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Abstract

We discuss the use of divergences as alternative dissimilarity measures for dis-
tance based classification. Divergences can be employed whenever vectorial data
consists of non-negative, potentially normalized, features. This is, for instance,
the case in spectral data or histograms. As a particular framework, we intro-
duce and study Divergence Based Learning Vector Quantization (DLVQ). As
an example, we derive cost function based DLV(Q schemes for the family of
~y-divergences. It includes the well-known Kullback-Leibler divergence and the
so-called Cauchy-Schwarz divergence as special cases. The corresponding train-
ing schemes are applied to two different real world data sets. The first one, a
benchmark data set (Wisconsin Breast Cancer) is available in the public do-
main. In the second problem, color histograms of leaf images are used to detect
the presence of Cassava Mosaic Disease in cassava plants. We compare the use
of standard Euclidean distances with DLVQ for different values of the parameter
~ in both variants of the non-symmetric y-divergence. We show that DLVQ can
yield superior classification accuracies and Receiver Operating Characteristics.
We furthermore identify the data set dependent optimal values of v by means
of a validation procedure.

1. Introduction

Distance based classification schemes can be implemented efficiently in the
framework of the popular Learning Vector Quantization (LVQ). LVQ systems
are flexible, easy to implement, and can be applied in multi-class problems in a
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straightforward fashion. Because LVQ prototypes are determined in the feature
space of observed data, the resulting classifiers can be interpreted intuitively.
Consequently, LVQ classifiers are widely used in a variety of areas including,
among others, image processing tasks, medical applications, control of technical
processes, or bioinformatics. An extensive bibliography including applications
can be found in [1].

A key step in the design of any LVQ system is the choice of an appro-
priate distance measure. Most frequently, practical prescriptions make use of
Euclidean metrics or more general Minkowski measures, without further jus-
tification. Generalized Euclidean measures and adaptive versions thereof have
been introduced in the framework of relevance learning, see 2, 3, 4, 5, 6, 7] for
examples.

Here, we explore an alternative class of distance measures which relates to
a statistics based or information theoretical apprach. So-called divergences, for
instance the most popular Kullback-Leibler divergence, quantify the dissimilar-
ity of probability distributions or positive measures. They can immediately be
employed as distances in supervised or unsupervised vector quantization, pro-
vided the feature vectors and prototypes consist of non-negative, potentially
normalized components.

Information theoretic distance measures have been discussed in the context
of various machine learning frameworks, previously. This includes prototype
based clustering, classification, or dimension reduction, see [8, 9, 10, 11, 12] for
just a few recent examples. Frequently, divergences are employed to quantify
the similarity of the prototype density with the observed distribution of data.
Note that, here, we use divergences to quantify directly the distance between
individual data points and prototype vectors. Moreover, we derive gradient
based update schemes which exploit the differentiability of the divergences.

After setting up the general framework, we present the family of so-called
~v-divergences as a specific example. It is further specified by choice of a param-
eter v and includes the well-known Kullback-Leibler and the so-called Cauchy-
Schwarz divergence as special cases.

We develop the corresponding divergence based LVQ (DLVQ) schemes and
apply them to two different classification problems. First, the Wisconsin Breast
Cancer data set (WBC) from the UCI data repository [13] is revisited. The sec-
ond data set relates to the identification of the Casssava Mosaic Disease (CMD)
based on color histograms representing leaf images [14]. Performances are eval-
uated in terms of Receiver Operator Characteristics and compared with the
standard LVQ scheme using Euclidean distance. The influence of the parameter
~ is investigated and we show that data set dependent optimal values can be
identified.

In the next section we outline how divergences can be incorporated into the
general framework of LV(Q training and we derive the corresponding gradient
based training. In Sec. 3 we introduce the considered classification problems
and data sets. Computer experiments are described and results are presented
in Sec. 4, before we conclude with a summary and outlook.



2. Divergence based Learning Vector Quantization

For a particular classification task, we assume that a set of labeled example
data is available:

{X“a ylt}5:1 )

where the x* € IRV are feature vectors and the labels y* € {1,2,...C} specify
their class membership.

In an LVQ system we denote by W = {(wy, c(wj)}jjvi1 a set of M prototype
vectors w; € RN which carry labels c¢(w;) € {1,2,...C}. Note that one or
several prototypes can be assigned to each class. Prototype vectors are identified
in feature space and serve as typical representatives of their classes.

Together with a given distance measure d(x, w), they parameterize the clas-
sification scheme. Most frequently, a Winner-Takes-All scheme is applied: an
arbitrary input x is assigned to the class ¢(wy,) of the closest prototype with
d(x,wr) < d(x,w;) for all 5.

The purpose of training is the identification of suitable prototype vectors
based on the available example data. The ultimate goal, of course, is general-
ization: the successful application of the classifier to novel, unseen data. LVQ
training can follow heuristic ideas as in Kohonen’s original LVQ1 [15]. A va-
riety of modifications have been suggested in the literature, aiming at better
convergence or favorable generalization behavior. A prominent and appealing
example is the cost function based Generalized Learning Vector Quantization
(GLVQ) [16]. We will resort to the latter as an example framework in which to
introduce and discuss divergence based LVQ. We would like to point out, how-
ever, that differentiable divergences could be incorporated into a large variety
of cost-function based or heuristic training prescriptions.

GLVQ training is guided by the optimization of a cost function of the form

L Kowy) —d(xt,w
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where w; denotes the closest correct prototype with ¢(wy) = y* and wg is the
closest incorrect prototype (¢(wg) # y*). Note that the argument of ® in Eq.
(1) is restricted to the interval [—1,+1]. While ® is in general a non-linear (e.g.
sigmoidal) function, we consider here the simple case ®(z) = z.

In principle, a variety of numerical optimization procedures is available for
the minimization of the cost function (1). On-line training using stochastic
gradient descent is a particularly simple method which has proven useful in
many practical applications. In stochastic gradient descent, a single, randomly
selected example x is presented and the corresponding winners wj, wg are up-
dated incrementally by
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where dr,(x) = d(x,wr) and 9/0wy, denotes the gradient with respect to wr,.
The learning rate 1 controls the step size of the algorithm. Training is performed
in so-called epochs, each of which presents all examples in the training data in
a randomized order.

Practical prescriptions are obtained by inserting a specific distance d(x, w)
and its gradient. Meaningful dissimilarities should satisfy the conditions

d(x,w) >0 for all x,w and d(x,w)=0 for w=x.

Note that the LVQ framework does not require that the distance measure sat-
isfies metric properties such as triangular inequalities or symmetry. In both,
training and working phase, only distances between data and prototype vec-
tors have to be evaluated, the distances between two prototypes or two feature
vectors are never used.

In the following we assume that the data consists of vectors of non-negative
components x; > 0 which are normalized to ZNzl 2; = 1. Potential extensions
to non-normalized postive data are discussed at the end of this section. Nor-
malized non-negative x; can be interpreted as probabilities. This interpretation
may be just formal but it is a natural one in many cases, for instance, whenever
the vectors x represent histograms or spectra. An important example for the
former is the characterization of images by normalized gray value or color his-
tograms. Frequently, spectral data is conveniently normalized to constant total
intensity and is employed for classification in a large variety of fields including
remote sensing or bioinformatics [1]. Assuming normalized non-negative data
suggests, of course, the consideration of prototype vectors which satisfy the same
constraints. Hence, we enforce

N
w; >0 and ijzl (3)
j=1

explicitly after each training step, Eq. (2).

Under the above assumptions, information theory provides a multitude of
potentially useful dissimilarity measures. Different classes of divergences and
their mathematical properties are detailed in [17, 18], while [19] presents first
examples of Divergence Based LVQ.

We compare results of DLVQ with the standard choice, i.e. (squared) Eu-
clidean distance:

0Dy (x, W)

1
Dey(x,w) = f(x—w)Q, By

2

Inserting the derivative with respect to w into the general framework leads to the

familiar GLVQ algorithm which moves the updated prototypes either towards

or away from the presented feature vector, depending on their class labels [16].

Our first results concern the so-called Cauchy-Schwarz divergence, as intro-
duced in [20]:

= —(xk —wk). (4)
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It is particularly simple and, like the Euclidean measure, obeys the symmetry
relation d(x,w) = d(w, x).

Here, we extend preliminary studies [19] and consider the more general fam-
ily of y-divergences, see [17, 18] for the mathematical background:
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(6)
for y,z € IRN. The precise form of this dissimilarity measure is controlled by
the parameter v > 0. Note that for v = 1 one obtains the symmetric Cauchy-
Schwarz divergence as a special case, while the limit v — 0 yields the popular
Kullback-Leibler divergence.

In general, for v # 1, d,(x,y) # d,(y,x). The asymmetry is also reflected
in the derivatives with respect to the first or second argument, respectively.
Consequently, the use of d(x,w) = D, (x,w) yields a GLVQ scheme different
from the one derived for d(x,w) = D (w,x).

The corresponding derivatives that have to be inserted into Eq. (2) read:
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Note that v-divergences with v > 0 are invariant under rescaling of the
arguments: D~ (\y,pz) = D,(y,z) for A\, n > 0. Hence, the normalization of
the feature vectors, > .x; = 1, is not required in the formalism and has no
effect on the results presented here. Note that this invariance does not hold for
more general dissimilarities, as discussed in [17].

3. Data sets and classification problems

Two different real world data sets serve as a testbed for the suggested DLV(Q
algorithms.

3.1. Wisconsin Breast Cancer (WBC) Data

We first apply DLVQ to a popular benchmark problem: The Wisconsin
Breast Cancer (original) data set (WBC) from the UCI data repository [13].
Disregarding 16 vectors which contain missing values, the WBC set provides
683 examples in 9 dimensions. The data contains labels corresponding to ma-
lignant (239 examples) and benign samples (444 examples). Single features cor-
respond to different score values between 1 and 10, see [13] for their definition.
This does not imply a natural interpretation of feature vectors as histograms



or probabilities. However, the application of the divergence based formalism
is possible and it is justified to the same degree as the more popular choice of
Euclidean distances. For a more detailed description of this data set and further
references we refer the reader to [13] and [21]. We apply a normalization such
that jzi=1 for the following analysis.

3.2. Cassava Mosaic Disease (CMD) Data

The second data set corresponds to features extracted from leaf images of
cassava plants as provided by the Namulonge Crops Resources Research Insti-
tute, Uganda. Sample images represent 92 healthy plants and 101 plants infected
with the cassava mosaic disease. For example images and further details of the
image acquisition see [14].

Standard processing techniques were employed to remove background and
clutter and in order to obtain a set of characteristic features from the leaf
images. When aiming at optimal classification performance, various sets of
features may be taken into account [14]. Here we limit the analysis to the
aspect of discolorization caused by the disease. For the application of DLVQ
we consider normalized histograms with 50 bins representing the distribution
of hue values in the corresponding image. Example hue histograms can also be
found in [14].

4. Computer experiments and results

For the following evaluation and comparison of algorithms, we split the avail-
able data randomly into training (90% of the data) and test set (10%). If not
stated otherwise, all results reported in the following were obtained as averages
over 25 randomized splits. In both cases, we consider the simplest possible LVQ
system with one prototype per class, only. Their initial positions are obtained as
the mean of 50% randomly selected examples from each class in the respective
training set.

For simplicity, training is performed at constant learning rates. The effect
of the learning rate on performance depends on properties of the data set and
on the distance measure in use. In order to facilitate a fair comparison, we
determined a close to optimal learning rate from preliminary runs with respect
to the achieved accuracies after a fixed number of training epochs. Results
presented in the following are obtained after 200 training epochs for the WBC
data and after 1500 epochs with CMD data. The learning rates employed for
the WBC data set were n = 10~* when using Euclidean distances and n = 106
for v-divergences. In the CMD data set, learning rates of n = 10~° (Euclidean
measure) and 1 = 1075 (y-divergences) have been used.

After training we determine training and test set accuracies of the classifiers
and we report the average values obtained over the validation runs. When
comparing classifiers, it is important to take into account that greater overall
test accuracies do not necessarily indicate better performance. The Winner-
Takes-All LVQ classifier represents just one working point, i.e. one combination



WBC | training acc. test acc. AUC (training) | AUC (test)
D.,(x,w) | 0.850 (0.040) | 0.845 (0.041) | 0.924 (0.004) | 0.918 (0.004)
Des(x, w) | 0.864 (0.003) | 0.853 (0.007) | 0.923 (0.005) | 0.916 (0.005)

CMD | training acc. test acc. AUC (training) | AUC (test)
D.,,(x,w) | 0.790 (0.005) | 0.782 (0.007) | 0.856 (0.006) | 0.848 (0.007)
D.s(x,w) | 0.807 (.0002) | 0.805 (.0004) | 0.872 (0.003) | 0.867 (0.003)

Table 1: Numerical results for WBC and CMD data sets: mean accuracies in the unbiased
LVQ classifier and AUC with respect to training and test sets, respectively. Numbers in
parantheses give the standard deviation as observed over the validation runs.

of class 1 error and class 2 error. In particular, for unbalanced data sets a more
detailed evaluation of the classification performance is instrumental.

In order to obtain further insight, we introduce a bias 6 to the classification
rule after training: an input vector x is assigned to class 1 if

d(X7 Wl) < d(X7 W2) + 6‘7 (9)

where w; is the closest prototype representing class i. The bias of the resulting
classification towards one of the classes depends on the sign and magnitude of
the threshold. By varying 6, the full Receiver Operating Characteristics (ROC)
of the classifier can be obtained [22, 23]. Results presented in Figure 1 display a
threshold-average over the validation runs [23]. In the ROC, false positive rates
correspond to the fraction of truly benign cases (WBC data) or healthy plants
(CMD) which are misclassified. Correspondingly, the true positive rate gives the
rate at which truly malignant (WBC) or diseased plants (cassava) are correclty
classified. As an important and frequently employed measure of performance
we also determine the corresponding area under curve (AUC) with respect to
training set and test set performance.

4.1. Euclidean Distance and Cauchy-Schwarz Divergence

We first compare the two symmetric distance measures discussed here: stan-
dard Euclidean metrics and the Cauchy-Schwarz divergence. Figure 1 displays
the ROC with respect to test set performances in the WBC benchmark problem
(left panel) and the CMD data set (right panel).

Table 1 summarize numerical findings in terms of the observed training and
test accuracies for the unbiased LVQ classifier with § = 0 and the AUC of the
Receiver Operator Characteristics.

While in the WBC problem we do not observe drastic performance dif-
ferences, the Cauchy-Schwarz based DLVQ scheme outperforms standard Eu-
clidean LVQ in the CMD data set as signaled by the greater AUC value.

4.2. The family of v-Divergences
The precise form of the ~-divergence is specified by the parameter v > 0 in
Eq. 6. In addition, we can select the measure D, (x, w) or D.,(w, x), respectively.
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Figure 1: ROC curves for the WBC data set (left panel) and CMD data set (right panel). For
the WBC data, results are shown on average over 100 randomized training set compositions,
whereas for the CMD data we have perfomed 200 randomized runs. Curves are displayed for
the GLVQ variants based on Euclidean distances (solid lines) and Cauchy-Schwarz divergence
(dashed lines).

We display the mean test set accuracies as well as the AUC of the ROC as
functions of 4 for both variants of the y-divergence in Fig. 2 (WBC data) and
in Fig. 3 (CMD).

In both data sets we do observe a dependence of the AUC performance
on the value of « with a more or less pronounced optimum in a particular
choice of the parameter. This is not necessarily paralleled by a maximum of
the corresponding test set accuracy for unbiased LVQ classification as the latter
represents only one particular working point of the ROC.

Note that in the range of values ~ displayed in Fig. 3 (right panel), corre-
sponding to the use of D, (w,x), the AUC appears to saturate for large values
of the parameter. Additional experiments, however, show that performance
decreases weakly when -~y is increased further.

For both data sets, the influence of « appears to be stronger and the best
achievable AUC is slightly larger in the DLVQ variant using D (x, w). Table 2
summarizes numerical results in terms of the best observed test set AUC and
the corresponding values of v as found for WBC and CMD data in both variants
of the y-divergence.

WBC | ~ AUC (test) CMD | ~ AUC (test)
D, (x,w) | 0.6 | 0.922 (0.004) D, (x,w) | 0.2 | 0.888 (0.003)
D, (w,x) | 0.5 | 0.919 (0.005) D, (w,x) | 1.2 | 0.882 (0.004)

Table 2: Best performance in terms of the mean test set AUC and corresponding value of y
for the WBC and CMD data sets. Values in paranthesis correspond to the observed standard
deviations.
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Figure 2: Overall test set accuracies for the unbiased LVQ system with 6 = 0 (upper panels)
and AUC of the ROC (lower panels) as a function of v for the WBC data set. The left panel
displays results for the distance D~(x,w), while the right panel corresponds to the use of
D~ (w,x). Error bars mark the observed standard errors of mean.

5. Summary and Conclusion

We have presented a general framework for a class of LVQ classifiers which
are based on the use of divergences for the distance based classification of suit-
able data sets. As a specific example for this versatile framework we have con-
sidered the family of y-divergences which contains the so-called Cauchy-Schwarz
divergence as a special case and approaches the well-known Kullback-Leibler di-
vergence in the limit v — 0. We would like to point out, that a large variety of
differentiable measures could be employed analogously, an overview of suitable
divergences is given, e.g. in [17, 18].

The aim of this work is to demonstrate the potential usefulness of the
approach. To this end, we considered two example data sets. The Wiscon-
sin Breast Cancer (original) data is available from the UCI Machine Learning
Repository [13] and serves as a popular benchmark problem for two-class classi-
fication. The second data set comprises histograms which represent leaf images
for the purpose of the detection and classification of the Cassava Mosaic Disease
[14].

In case of the WBC data we observe little differences in performance quality
when comparing standard Euclidean metrics based LVQ with DLV(Q employing
the Cauchy-Schwarz divergence. When using the more general v-divergences, a
weak dependency on + is found which seems to allow for improving the perfor-
mance slightly by chosing the parameter appropriately.
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Figure 3: Same as Figure 2, but here for the CMD data set. The left panel corresponds to
the use of D~ (w,x), while results displayed in the right panel were obtained for D (w,x).

In contrast to the WBC, the CMD data set consists of genuine histogram
data and the use of divergences appears more natural. In fact, we find improve-
ment over the standard Euclidean measure already for the symmetric Cauchy-
Schwarz divergence. Further improvement can be achieved by choosing an ap-
propriate value of + in both variants of the non-symmetric distance measure.
The dependence on ~ and its optimal choice is furthermore found to be data set
specific.

The application of DLV(Q appears most promising for problems that involve
data with a natural interpretation as probabilities or positive measures. In
forthcoming projects we will address more such data sets. Potential applications
include image classifciation based on histograms, supervised learning tasks in a
medical context, or the analysis of spectral data as in bioinformatics or remote
sensing.

Besides the more extensive study of practical applications, future research
will also address several theoretical and conceptual issues. The use of diver-
gences is not restricted to the GLVQ formulation we have discussed here, it is
possible to introduce DLVQ in a much broader context of heuristic or cost func-
tion based LVQ algorithms. Within several families of divergences it appears
feasible to employ hyperparameter learning in order to determine, for instance,
the optimal ~ directly in the training process, see [24] for a similar problem in
the context of Robust Soft LVQ [25].

Finally, the incorporation of relevance learning [2, 3, 4, 5, 6] into the DLVQ
framework is possible for measures that are invariant under rescaling of the
data, such as the y-divergences investigated here. Relevance learning in DLVQ
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bears the promise to yield very powerful LVQ training schemes.
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