance region such as the thresholded recall R(ζt ,κt) and the
thresholded precision P(ζt ,κt) become:

R(ζt ,κt) =
|Sa|

L
P(ζt ,κt) =

|Sa|
+

|Sa|
(21)

with |Sa| as the number of classified (not rejected) data points
in the acceptance set and |Sa|

+ as the number of correct clas-
sified data points in the acceptance set. An example of such a
recall/precision graph for different thresholds ζt/κt is given in
Figure 3.

3. Data description

We applied the algorithm to a large real world data set: a
multi-spectral LANDSAT TM satellite image of the Colorado
area. Airborne and satellite-borne remote sensing spectral im-
ages consist of an array of multi-dimensional vectors (spectra)
assigned to particular spatial regions (pixel locations) reflect-
ing the response of a spectral sensor at various wavelengths. A
spectrum is a characteristic pattern that provides a clue to the
surface material within the respective surface element. The uti-
lization of these spectra includes areas such as mineral explo-
ration, land use, forestry, ecosystem management, assessment
of natural hazards, water resources, environmental contamina-
tion, biomass and productivity; and many other activities of
economic significance [20].

Spectral images can formally be described as a matrix S =

v(x,y), where v(x,y) ∈ RDV is the vector (spectrum) at pixel loca-
tion (x, y) with DV = 6. The description of the spectral bands
is given in Table 1. The elements v(x,y)

i , i = 1 . . .DV of spec-
trum v(x,y) reflect the responses of a spectral sensor at a suite
of wavelengths [4]. The spectrum is a characteristic fingerprint
pattern that identifies the averaged content of the surface ma-
terial within the area defined by pixel (x, y). The individual
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2-dimensional image Si = vi
(x,y) at wavelength i is called the ith

image band. The data density P (V) may vary strongly within
the data. Sections of the data space can be very densely popu-
lated while other parts may be extremely sparse, depending on
the materials in the scene and on the spectral bandpasses of the
sensor.

In addition to dimensionality and volume, other factors, spe-
cific to remote sensing, can make the analyses of hyperspectral
images even harder. For example, given the richness of data,
the goal is to separate many cover classes, however, surface
materials that are significantly different for an application may
be distinguished by very subtle differences in their spectral pat-
terns. The pixels can be mixed, which means that several differ-
ent materials may contribute to the spectral signature associated
with one pixel. This may lead to an unsafe prediction. Train-
ing data may be scarce for some classes, and classes may be
represented very unevenly (see Table 2). All the above diffi-
culties motivate research into advanced and novel approaches.
However it should be mentioned, that the presented approach
is not limited to this type of application, but can be applied to
a wider range of (spectral) or feature driven imaging analysis
such as MALDI-Imaging [8, 30], raman spectroscopy of tissue
slices or the analysis of microscopic images [3, 31] to name just
a few.

The image was taken very close to colorado springs using
satellites of LANDSAT-TM type6. The satellite produced pic-
tures of the earth in 7 different spectral bands. The ground reso-
lution in meter is 30×30 for the bands 1−5 and band 7. Band 6
(thermal band) has a resolution of 60×60 only and, therefore, it
is often dropped. The LANDSAT TM bands were strategically
determined for optimal detection and discrimination of vege-
tation, water, rock formations and cultural features within the
limits of broad band multi-spectral imaging. The spectral in-
formation, associated with each pixel of a LANDSAT scene is
represented by a vector v ∈ V ⊆ RDV with DV = 6. The aim of
any classification algorithm is to subdivide this data space into
subsets of data points, with each subset corresponding to spe-
cific surface covers such as forest, industrial region, etc. The
feature categories are specified by prototype data vectors (train-
ing spectra). Additionally, the Colorado image is completely
labeled by experts 7. There are 14 labels describing different
vegetation types and geological formations. The detailed la-
beling of the classes is given in Table 2, here we also specify
the used coloring for the subsequently generated images as ob-
tained from the classification models8. The colors where cho-
sen such that similar materials get similar colors in the RGB

6Thanks to M. Augusteijn (University of Colorado) for providing this im-
age.

7Its known that an exact ground truth labeling is complicated to obtain in
this field and also effects such as the granularity may significantly effect the
data and hence the label precision (e.g snow may appear as water). Under this
light imprecision of the labeling is a general problem for multiple data sets.

8For better visualization in b/w the misclassifications are sometimes also
given with white coloring. Due to some specifics of the given labeling with
respect to the information encoded in the data, as pointed out in the text, the
class 7 (also white) is often subject of misclassifications, anyway. Colored
versions of the image can be obtained from the corresponding author.

Label class R G B ground cover #pixels
a 1 0 128 0 Scotch pine 581424
b 2 128 0 128 Douglas fir 355145
c 3 128 0 0 Pine / fir 181036
d 4 192 0 192 Mixed pines 272282
e 5 0 255 0 Mixed pines 144334
f 6 255 0 0 Aspen/Pines 208152
g 7 255 255 255 No veg. 170196
h 8 128 60 0 Aspen 277778
i 9 0 0 255 Water 16667
j 10 0 255 255 Moist meadow 97502
k 11 255 255 0 Bush land 127464
l 12 255 128 0 Pastureland 267495
m 13 0 128 128 Dry meadow 675048
n 14 128 128 128 Alpine veg. 27556
o 15 0 0 0 misclassif. -

Table 2: Short description of the different classes of the satellite image, the used
similarity based coloring (in RGB space) and the number of pixel present for
each class.

Figure 2: True coloring of the satellite data. Left the coloring in accordance
to the RGB channels of the original data (data approx 1990), right a up to data
image as obtained from [9]

space. In addition we show plots of the data using the HSV
color space whereby the H channel encodes the class (1 − 14
scaled to the full range), S the results of the confidence measure
ζ and V the results for the credibility measure κ. Using this set-
ting a perfect recognition/prediction results in colors with high
saturation and colorimetry (v - channel), whereas less perfect
detected data points reduce the saturation and/or the colorime-
try such that they appear darker and more dirty.

Thereby, the label probability varies in a wide range. The
size of the image is 1907 × 1784 pixels 9.

4. Experiments and Results

To get a valid setting of the experiments the data have been
split into multiple sets, such that three data splits are obtained.
These sets are named as tuning set (TRS) with 1500 data points
per class, the crossvalidation set (CRS) with 3.381.079 data
points has been used in a 5× 5 cross validation, thereby we call
each test set as the rest set (RS) of this crossvalidation. For the
set TRS and CRS the points have been selected randomly from
the original data set such that each class is equally represented.

9Thereby 9 pixel have a unclear label and have been removed.

6



method W5
c W10

c W20
c W50

c W100
c

EUC-rec 90.50 92.1 93.7 95.0 96.5
EUC-pre 89.8 91.4 92.2 92.2 92.3
SEUC-rec 91.1 92.5 93.9 95.2 96.5
SEUC-pre 90.5 91.7 92.7 92.4 92.9

Table 3: Tuning results evaluated by recognition and prediction for metric Euc
and SEUC varying the map size parameter of SRNG.

The TRS has been used for parameter tuning studies, thereby
the data points have been split into a training and a test set such
that 1000 points where used for training and 500 points to deter-
mine the optimal parameters. In additional experiments it has
been verified that alternative set sizes of the cross-validation do
not change the results significantly as long as the data statistics
is sufficiently preserved. For details on this topic we refer to
[1].

The parameter tuning part has been done for SRNG with
standard and scaled Euclidean metric (SNG/SRNG). The iden-
tified optimal settings for the basic parameters of S(R)NG with
conformal prediction were transferred to the other models. The
SRNG with appropriate parametrization has been subsequently
applied to the prior not used data in the CRS data set and evalu-
ated in a 5×5-fold crossvalidation scheme. From the crossvali-
dation runs, showing very small variances between the different
models, we choose the first model to label the whole satellite
image. In the following we detail the three stages of our experi-
ments, followed by an additional analysis employing conformal
prediction in a thresholding experiment.

4.1. Parameter tuning

As already mentioned the SRNG parameters have been opti-
mized on a very small subset of the original data set using the
TRS split. Thereby the following parameters have been sub-
ject of optimization: map size, as the number Wc of prototypes
per class in a range of {5, 10, 20, 50, 100} and the parameter k
of the k-NN based non-conformity measure. The remaining pa-
rameters of SRNG have been chosen in accordance to [32] with
200 training cycles for each experiment. First we analyzed the
effect of different map sizes, as shown in Figure 3 using preci-
sion/recall graphs we also took the prediction accuracy of the
model (on the test set of TRS) to judge the appropriate size. We
observed that for a fixed k = 1 of the non-conformity measure a
map size of 100 would give best results. However we found also
that already 10 prototypes per class constitute a similar perfor-
mance, therefore a map size of 10 balancing performance and
model complexity was chosen as the final setting. Fixing the
model size of 10 prototypes per class we varied the parameter
k of the non-conformity measure in a range of {1, 3, 5}. Again
we employed the recall/precision graphs and observed that for
a k = 1 the dispersion of the overall precision was optimal. It
should be mentioned that for the other metrics these parameters
have been found to be stable as well as depicted in Table 3.

The use of Recall/Precision graphs motivates the use of a
threshold to balance between recall and precision (see Figure
3). This of course is very problem dependent and should prob-

Figure 3: Recall/Precision plots for the different map sizes using SRNG (with-
out thresholding). The curves are given as: map size 5 (dots/black), 10
(stars/blue), 20 (circle/red), 50 (filled star/magenta), 100 (arrow/yellow). The
second plot shows a histogram of the credibilities determined for all data points.
The third plot shows pairs of (ζ, κ) using the optimal map size 10 with k = 1 in
the non-conformity measure for scaled Euclidean metric and the last plot a sim-
ilar curve for the FUNC metric. This plot and the histogram may be employed
to determined an appropriate threshold used later on.

ably not be automated10. Thereby the conformal prediction
approach reports the reliability parameters (ζ, κ) for each data
point as ideal candidates for thresholding. Here we determined
the thresholding parameters for three points (95% recall, break-
even, end) point using the first model of the crossvalidation part
(a model with optimized parameters) given in Table 4. The
95% recall can be considered as a natural criterion which al-
lows to omit 5% of the points, occurring quite often for the
analysis of real data. The second point in our analysis is the
break-even point, which can be considered at that point of the
recall/precision graph at which a break in the recall/precision
graph can be found (e.g. a ascent of ≈ 1 for a tangent fitted
against the graph). The third point is an extreme of the graph
at which a further removement of points does not significantly
improve the precision of the classifier11.

The identified thresholding parameters have been used later
on to get optimal precision / recall values of the classifier on the
remaining (never prior used rest data RS).

4.2. Cross validation results
The SRNG with a map size of Wc = 10 and k = 1 for

the non-conformity measure was applied on the given satel-
lite remote sensing data using the data subset CRS. Thereby
the SRNG was trained using the three considered metrics
namely, standard Euclidean metric (EUC), scaled Euclidean

10In principle it is possible to get an automatic threshold determination e.g.
by line fitting on the recall/precision graph - but this is not the focus of this
paper.

11It should be mentioned that the generated recall/precision graph may not
give a graph as a function but a cloud of distributed point. In this case we
determine the convex hull of the cloud. It may also happen that the mentioned
three points do not exist but only the 95% point. For our experiments it was
always possible to determine the three mentioned points.
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point (κ/ζ)
EUC95% 0.09/0.95
EUCbreak 0.20/0.98
EUCend 0.44/0.99
SEUC95% 0.12/0.92
SEUCbreak 0.20/0.97
SEUCend 0.40/0.99
FUNC95% 0.11/0.92
FUNCbreak 0.11/0.95
FUNCend 0.47/0.96

Table 4: Optimal thresholding parameters for (ζ, κ) as obtained by manual in-
spection of the recall/precision graph of one SRNG model with the different
metrics.

metric Rec. Pred. mean Pred. std.
EUC n.a. 92.6 0.2
SEUC n.a. 92.3 0.23
FUNC n.a. (87.4) −

Table 5: Crossvalidation results for SRNG with metric Euc, SEUC, FUNC
using the optimized parameters, without thresholding. For the FUNC metric
only one model has been calculated.

metric (SEUC) and the functional metric (FUNC). The results
for recognition and prediction in a 5-fold crossvalidation, with-
out thresholding, are depicted in Table 5.

One observes that the recognition and prediction accuracies
are very high with close or above 90%. An analysis of the dif-
ferent confusion matrices supports these finding and shows also
that all classes are sufficiently modeled. These findings support
the results published in [32]. Interestingly the differences be-
tween the different metrics are very small. Nevertheless the
metric SEUC allows the identification of discriminating fea-
tures. A typical ranking of the features for SEUC is obtained
as in Table 6 and visualizations of the results using the whole
image are shown in 4 and 5.

4.3. Thresholding

While the results found so far are already very promising we
were looking for further improvements as well as a more de-
tailed reliability estimation than plain cross validation accura-
cies or confusion matrices. Therefore we employed the con-
formal prediction methodology on the remaining test sets RS.
The results for recall and precision using the different threshold
are given in Table 7 for comparison the thresholding was also
applied on the data used in for the first cross validation.

metric D1 D2 D3

SEUC 0.08(1E−2) 0.14(2E−2) 0.24(2E−2)
FUNC 0.12 0.19 0.20
metric D4 D5 D6

SEUC 0.3(1E−2) 0.24(1E−2) 0.0(0)
FUNC 0.26 0.23 0.0

Table 6: Relevance profile for the metric SEUC and FUNC. For the SEUC
mean and standard deviation are shown.

Figure 4: RGB plot for the colorado image. The left plot shows the image
with the given labeling and the right plot the same image but with a predicted
labeling using conformal prediction and SRNG (EUC). The color table is given
as is in Table 2.

Figure 5: HSV plot for the colorado image. The left plot shows the image
with the given labeling H = labeling/14, S = 1,V = 1 and the right plot
the same image but with a predicted labeling using conformal prediction, and
S = ζ/median(ζ), V = κ/median(κ) using one of the determined models. The
HSV coloring is easier to interpret using conformal prediction but the coloring
is not semantically related to the ground material.

point Recall/Precision (CRS-1) Recall/Precision (RS)
EUC95% 95.05/94.59 93.89/93.18
EUCbreak 79.52/97.99 76.49/97.64
EUCend 56.93/98.90 52.49/99.07
SEUC95% 95.18/92.20 91.54/93.08
SEUCbreak 79.49/97.05 77.80/97.01
SEUCend 60.72/99.04 60.45/98.93
FUNC95% 95.11/91.02 94.15/89.83
FUNCbreak 77.11/95.07 79.07/94.64
FUNCend 31.60/98.68 48.38/98.24

Table 7: Recall and precision values by application of the thresholding on
SRNG-EUC, SRNG-SEUC and SRNG-FUNC using different thresholds for
(ζ, κ). It can be seen that there is strong difference between the metrics but
the SRNG-FUNC metric performs slightly worse than the others. As expected
a more restrictive threshold (reducing the recall) improves the precision up to
99% in this case. Thereby also in case of a larger number of assignments to the
unclassified state (EUCbreak , SEUCbreak , FUNCbreak) the structural information
of the satellite image is still kept as shown in Figure 6.
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Figure 6: Visualization of the thresholding using SRNG-EUC with different
threshold. Its clearly visible that the borders of the classes are subject of un-
certainty but also (as pointed out later on) different interesting findings can be
made with respect to the safety of a classification considering different thresh-
olds. The first plot shows the classified (recall) pixel at a threshold of EUC95%,
the second plot EUCbreak and the third for EUCend respectively. It can be seen
that the number of rejected points (assigned to class 15 - colored white) is in-
creasing. This helps to identify regions which are safe or unsafe with respect to
the classification even if the predicted labeling is still correct.

Multiple results can be found in the thresholding approach
by considering Table 7 as well as the HSV plots on the differ-
ently thresholded RS data (see Figure 6). As a first point we
see, that the thresholding improves the precision, not only on
the CRS-1 data, which is expected, but also on the prior not
used RS data. This observation is valid for all three threshold-
ing points. Considering the Figure 6 we find that removing 50%
of the data points still keeps the structural information encoded
in the image. The removed points are in general located at the
class boundaries which are a natural source of uncertainty with
respect to the classification decision. The points removed at the
EUC95% level, again mainly account for class border points but
there is also a significant amount of points which appear to be
inside of classes. In fact confidence and credibility of the points
are in general quite high. This however implies that the classi-
fier was quite sure in its decision, nevertheless these points have
been found to be classified wrong. A closer inspection of these
points reveals that the most of it belong to the class 7 which is
no vegetation but are classified to class 14 alpine vegetation (not
vice versa), this is surprising but considering Figure 2 (left) the
effect becomes clear. Miss classification to class 14 do always
occur where the true-color image shows snow-coverage, this is
due to the fact that the region labeled as alpine vegetation (class
14) is completely covered by snow at the time point of taking
the satellite image. Hence class 14 should - with respect to the
measured data - better be labeled as snow than alpine vegeta-
tion. The effect is depicted in more detail in Figure 7. There
it also becomes visible, that this error in the labeling accounts
for a larger number of misclassifications. Considering this case
high values of confidence and credibility combined with mis-
classifications maybe in fact an indicator for a wrong labeling
or contradictory data (see also Figure 8).

A further region of interesting points is depicted in Figure 9,
nearby the Lake George (see Figure 2 (right)).

Thereby multiple misclassifications of class 3 (pine/fir) and
class 2 (Douglas fir) to class 9 (water) have been found. Consid-
ering both images in Figure 2 we found that the effected pine/fir
points are near to water regions. Figure 2 (right) suggests that
water level may have changed and hence this miss classification
are explainable also.

Figure 7: Region with stronger misclassifications related to the alpine-
vegetation class (14). Top row shows a zoom into the region close to the alpine
region. Left up to date image of the region, next true color view of this re-
gions dating back to approximately 1990, third plot with the RGB coloring
of the original labeling of the map. The second row shows the results as ob-
tained by SRNG-EUC with conformal prediction. The plot on the left shows
a coloring in RGB with the conformal predictions, the plot in the middle the
HSV image using confidence and credibility. Only few dark regions (low cred-
ibility/confidence) can be found in the lower part of second plot, second row.
Interestingly these items (class 12 pastureland) are not misclassified but only
unsafe. But there are also regions of high confidence/credibility which are la-
beled as class 14 or class 7 (vegetation free).

Figure 8: Confidence and credibility histogram plots. The plot helps to identify
regions of high confidence with respect to the classification decision. It is also
visible that there exist a larger amount with high confidence but wrong labeling
- which fits to the findings presented in Figure 7.
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Figure 9: Region with stronger misclassifications. Top row shows a zoom into
the region close to lake George. Left up to date image of the region, next true
color view of this regions dating back to approximately 1990, third plot with the
RGB coloring of the original labeling of the map. The second row shows the re-
sults as obtained by SRNG-EUC with conformal prediction. The plot on the left
shows a coloring in RGB with the conformal predictions, the plot in the middle
the HSV image using confidence and credibility. Here already dark/dirty re-
gions can be detected indicating pixels with unsafe labeling. This is supported
by an analysis of the miss classifications (right plot) where misclassified item
are colored white. A closer inspection of the region using the true color maps
(first row) supports these findings. The discrimination problems occur between
class 13 (dry meadow - gray blue), class 12 (grass pastureland - yellow) and
class 1 (Scottish fir - dark green).

5. Conclusions

A method for the reliability estimation and optimization of
prototype based classifiers has been presented. Thereby the ap-
proach incorporates conformal prediction to determine a thresh-
old based on recall/precision analysis and to get reliability es-
timates for the classification of single items. By use of these
measures the performance of the classifier can be tailored with
respect to optimal recall and / or precision. This in general
improves the interpretability of the generated classifications as
shown here exemplarily for satellite remote sensing images.
Further a classification can be analyzed with respect to its re-
liability and also the state of not classifiable can be supported.
Especially the new class of unclassifiable entries is relevant in
multiple classification tasks such as cases involving a classifier
based automatic labeling of samples from medicine [26, 27],
psychology [13, 14] or bio security domains [6], to name just a
few. In these fields the confidence of the classification plays an
essential role and the proposed approach offers a better inter-
pretability of the results. In a next step the method will be ap-
plied to larger cohorts of spectral data obtained from MALDI-
Imaging experiments [30]. Beside of the different promising
aspects of the methods there are also some points which could
be improved. Currently the choice and parametrization of the
non-conformity measure must be optimized by crossvalidation
a procedure which is only possible if a sufficient amount of sam-
ples is available. In future work, different non-conformity mea-
sures should be analyzed with respect to their properties under

different conditions to get more generic knowledge about the
behavior of a chosen measure. This knowledge could be used to
simplify the formerly mentioned parametrization and choice.
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