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Abstract

Recently, diverse high quality prototype-based clustering techniques

have been developed which can directly deal with data sets given by gen-

eral pairwise dissimilarities rather than standard Euclidean vectors. Ex-

amples include affinity propagation, relational neural gas, or relational

generative topographic mapping. Corresponding to the size of the dis-

similarity matrix, these techniques scale quadratically with the size of

the training set, such that training becomes prohibitive for large data

volumes. In this contribution, we investigate two different linear time

approximation techniques, patch processing and the Nyström approxima-

tion. We apply these approximations to several representative clustering

techniques for dissimilarities, where possible, and compare the results for

diverse data sets.

1 Introduction

The amount of digital data doubles roughly every 20 months. Hence automatic
tools to deal with large data sets become indispensable for humans to extract
relevant information from the data. In this context, clustering constitutes one of
the standard techniques to structure and compress large data sets. Algorithms
which represent clusters in an intuitive form such as prototype-based techniques
offer the possibility to directly inspect the results. Additional functionality such
as e.g. topographic mapping as enabled by self-organizing algorithms can provide
further inside into the data structure. Because of these facts, prototype based
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clustering and extensions towards topographic mapping have lost none of its
attraction for users from diverse application areas [19].

Not only the size of modern data sets, but also its complexity increases
rapidly in modern application areas. Improved sensor technology, for exam-
ple, leads to very high dimensional measurements corresponding to a very de-
tailed resolution of the available information. At the same time, dedicated data
formats such as XML files, network data, graph structures and the like be-
come more and more common. Classical prototype based classification such as
k-means clustering, neural gas, or the self-organizing map usually deals with
Euclidean vectors only. Hence these algorithms are no longer suited in these
settings. While the Euclidean distance yields to almost meaningless values for
high dimensionality, a lossless vectorial representation is not even possible for
data structures such as sequences, trees, or graph structures.

This fact has led to a variety of extensions of prototype-based techniques to
deal with more complex data formats, see e.g. [3]. One prominent interface is
offered by a general similarity or dissimilarity matrix: only pairwise similarities
or dissimilarities of data have to be defined based on which learning takes place.
Various dissimilarity measures are available for dedicated data formats: for
example, alignment for sequences [14], functional norms for functional data [26],
divergences for probability distributions [27], graph and tree kernels [16], or the
compression distance for general symbolic sequences [7]. Hence a formulation in
terms of dissimilarities extends the applicability of prototype based techniques
to a large variety of modern application areas. Since data are characterized by
pairwise relations rather than Euclidean vectors, we refer to ‘relational data’ in
the following.

There exist different principled ways to transfer prototype based clustering
towards dissimilarity data: Kernel methods extend standard techniques towards
more general data by means of kernelization, see e.g. [29, 6]. This has the draw-
back that a valid kernel has to be present, i.e. data have to be inherently Eu-
clidean corresponding to a positive semidefinite Gram matrix. Techniques such
as proposed in [17] are based on the so-called dual cost function associated to
quantization error. It allows an elegant solution using techniques of statistical
physics. However, no explicit prototypes are available in this setting. As an al-
ternative, exemplar based techniques restrict prototype positions to data points,
such that standard cost functions as the quantization error are still defined for
general dissimilarities. Optimization of these costs, however, becomes hard due
to the discrete space of feasible solutions. Median clustering determines optima
by extensive search [20, 8]. It often leads to only suboptimal solutions due to
the search in a very restricted space [8]. Recently, a very promising alternative
optimization method has been proposed [10]: Affinity propagation (AP) refor-
mulates the quantization error such that it can be formalized as a factor graph,
for which powerful optimization techniques such as the max-sum algorithm are
readily available. By relying on log-likelihood values, the algorithm inherently
deals with a continuous relaxation of the discrete optimization problem and usu-
ally arrives at very good optima of the cost function. We will consider AP as
one very promising clustering technique for exemplar based data representation
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for general similarities in the following.
AP has the drawback that additional functionality such as neighborhood

preservation of the clusters is not available. Recently, Euclidean prototype
based topographic mapping as offered by neural gas [23] and the generative
topographic mapping [4] have been extended to general dissimilarities. A key
technique is an implicit embedding of data in pseudo-Euclidean space [15, 13].
This way, a continuous update of prototypes becomes possible leading to robust
solutions of the respective cost function in pseudo-Euclidean space. Using a
simple algebraic equation, the explicit computation of the embedding becomes
superfluous – update rules which depend on the given dissimilarities only can
be derived. We will consider two instantiations of this technique, relational neu-
ral gas (RNG) and relational generative topographic mapping (RGTM). These
techniques constitute two important schemes to infer a topographic mapping
for general dissimilarity data.

All methods, AP, RNG, and RGTM, have the drawback that they rely on
the full dissimilarity matrix which is quadratic with respect to the number of
data. Hence the techniques have quadratic complexity and they become in-
feasible for large data sets. Diverse approximations to get around a squared
complexity in similar settings are available in the literature: Kernel approaches
can be accelerated to linear techniques by means of the Nyström approximation
[28] which approximates the full Gram matrix by a low rank approximation.
By integrating this approximation into the learning algorithms, an overall lin-
ear complexity results. We will show that the Nyström approximation can be
extended to dissimilarity data and an integration into RNG and RGTM is possi-
ble. A linear time approximation results provided a fixed approximation quality
of the matrix. We will show that, depending on the nature of the dissimilarity
matrix, reasonable results can be obtained this way.

The Nyström technique has two drawbacks: it requires a representative set of
examples for the low rank approximation, such that it cannot be used for online
settings where data display a clear trend. Further, in order to arrive at linear
techniques, the approximation has to be integrated into the learning algorithm.
Hence this method does not constitute an option for clustering techniques where
the entries of the dissimilarity matrix are used in a distributed way such as AP.

Patch processing has been proposed as an alternative approximation scheme.
It offers a powerful linear time and limited memory approximation for streaming
data sets [1]. In the article [15], it has been used to speed up RNG. The
resulting technique, patch RNG (PRNG) is linear time. It requires a direct
access to the dissimilarities. In this contribution, we transfer this technique to
AP and RGTM, resulting in patch AP (PAP) and patch RGTM (PRGTM). We
show that, depending on the given setting, good approximation quality can be
achieved. Patch processing can even deal with streaming data which display a
clear trend, unlike the Nyström approximation.

Now we first introduce the basic prototype based clustering techniques for
general dissimilarity data. Then we introduce the basic idea behind the Nyström
technique and patch processing and we show how these techniques can be applied
to relational clustering. Finally, we compare the techniques using three bench-
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Algorithm Acronym
Affinity Propagation AP
Patch Affinity Propagation PAP
Neural Gas NG

Relational Neural Gas RNG
Patch Relational Neural Gar PRNG
Nyström Relational Neural Gas RNG (Ny)
Generative Topographic Mapping GTM

Relational Generative Topographic Mapping RGTM
Patch Relational Generative Topographic Mapping PRGTM
Nyström Relational Generative Topographic Mapping RGTM (Ny)

Table 1: Different clustering algorithms and approximations introduced and
tested in this contribution; algorithms which are suited for vectorial data only
are set italic.

marks from bioinformatics: image data in the context of cytogenetics, mass
spectra characterizing bacteria, and a part of the classical SwissProt database
of protein sequences. In all cases, we compare the behavior of the techniques for
data which are directly accessible form versus a presentation as streaming data.
The tested algorithms, its approximations, and the corresponding acronyms are
summarized in Tab. 1 for convenience.

2 Prototype based clustering for dissimilarity
data

We focus on prototype based clustering methods which represent clusters in
terms of prototypical representatives. In the standard Euclidean setting, data
~vi ∈ R

n are represented by K prototypes ~wj ∈ R
n. The receptive field Rj of a

prototype ~wj consists of all data points ~vi which are closest to ~wj as measured
by the Euclidean distance d(~vi, ~wj) = ‖~vi− ~wj‖, breaking ties deterministically.
That means,

Rj := {~vi ∈ R
n | d(~vi, ~wj)

2 ≤ d(~vi, ~wk)
2 ∀k 6= j} .

In this setting, the goal of clustering can be formalized as minimizing the quan-
tization error

Eqe :=
∑

ij:~vi∈Rj

d(~vi, ~wj)
2 (1)

to obtain prototypes which are as representative for their receptive field as pos-
sible. There exist different classical methods which achieve this goal: a direct
optimization by means of a gradient descent as present in online vector quan-
tization, or more advanced methods which take a neighorhood structure into
account or which rely on a probabilistic interpretation of the model [19, 10, 4].
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The latter techniques often yield much more stable results. Further, the possi-
bly provide additional information such as the ability to visualize the prototypes
such as in the generative topographic mapping or a neighborhood structure of
the clusters such as in neural gas. We will consider three typical clustering tech-
niques in this context: (I) the generative topographic mapping (GTM) which
constitutes a generative statistical model. It models data by means of a con-
straint mixture of Gaussians induced by a mapping from a low-dimensional
latent space. In latent space visualization is possible. (II) the neural gas (NG)
which models data by means of representative prototypes which represent data
in relation to the rank of its distance. This way a very robust algorithm is
obtained which is widely independent from scaling issues. (III) affinity propa-
gation (AP) which reformulates the quantization error as a likelihood function.
This can be decomposed as factor graph for which the max-sum algorithm can
be used [10].

We shortly describe these three models in the following. Thereby, we refer
to distances such as the Euclidean distance, or similarities such as the Euclidean
dot product as required. Similarities and dissimilarities can be transferred into
each other using classical double centering (see e.g. [25]).

Generative Topographic Mapping

In GTM, lattice points ~uj on a regular lattice in a low dimensional latent space
are given. These are mapped to prototypes

~wj = Φ( ~uj) ·W (2)

by means of a generalized linear regression model. In principle, the base func-
tions Φ could be chosen as nonlinear functions such that their linear combination
has sufficient flexibility to map the low dimensional lattice to appropriate po-
sitions. At the same time, the base functions control the degree of topology
preservation by the stiffness of (2). This is usually obtained by picking only
a small number of base functions. In practice, the base functions Φ are often
chosen as equally spaced Gaussian functions. W denotes the weight parameters
of the mapping which are determined during learning.

This mapping induces a constrained mixture of Gaussians in the data space
in the following way. Every prototype ~wj induces a Gaussian which variance is
determined by the parameter β

p(~v| ~wj , β) = (β/(2π))n/2 exp(−β/2 · d(~v, ~wj)
2) . (3)

These Gaussians are combined in a mixture model with equal prior. Training
optimizes the data log likelihood. This way the parameters W and β are deter-
mined. It is possible to derive an expectation maximization (EM) algorithm as
detailed in [4]. It in turn optimizes the responsibilities

Rij(W,β) = p(~vi|~wj , β)/
∑

j′

p(~vi|~wj′ , β) , (4)
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and the parameters W and β by solving the linear equations

ΦtGoldΦW t
new

= ΦtRoldV , (5)

1

βnew
=

1

Nn
·
∑

ij

Rij(Wold, βold)d(~vi,Φ(uj)Wnew) . (6)

N denotes the number of data points, G is the diagonal matrix with entries
Gii =

∑

j Rij(W,β), R is the matrix of responsibilities, Φ is the matrix of base
functions evaluated at all lattice points, and V is the matrix of data points.

Neural Gas

NG extends the quantization error to incorporate neighborhood cooperation:

ENG :=
∑

ij

hσ(kij)d(~vi, ~wj)
2 , (7)

where hσ(t) = exp(−t/σ) exponentially scales the neighborhood range. kij
denotes the rank of prototype ~wj with respect to ~vi, i.e. the number of prototypes
~wk with k 6= j which are closer to ~vi as measured by the Euclidean distance
d. Classical NG optimizes this objective by means of a stochastic gradient
descent. The neighborhood range σ is annealed during training such that, in
the limit, the standard quantization error is approximated [23]. There exists a
faster batch optimization scheme as introduced in [8] which in turn optimizes
prototype locations and assignments similar to an EM scheme:

determine kij based on d(~vi, ~wj)
2 , (8)

set ~wj :=
∑

i

hσ(kij)~vi/
∑

i

hσ(kij) . (9)

Affinity Propagation

AP constitutes an exemplar based clustering method, i.e. prototype locations
are restricted to data points ~wj ∈ {~vi | i = 1, . . . , N}. Further, it deals with sim-
ilarities s(~vi, ~wj) rather than dissimilarities such as the Euclidean dot product,
for example. Obviously, the quantization error can be formulated accordingly.

Since prototypes are located at discrete positions, the quantization error
can no longer be optimized by means of gradient techniques. Therefore, the
quantization error is first rephrased as

Eqe−ap :=
∑

i

s(~vi, ~wI(i)) +
∑

i

δi(I) . (10)

Note that there is no longer a fixed number of clusters K given. Rather, cluster
assignments are defined by means of a function I : {1, . . . , N} → {1, . . . , N}.
Every data point picks a prototype by means of this function. Since prototypes
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are exemplars contained in the data set itself, this can be written as ~vI(i) for
data point ~vi. δi(I) punishes invalid assignments, i.e.

δi(I) =

{

−∞ if ∃j I(j) = i, I(i) 6= i ,
0 otherwise.

During training, these assignments have to be adapted; basically the data
points have to negotiate to arrive at a valid assignment function which optimizes
the cost function. The number of clusters K is no longer specified a priori.

A trivial valid solution of the cost function would be given by the identity
I(i) = i, i.e. every data point forms an exemplar. To avoid this trivial solution,
costs have to be introduced as soon as a data point becomes an exemplar.
This can be achieved by setting the self-similarities s(~vi, ~vi) to non-zero values,
indicating the costs of data point ~vi becoming an exemplar. In the limit, for
high costs, only one cluster will be found by AP. In between, different numbers
of clusters can be reached. Typically, there are two different strategies to set
the self-similarities appropriately: either they are set to a reasonable fixed value
such as the median of the given similarities. Alternatively, binary search can
take place until a desired number of clusters is reached. We will use the latter
strategy in this article.

To solve this novel optimization problem (10), the function Eqe−ap is mod-
eled as factor graph. This can be optimized by means of the max-sum algorithm.
In turn, responsibilities

rij := s(~vi, ~vj)−max
j′ 6=j

{aij′ + s(~vi, ~vj′)}

and availabilities

aij := min{0, rjj +
∑

i′ 6=i,j

max{0, ri′j}} ,

aii :=
∑

i′ 6=i

max{0, ri′i}

are determined leading to assignments I(i) = argmaxj(aij + rij) as detailed in
[10]. Since the factor graph is cyclic, there is no guarantee to obtain the global
optimum or even convergenvce. For this reason, small random values are added
to the dissimilarities in every run to avoid cycles. This way, usually, convergence
to a fixed point is observed.

Note that AP does not rely on Euclidean similarities. Rather the cost func-
tion (10) and the corresponding optimization is valid for every general similarity
measure s due to the restriction of prototypes to exemplars. In [10], this fact
has been demonstrated by various applications involving microarray data and
text, for example.

2.1 Extensions to (Dis-)Similarities

Unlike AP, NG and GTM are defined for the Euclidean setting only: they
rely on vector operations in the data space R

n. AP, on the contrary, restricts
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prototype positions to exemplars. Thus it is defined for every general similarity
measure. This property is very interesting since, often, data are not given in
vectorial form. Rather, pairwise similarities sij or dissimilarities dij of data
points numbered i and j are available only, such as biological sequences and
alignment distances.

Recently, extensions of NG and GTM have been proposed which can take
into account a general dissimilarity matrix [15]. The key observation is given by
the fact that a general dissimilarity matrix corresponds to vectorial data em-
bedded in so-called pseudo-Euclidean space. The latter refers to a vector space
equipped with a bilinear form which induces the given dissimilarities. Unlike
standard Euclidean space, the form can be indefinite. In this space, standard
vectorial operations are possible. An implicit calculation of the corresponding
updates avoids an explicit computation of the embedding.

Relational Neural Gas

Relational neural gas (RNG) as introduced in [15] assumes that a symmetric dis-
similarity matrix D with entries dij , describing pairwise dissimilarities of data,
is available. As shown e.g. in [25], there exists a so-called pseudo-Euclidean
embedding of a given set of points characterized by pairwise symmetric dissimi-
larities. That means, there exists a vector space with a symmetric bilinear form
〈·, ·〉 and vectors ~vi such that dij = d(~vi, ~vj)

2 = 〈~vi − ~vj , ~vi − ~vj〉. Without loss
of generality, we can restrict prototypes to the span of the data points in this
space:

~wj =
∑

l

αjl~vl with
∑

l

αjl = 1 . (11)

Under this constraint, dissimilarities can be computed by means of the formula

d(~vi, ~wj)
2 = [Dtαj ]i −

1

2
D · αt

j (12)

where [·]i refers to component i of the vector. This allows a direct transfer of
batch NG to general dissimilarities:

determine kij based on d(~vi, ~wj)
2 , (13)

set αjl := hσ(klj)/
∑

l

hσ(klj) . (14)

This algorithm can be interpreted as neural gas in pseudo-Euclidean space for
a given symmetric dissimilarity matrix D. It performs the updates implicitly
without referring to the vectorial notation ~vi in pseudo-Euclidean space. This
way the computational complexity is reduced to O(N2) instead of O(N3) for a
full embedding. If the bilinear form is indefinite, convergence is not guaranteed,
albeit it is usually observed in practice [15].
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Relational Generative Topographic Mapping

Relational GTM (RGTM) relies on the same principle as RNG: prototypes are
restricted to linear combinations of data points

~wj =
∑

l

αjl~vl with
∑

l

αjl = 1 . (15)

This way, vectorial operations become possible in pseudo-Euclidean space, re-
ferring only implicitly to the corresponding embedding [13]. Again, distances
are computed by means of (12). Since prototypes are represented indirectly
by means of weighting factors, the generalized regression model maps from the
latent space to the space of coefficients αk = Φ(~uk) · W where the restriction
∑

l[Φ(~uk) · W ]l = 1 is enforced. Using Lagrange optimization, it can be seen
that this restriction is automatically fulfilled for the generic optima obtained
by means of EM optimization. Hence, the EM scheme of GTM can directly be
transferred to RGTM. Distances are computed by means of (12). The data ma-
trix V is the identity in the space of coefficients. Typically, GTM is initialized
based on the first two eigenvectors of the data. This can directly be extended
to dissimilarity data by referring to MDS which corresponds to a PCA in the
space of similarities. Detailed formulas for the resulting updates can be found
in [13].

2.2 Efficient Approximations

These algorithms allow to generalize classical clustering algorithms to general
similarities or dissimilarities. However, a principled drawback occurs: since the
methods rely on the full similarity or dissimilarity matrix, respectively, their
effort is quadratic with respect to the number of data. Even more severely, the
full quadratic dissimilarity matrix has to be available to apply these methods.
This can lead to a considerable effort for complex dissimilarities such as e.g.
alignment of sequences or graph structures.

Because of these facts, the techniques cannot be used for large data sets. In
the following, we discuss two principled ways to approximate prototype based
clustering techniques for dissimilarities, and we show how these methods can be
integrated into the algorithms RNG, RGTM, and AP.

Nyström Approximation

The Nyström approximation as presented in [28] substitutes a given Gram ma-
trix S by a low rank approximation such that linear techniques result. As dis-
cussed in [12], this principle can be generalized to dissimilarities. By the Mercer
theorem, one can find an expansion of the form s(~w,~v) =

∑∞
i=1 λiΨi(~w)Ψi(~v)

for a given kernel s with eigenfunctions Ψi and eigenvalues λi. These values
are solutions of the equation

∫

s(~w,~v)Ψi(~v)p(~v)d~v = λiΨi(~w). In the Nyström
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approximation, this integral is approximated by sampling:

1

m
·
∑

k

s(~w,~vk)Ψi(~vk) ≈ λiΨi(~w) . (16)

Using the matrix eigenproblem S(m)U(m) = U(m)Λ(m) of the m × m Gram
matrix S(m), we obtain

λi ≈ λ
(m)
i /m , (17)

Φi(~w) ≈
√
m · (s(~v1, ~w), . . . , s(~vm, ~w))~u

(m)
i , (18)

where ~u
(m)
i is the ith column of U(m). This equation correspond to m rows

and respective columns of a given N × N Gram matrix. The correspond-
ing rows are denoted by Sm,N and columns by SN,m. Hence we obtain S̃ =
∑m

i=1 1/λ
(m)
i · SN,m · ~u(m)

i (~u
(m)
i )tSm,N , where λ

(m)
i and ~u

(m)
i correspond to the

m×m eigenproblem. Hence

S̃ = SN,mS−1
m,mSm,N (19)

where S−1
m,m denotes the Moore-Penrose pseudo inverse. This matrix S̃ offers a

low rank approximation of S.
We will see that the corresponding matrix S is used in algorithms such as

RNG and RGTM in the form St~xi where ~xi is an N -dimensional vector. Then,
performing multiplication from right to left, the complexity O(m3+Nm+m2+
mN) results when computuing s̃t~xi. Hence the computation is of complexity
O(m3N) instead of O(N2) for the original matrix.

Similarly, dissimilarities D can be approximated if D is symmetric. Since
D is symmetric, it can be diagonalized. Hence it can be interpreted as opera-
tor d(~v, ~w)2 =

∑

i λiΨi(~v),Ψi(~w). Thus, the same mathematical treatment as
before is possible, the only difference being that eigenvalues are allowed to be
negative.

Nyström relational topographic mapping and Nyström relational neu-
ral gas

For RGTM, this yields an approximation of (12)

d(~vi, ~wj)
2 ≈ [DN,m(D−1

m,m(Dm,N · αj))]i (20)

−1

2
· (αt

jDN,m) · (D−1
m,m(Dm,N · αj))

which is O(m3N). Thereby, initialization of RGTM is done based on a corre-
sponding landmark MDS. Similarly, the Nyström approximation can be inte-
grated into RNG approximating the distance computation(12) in the same way.
In both cases, by evaluating the matrix multiplications consecutively, a linear
time algorithm results provided the sample size m is fixed. Note that the same
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approximation does not lead to a reduction of the computational complexity for
AP since the similarity values are distributed in the algorithmic computations
rather than treated in matrix form.

The Nyström approximation is exact if the number of samples m is chosen
according to the rank of D. If a subsample is chosen, bounds on the quality of
the Nyström approximation can be derived as presented e.g. in [30]. Note that
the quality of the approximation depends on the rank of the approximation
as compared to the original matrix. Thus, it is vital that a representative
subsample is chosen. We will see in experiments, that the size m can often be
chosen as a small set to arrive at good results. The accuracy degrades severely,
however, if streaming data are dealt with for which the chosen subset is not
representative, as we will show in experiments.

If we assume a fixed sizem and a fixed complexity of the algorithm depending
on the rank of the approximation (i.e. a fixed number of epochs etc.), a linear
time approximation results. Note that the part of the dissimilarity matrix which
is required for the Nyström approximation is fixed as soon as the representative
subsample is chosen. Thus, the required dissimilarities can be precomputed
before applying the algorithm.

Patch Processing

Patch processing was first introduced to k-means in [9]. It is a simple and ef-
ficient strategy for clustering with restricted buffer where data are processed
consecutively in patches of predefined size. It has been proposed in [1] in the
context of the application of NG to streaming data, and interestingly, it even
gives good results this setting. The principled algorithm is depicted in Tab. 2.
A fixed size of the patches m is chosen. Then patches of data are processed con-
secutively. Given a similarity or dissimilarity matrix, the patch p corresponds
to the values of the matrix describing the pairwise similarities/dissimilarities
along the diagonal: d(vi, vj) where i, j ∈ {p · m + 1, . . . , (p + 1) · m}. In ad-
dition to this patch, all previous patches are represented in compressed form
by means of the prototypes resulting from clustering the previous patches. For
this purpose, the similarities or dissimilarities of data and these prototypes need
to be available. In patch processing, these are computed or retrieved from the
dissimilarity matrix on the fly.

Note that it is not clear how to compute these dissimilarities efficiently if
prototypes are of a general form, i.e. they correspond to arbitrary vectors in
pseudo-Euclidean space as for RNG and RGTM. For an implicit representation
of prototypes by means of a linear combination such as (11), the dissimilar-
ity computation would depend on the full dissimilarity matrix. To avoid this
problem, we assume that prototypes are approximated by a small number of
exemplars. Under this assumption, the pairwise distances of these exemplars as
well as the distances of these exemplars and the new patch can be retrieved from
the dissimilarity matrix in constant time on the fly. This extended dissimilarity
matrix, representing patches and representative exemplars, serves as the input
for the clustering step of the next patch.
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init: E := ∅; /* exemplars */
mi := 1 for ~vi ∈ E; /* multiplicities */
p := 1; /* patch number */

repeat: /*************** dissimilarity matrix for the loop *********/
Pm,m := {d(~vi, ~vj)} | i, j ∈ {p ·m+ 1, . . . , (p+ 1) ·m}};

/* patch size m */
Pm,|E| := {d(~vi, ~vj) | p ·m < i ≤ (p+ 1) ·m,~vj ∈ E};

/* dissimilarities patch and exemplars */

P|E|,|E| := {d(~vi, ~vj) | ~vi, ~vj ∈ E}; /* dissimilarities exemplars */

P :=

(

Pm,m Pm,|E|

P t
m,|E| P|E|,|E|

)

; /* full matrix for loop */

(*1) change pii for all i, if necessary; /* diagonal entries */

/*************** multiplicities mi *************************/
mi := multiplicities stored in E for ~vi ∈ E; /* multiple points */
mi := 1 for other vi; /* standard points */

/*************** clustering *******************************/
(*2) perform patch clustering with multiplicities for P and mi;

/*************** k approximation *************************/
(*3) approximate prototypes by k closest exemplars, if necessary;

/*************** new exemplars **************************/
E := set of exemplars obtained this way;
mi := size of receptive field counted with multiplicities for ~vi ∈ E;

/*************** next patch ******************************/
p:=p+1;

Table 2: Principled algorithm for patch clustering

Exemplars which represent the previous clustering results represent a large
set of data. Thus, it is vital to weight their relevance correspondingly. In
the patch algorithm, this problem is solved by assigning a multiplicity to all
exemplars which represent clusters of points, which corresponds to the size of
its receptive field. This means, we assume that the corresponding exemplars are
contained in the data set not only once but multiple times.

Note that patch processing requires constant space, provided the patch size
m and the approximation quality of prototypes by k exemplars is fixed. Further,
it requires linear time, provided m is fixed and the corresponding metaparame-
ters of the clustering algorithm such as the required number of epochs depend
on the size of m only. Unlike the Nyström approximation, it is not clear a
priori which linear part of the dissimilarity matrix is used for training, since
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the relevant exemplars which represent clusters become available during patch
processing only. Thus, we need a way to compute or retrieve the relevant entries
of the dissimilarity matrix on the fly. This is easily possible if the dissimilar-
ity is characterized by an algorithmic function such as e.g. Smith-Waterman to
align biological sequences by means of a global alignment, or alternatives such
as local alignment by Needleman-Wunsch or approximations such as FASTA
or BLAST. [14]. Because all relevant information is kept either directly or in
compressed form, patch processing can also deal with streaming data, as we will
see in experiments.

Patch relational neural gas and patch relational topographic
mapping

Patch relational neural gas (PRNG) has been proposed in [15]. A similar exten-
sion of RGTM to patch processing, patch RGTM (PRGTM), is possible. The
algorithmic steps which have to be clarified are marked with numbers (*1) to
(*3) in the algorithm in Tab. 2.

For PRNG and PRGTM, the diagonal (*1) is simply set to zero. It is easy to
extend RNG to multiplicities in step (*2). Assume data point ~vi has multiplicity
mi. Then we exchange the update (14) by

αjl := ml · hσ(klj)/
∑

l

ml · hσ(klj) .

RGTM can be extended to multiplicities by exchanging the update equa-
tions (5) and (6) of original RGTM such that they are valid for multiple data
points: In (5), the matricesG and R which relate to responsibilities and sums of
responsibilities, respectively, weight these responsibilities Rij(W,β) with mi. In
the update (6) for β, the summand according to data point ~vi is weighted with
mi, and N is the number of data counted with multiplicities

∑

imi. Similarly,
the MDS initialization can be extended to multiple data points.

To account for (*3), we need to approximate the prototypes computed by
RNG and RGTM, since these entities refer to all given data points. As proposed
in [15] we use a simple approximation of the prototypes by means of a fixed
number of exemplars taken from the data processed in the current patch. We
simply substitute every prototype by the k closest exemplars of the current
patch as measured by the given dissimilarity. These exemplars are counted
with multiplicities according to the size of their receptive fields.

Patch Affinity Propagation

Since AP constitutes an exemplar based clustering method, the transfer of the
meta algorithm is immediate: we just repeatedly apply AP to a given patch and
the exemplars as provided by the previous patch, counted with multiplicities.
Thus, the step (*3) of the algorithm shown in Tab. 2 is trivial since prototypes
already correspond to exemplars.

13



To apply patch processing to AP obtaining patch AP (PAP), we need to
extend AP such that it can deal with multiple data points in step (*2). One
simple way to do so would exist in a simulation of the update equations provided
by standard AP. We can include points according to their multiplicities to the
data set. Since these points are exactly identical, their responsibilities and
availabilities can be shared. Thus, we only have to compute the corresponding
updates of responsibilities and availabilities once.

Unfortunately, this naive procedure is not possible: AP consists of the max-
sum algorithm applied to a cyclic factor graph, hence convergence is not guar-
anteed. In particular, cycles occur if symmetries are present in the problem
formulation. Symmetries can be induced, for example, by exactly identical
similarities. For this reason, slight noise is added to the similarities in the orig-
inal code for AP (see http://www.psi.toronto.edu/index.php?q=affinity propa-
gation). If multiple points are present, as in our setting, however, symmetries
necessarily occur. Since the updates of these identical points are shared, there
is no simple way to cure this problem: the corresponding responsibilities and
availabilities are exactly identical since there is only one variable representing
the values.

Therefore, we use a different approach to extend AP to multiple points.
Assume data point vi is contained in the data set with multiplicity mi. Then
the quantization error is given as follows

Eqe =
∑

ij:~vi∈R(j)

mi · s(~vi, ~wj) . (21)

Obviously, we obtain the same costs if every point is contained only once in the
data set, but similarities are given by the values s̃(~vi, ~vj) = mi · s(~vi, ~vj).

Therefore, we can treat the problem to cluster the points ~vi with multiplic-
ities mi as a standard problem for standard AP with simple points ~vi where
the similarities are given as s̃(~vi, ~vj). This way, the usual convergence of AP is
observed using small random values to avoid symmetries. The update for the
responsibilities becomes

rik := mi · sik −max
k′ 6=k

{

aik′ +mi · sik′

}

, (22)

where sik = s(~vi, ~vk) refers to the original similarities of data points. The update
of the availabilities is not changed.

The initialization of the diagonal terms, step (*1) of the algorithm in Tab. 2,
should also be adapted accordingly, putting a bias towards points with large
multiplicities. We achieve this by a division of the preferences along the diagonal
by the respective multiplicities mi.

3 Experiments

We evaluate and compare the following algorithms:
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• Affinity Propagation (AP) and the approximation Patch Affinity Propa-
gation (PAP),

• Relational Neural Gas (RNG) and the two approximations Patch Rela-
tional Neural Gas (PRNG) and Nyström Relational Neural Gas (RNG
(Ny)),

• Relational Generative Topographic Mapping (RGTM) and the two ap-
proximations Patch RGTM (PRGTM) and Nyström RGTM (RGTM (Ny)).

We test the algorithm for three data sets stemming from biomedical applications.

• The Copenhagen Chromosomes data constitute a benchmark from cyto-
genetics [21]. 4,200 human chromosomes from 21 classes (the autosomal
chromosomes) are represented by grey-valued images. These are trans-
ferred to strings measuring the thickness of their silhouettes. An example
pattern representing a chromosome has the form

1133244422233332332222333223323332222666222331111 .

The string indicates the thickness of the gray levels of the image. These
strings can directly be compared using the edit distance based on the dif-
ferences of the numbers and insertion/deletion costs 4.5 [24]. Data are
labeled by the number of the chromosome, hence an associated classifica-
tion problem is to label the data according to the chromosome type.

• The vibrio data set consists of 1,100 samples of vibrio bacteria populations
characterized by mass spectra.1 The spectra encounter approx. 42,000
mass positions. The full data set consists of 49 classes of vibrio sub-species.
The mass spectra are preprocessed with a standard workflow using the
BioTyper software [22]. As usual, mass spectra display strong functional
characteristics due to the dependency of subsequent masses, such that
problem adapted similarities such as described in [2, 22] are beneficial. In
our case, similarities are calculated using a dedicated similarity measure
as provided by the BioTyper software [22]. Roughly speaking, spectra
are represented by peak lists. These are aligned taking the local shapes
into account leading to an overall score value. Details of the alignment
can be found in [2]. A typical spectrum is depicted in Fig. 1. For every
spectrum, its corresponding vibrio sub-species is known, such that an
associated classification task maps the data to this subspecies.

• The SwissProt data set consists of 10,988 samples of protein sequences
in 32 classes taken as a subset from the SwissProt database [5]. The
considered subset of the SwissProt database refers to the release 37 mim-
icking the setting as proposed in [20]. The full database consists of 77,977

1We would like to thank Dr. Markus Kostrzewa, Dr. Karl-Otto Kräuter, Dr. Stephan Klebel
and Dr. Thomas Maier, all Bruker Daltonik GmbH, Germany, for providing the Vibrio data
and support regarding the analysis of the mass spectra with the BioTyper environment.
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Figure 1: Typical mass spectrum representing a vibrio bacterium, the graph
shows the intensity for a band of mass/charge ratios.

protein sequences. A typical protein sequence consists of a string of the
form MSKAKEGDYGSIKKV SGPV V V . . . where the letters refer to
the amino acids, and the length of the full sequences varies between 30
to more than 1000 amino acids depending on the sequence. The 32 most
common classes such as Globin, Cytochrome a, Cytochrome b, Tubulin,
Protein kinase st, etc. provided by the Prosite labeling [11] where taken
leading to 10,988 sequences. Due to this choice, an associated classification
problem maps the sequences to their corresponding prosite labels. These
sequences are compared using Smith-Waterman which computes a local
alignment of sequences [14]. Popular alternatives could rely on global
alignment as provided by Needleman-Wunsch, or linear time heuristics
such as BLAST or FASTA [14]. This database is the standard source
for identifying and analyzing protein sequences such that an automated
classification and processing technique would be very desirable.

We evaluate the data sets using three different evaluation measures:

• The quantization error (1) which measures in how far the prototypes can
represent the given data as measured by the averaged dissimilarity of
prototypes to points in their receptive field. All methods optimize a cost
function which can be related to the quantization error: GTM optimizes
the data log-likelihood which, neglecting topological constraints due to
the restricted form of the topographic mapping, would boil down to a
mixture of Gaussians. Similarly, for small neighborhood σ → 0, the cost
function of NG directly resembles the quantization error. AP optimizes
the quantization error under the restriction that prototypes are exemplars.

Therefore, the evaluation of the quantization error where the terms d(~vi, ~wj)
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are taken as dissimilarities, allows to directly evaluate the affect of the ap-
proximation techniques on an underlying cost function.

• The dual quantization error is given by

EdualQE =
n
∑

i=1

1

4 · |Rj |
∑

i,i′ : ~vi∈Rj ,~vi′∈Rj

d(~vi, ~vi′)
2 .

It has been shown in [15], that the quantization error and its dual coincide
if prototypes are located at centers of receptive fields in pseudo-Euclidean
space ~wj =

∑

i : ~vi∈Rj
~vi/|Rj |. Hence the quantization error and its dual

are identical for RNG. For RGTM, AP, or approximations of RNG, pro-
totypes are no longer located at the center of gravity due to restrictions
of the prototypes or approximations of the dissimilarities, respectively. In
such cases, the quantization error can be large, albeit the decomposition
of data into receptive fields is hardly affected. In these cases, the dual
quantization error allows us to compare the quality of the decomposition
of data points into clusters rather than the specific prototype locations.

• Often, clustering or, more precisely, a prototype-based representation of
data serves as a first step towards a classification of data in practical ap-
plications. If label information is available for the given training samples,
prototypes can easily be assigned a label by means of a majority vote in
its receptive field. In such cases, it is possible to evaluate the classification
error of a given clustering. We test the suitability of approximation tech-
niques for this procedure by referring to the classification error obtained
by posterior labeling. For classification tasks, typically, the generalization
ability is relevant. Therefore we also report the results of a cross-validation
for this setting. Obviously, however, there is no reason to assume that the
class boundaries of priorly known classes coincide with cluster boundaries.
Therefore, this evaluation technique can judge the underlying clustering
only to a limited degree.

• For the settings, we also report the CPU time in seconds taken for one run
on the full data sets on a 24 Intel(R) Xeon X5690 machine with 3.47GHz
processors and 48 GB DDR3 1333MHz memory. Thereby, all experiments
are implemented in Matlab. 2

The parameter choices are as follows:

• Repeats : Per default, we average every result over ten repeats, report-
ing the mean value and standard deviation. Due to time issues, less re-
peats are taken in the following settings: RGTM (only one repeat for the
cross-validation), RGTM (Ny with 10%) (only 4 repeats for the cross-
validation).

2The Matlab code of the proposed algorithms can be obtained from Xibin Zhu
(xzhu@techfak.uni-bielefeld.de) on request.
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• Cross-validation: The classification error is evaluated on the full data set,
and in a ten-fold repeated cross-validation.

• Patch sizes : For patch processing, ten patches are chosen, i.e. every patch
is of the size given by the number of data points / 10.

• k-approximation: The value k for the k-approximation for patch process-
ing is taken in {1, 3, 5}.

• Number of clusters: The number of clusters K is roughly chosen according
to the priorly known number of classes: For Chromosomes, we use 60
clusters for AP and RNG and its approximations, and 20×20 lattice points
for RGTM and its approximations, to account for topological constraints
of the latter. For the Vibrio data set, we use 50 clusters for AP and RNG,
and 20×20 lattice points for RGTM. For SwissProt, we use 250 Prototypes
for AP and RNG, and a 40×40 lattice for RGTM.

• Nyström approximation: A fraction of 1%, 2%, and 10% of the data is
used to approximate the full matrix.

• RGTM : For RGTM and its approximations, we use the default initial-
ization with MDS (landmark MDS for the Nyström approximation). The
number of base functions F is picked according to the data set: We use
10× 10 base functions with bandwidth 1 for the chromosomes and vibrio
data and bandwidth 0.2 for Swissprot. 50 epochs are used for EM training.

• RNG: For RNG and its approximations, we use an exponential annealing
schedule for the neighborhood range starting from K/2. 100 epochs are
used for training.

• AP : For AP, self-similarities are set by binary search starting from the me-
dian in repeated runs such that a fixed number of exemplars/prototypes
as specified above is obtained. We accept partial deviations thereof, an
exact fit of a given number of clusters often requiring additional trials.
Usually, 1-8 repeats are necessary to obtain the correct number of exem-
plars. The necessary number of repetitions is included in the CPU time
measurement. Adaptation is done until convergence is observed.

We test the algorithms in two settings: On the one hand, we present the
data in epochs subject to random permutations (standard setting). This way,
the approximation techniques can access representative data for the approxi-
mation. In addition, we present the data in a fixed permutation referred to as
streaming data; for the latter, data are sorted according to priorly given class
labels and presented to the algorithm in this order - this resembles the fact
that, for large data sets, it is often not feasible to assume a truly i.i.d. distri-
bution of data; rather data can be addressed as they are stored in (probably
distributed) memory; they are often ordered according to specific criteria such
as e.g. the class labels. Therefore, it would be advantageous if algorithms could
directly deal with the data as stored in the memory and the ordering would
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not have much influence on the outcome. For the Nyström approximation and
patch processing, respectively, specific ordering might have an influence since
the approximation is based on the ordering of the data: landmarks are taken
from the first examples for the Nyström approximation, and, similarly, the first
patches are restricted to the first data points for patch processing. We will test
the feasibility of the approximation in such settings, referred to as ’streaming
data’.

Since AP, unlike GTM and NG, requires similarities, we use standard double
centering to transform similarities to dissimilarities and vice versa.

Results for the Chromosomes data

The results of the algorithms on the Chromosomes data set are displayed in
Tab. 3 when referring to the full data set, and in Tab. 4 when referring to an
evaluation of the classification accuracy in a repeated cross-validation. For the
latter setting, we also report the results obtained for streaming data.

We can observe that the results are uniformly best for RGTM. As expected,
the quality of all evaluation measures drops down if approximations are used.
The overall trend, however, is diverse. This can be traced back to the following
phenomena: on the one hand, some approximation results display a uniform
decrease in accuracy such as the Nyström approximation with 10% of the data.
This can be explained by a bad quality of the resulting dissimilarity matrix. We
will specify this issue in a separate paragraph shortly. Hence, in this setting,
the Nyström approximation fails.

On the other hand, we can observe a drop down of the quantization error by
more than 20% as compared to the best result, but the dual quantization error
and the classification error do not follow the trend. This holds in particular
for AP and for patch approximations. The reason behind this effect is that
prototypes are located at restricted positions in such settings because they are
represented by exemplars (a small number of k exemplars for patch processing).
This causes the quantization error to increase, albeit the resulting cluster sep-
aration is still acceptable as measured by the dual quantization error. For this
reason, we suggest that the dual quantization error is more suited to compare
the results.

When focussing on the dual quantization error, we can observe that the ap-
proximation techniques yield results which are mostly comparable to the original
techniques for AP and RNG. More precisely, the increase is less than 3% for
PAP as compared to AP, less than 9% for PRNG and RNG (Ny) as compared
to RNG except for Nyström approximation using 10%. For RGTM, the increase
is less than 8% for the Nyström approximation using 1% of the data, and for
patch processing with k ∈ {3, 5}. Thus, it seems that the approximation tech-
niques are well suited if appropriate parameters concerning the approximation
are taken.

This overall picture is confirmed if the generalization ability of a classifier
by posterior labeling is addressed as displayed in Tab. 4. Interestingly, the
sensitivity of the approximation techniques to the ordering of the data is quite
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Chromosomes accuracy QE dualQE CPUtime
AP 0.899(0.001) 70902.250 47112.667 380(73)

(0.000) (9.406)
PAP 0.864(0.001) 76739.950 48518.834 2752(11)

(928.209) (412.783)
RNG 0.902(0.009) 45751.008 45751.008 148(3)

(81.324) (81.324)
RNG (Ny 10%) 0.759(0.132) 57620.918 51801.754 123(7)

(11936.192) (5479.342)
RNG (Ny 2%) 0.810(0.098) 52415.133 49776.813 49(2)

(6287.455) (4657.611)
RNG (Ny 1%) 0.884(0.006) 46580.623 46216.928 48(4)

(232.367) (104.868)
PRNG (k=1) 0.858(0.007) 76761.575 49118.806 63(1)

(520.301) (318.913)
PRNG (k=3) 0.879(0.008) 61582.019 47875.753 83(2)

(432.681) (248.223)
PRNG (k=5) 0.884(0.008) 58155.238 47432.292 99(4)

(383.595) (148.811)
RGTM 0.941(0) 41407.211 37737.074 3262(49)

(0.000) (0.000)
RGTM (Ny 10%) 0.409(0.072) 428041.085 66159.509 512(113)

(1030835.396) (3041.827)
RGTM (Ny 2%) 0.689(0.190) 60274.937 50668.785 424(34)

(1449.945) (7935.304)
RGTM (Ny 1%) 0.885(0.012) 44763.112 41277.147 416(7)

(1929.780) (419.516)
PRGTM (k=1) 0.856(0.010) 61176.709 43915.486 359(18)

(676.005) (723.462)
PRGTM (k=3) 0.869(0.011) 51346.674 40622.258 620(25)

(197.432) (443.058)
PRGTM (k=5) 0.886(0.006) 48464.344 39935.687 1089(63)

(308.555) (361.247)

Table 3: Results on the Chromosome data set: The different methods are trained
for the full data set and the classification accuracy (accuracy), the quantization
error (QE), and the dual quantization error (dual QE) are reported. In addition,
we include the CPU time. The standard deviation is given in parentheses.

diverse. While the classification accuracy of patch processing is still more than
84% for streaming data, the Nyström approximation cannot deal with such
settings. The letter can be accounted for by the fact that the approximate
matrix has a small rank if only a subspace of the full data space is isolated by
means of a specific ordering.

20



Chromosomes accuracy Streaming data
AP 0.895 (0.006)
PAP 0.838 (0.005) 0.783 (0.022)
RNG 0.902 (0.003)
RNG (Ny 10%) 0.497 (0.057) 0.101 (0.053)
RNG (Ny 2%) 0.700(0.039) 0.088(0.034)
RNG (Ny 1%) 0.871 (0.009) 0.088 (0.031)
PRNG (k=1) 0.854 (0.006) 0.621 (0.021)
PRNG (k=3) 0.877 (0.004) 0.747 (0.016)
PRNG (k=5) 0.880 (0.006) 0.763 (0.012)
RGTM 0.881 (0.007)
RGTM (Ny 10%) 0.516 (0.066) 0.431 (0.082)
RGTM (Ny 2%) 0.638 (0.081) 0.582 (0.107)
RGTM (Ny 1%) 0.878 (0.027) 0.756 (0.099)
PRGTM (k=1) 0.840 (0.005) 0.843 (0.007)
PRGTM (k=3) 0.858 (0.007) 0.857 (0.006)
PRGTM (k=5) 0.873 (0.005) 0.871 (0.005)

Table 4: Results on the Chromosomes data set in a repeated ten-fold cross-
validation evaluated by posterior labeling, the standard deviation is shown in
parenthesis

Due to the comparably small size of the data set, the speed-up of the ap-
proximation techniques is only partially observable. As displayed in Tab. 3, a
speed-up up to 3 can be gained for RNG, and more than 7 for RGTM. Surpris-
ingly, PAP needs longer run time than AP. This can be explained by the fact
that we also include necessary restarts to obtain a correct number of clusters
by binary search.

In summary, RGTM and a patch approximation with sufficient k seems
best suited in this setting to arrive at a good cluster structure or classification.
The Nyström approximation seems problematic due to very different results for
different parameter choices in this setting.

The Chromosomes data set has also been addressed in the approach [18].
In this approach, k-nearest neighbor classification is based on the edit distance
to compare the data. Results report a classification error of only about 5%,
alternative classifiers such as Hidden Markov Models or feedforward networks
account for an error of about 9%. Our experimental setting is slightly different.
Still, the classification error is in the same order of magnitude for RNG, albeit
the latter does not take into account the class labels during training.

Results for the Vibrio data

For the Vibrio data set, the overall picture is similar as summarized in Tab. 5 and
Tab. 6. RGTM displays the best quantization error and dual quantization error,
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Vibrio accuracy QE dualQE CPUtime
AP 0.999(0.000) 594.480(0.000) 303.755(0.000) 136(1)
PAP 0.992(0.013) 604.993(2.546) 304.702(1.218) 35(3)
RNG 0.796(0.025) 327.899(4.332) 327.889(4.332) 18(1)
RNG (Ny 10%) 0.895(0.024) 316.945(2.464) 316.904(2.497) 13(1)
RNG (Ny 2%) 0.841(0.015) 333.296(3.892) 330.847(3.589) 3(0)
RNG (Ny 1%) 0.764(0.029) 358.924(8.236) 344.848(5.423) 3(0)
PRNG (k=1) 0.732(0.034) 661.101(9.277) 343.007(7.624) 16(0)
PRNG (k=3) 0.864(0.035) 422.829(8.383) 319.353(4.389) 23(0)
PRNG (k=5) 0.859(0.019) 385.893(5.979) 321.858(2.501) 34(7)
RGTM 0.960(0.000) 305.637(0.000) 285.757(0.000) 111(9)
RGTM (Ny 10%) 0.925(0.022) 308.804(6.096) 301.493(5.427) 48(2)
RGTM (Ny 2%) 0.946(0.019) 309.885(5.501) 293.813(5.332) 38(1)
RGTM (Ny 1%) 0.806(0.025) 357.398(4.175) 296.326(8.282) 35(2)
PRGTM (k=1) 0.702(0.103) 451.467(6.351) 328.479(20.430) 166(7)
PRGTM (k=3) 0.876(0.027) 375.971(2.109) 293.201(2.491) 234(11)
PRGTM (k=5) 0.897(0.030) 341.489(4.233) 291.986(3.756) 309(14)

Table 5: Results on the Vibrio data set when trained for the full data set. The
standard deviation is given in parentheses.

while AP leads to the best classification accuracy. This is an indicator that, in
this setting, the priorly known class structures are only partially mirrored in the
cluster structure found in the data set. As for Chromosomes, exemplar based
techniques lead to an increased quantization error, while its dual is competitive
to the results of RNG and RGTM. In this setting, the approximation techniques
are uniformly good, leading to an increase of the dual quantization error of less
than 6% in all settings but patch RGTM with k = 1. In Tab. 6, the classification
accuracy obtained for streaming data is displayed in comparison to a random
permutation. Again, the Nyström approximation cannot deal with this setting
in the same way as patch processing, the latter yielding an accuracy of more
than 80% for all but the 1-approximation.

Again, due to the size of the data set, the speed-up of the approximation
techniques is only partially visible. It accounts for a factor close to 4 for PAP
as compared to AP, up to 6 for approximations of RNG, and more than 3 for
RGTM approximations. Generally, the Nyström approximation seems more
efficient with respect to the time complexity as compared to patch processing
due to the smaller overhead of the technique.

In summary, AP and PAP are preferred if the prior classification task is
addressed this way. If the dual quantization error is in the focus, all methods
and their approximations seem universally suited. For comparison, the result of
an SVM classification (standard Matlab implementation in the bioinformatics
toolbox with default parameters, the SVM directly works on the given Gram
matrix) leads to 100% classification accuracy in a cross-validation. As reported
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Vibrio accuracy streaming data
AP 0.999 (0.000)
PAP 0.999 (0.000) 0.993 (0.004)
RNG 0.798(0.012)
RNG (Ny 10%) 0.885 (0.010) 0.392 (0.097)
RNG (Ny 2%) 0.823 (0.012) 0.179 (0.117)
RNG (Ny 1%) 0.715 (0.014) 0.052 (0.034)
PRNG (k=1) 0.729 (0.011) 0.658 (0.022)
PRNG (k=3) 0.842 (0.012) 0.819 (0.013)
PRNG (k=5) 0.858 (0.005) 0.820 (0.014)
RGTM 0.947 (0.005)
RGTM (Ny 10%) 0.939 (0.007) 0.848 (0.023)
RGTM (Ny 2%) 0.781 (0.021) 0.697 (0.040)
RGTM (Ny 1%) 0.547 (0.031) 0.462 (0.058)
PRGTM (k=1) 0.692 (0.029) 0.645 (0.034)
PRGTM (k=3) 0.867 (0.013) 0.852 (0.017)
PRGTM (k=5) 0.903 (0.011) 0.898 (0.011)

Table 6: Results on the Vibrio data set when evaluated in a repeated ten-fold
cross-validation for randomly permuted data sets (accuracy) and trained for
the streaming setting, i.e. data sets presented according to the class labels, the
standard deviation is shown in parenthesis

above, AP yields almost the same accuracy albeit not taking class labels into
account during training.

Results for the SwissProt data

For the SwissProt data set, results are reported in Tab. 7. The dual quantiza-
tion error is best for AP, but the dual quantization error for PAP and RNG and
its approximation uniformly less than 10% away. Thereby, no big difference can
be observed for the different approximation technique. The RGTM seems uni-
versally less suited for the data set, probably because of too strong topological
constraints which prevent a good representation of the data in this case. Albeit
the dual quantization error is competitive, the classification accuracy varies in
the diverse cases. It displays more than 90% accuracy for AP and its approxi-
mation, but less than 70% for some of the approximations of RNG. Thus, the
link between the priorly given classes and the cluster structure is not clear.

Because of the size of the data set, the speed-up of the approximation tech-
niques can clearly be observed in all cases. It accounts for a factor 2.5 for PAP
as compared to AP, up to 6 for approximations of RNG, and up to 10 for ap-
proximations of RGTM. The speed-up depends on the parameter choice, smaller
values of k for patch processing and a smaller percentage of data points for the
Nyström approximation accounting for considerably reduced CPU time.
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SwissProt accuracy crossVal dualQE CPUtime
AP 0.931(0.001) 0.925 (0.001) 3370.656(0.000) 14162(37)
PAP 0.925(0.000) 0.919 (0.001) 3451.163(13.659) 5644(316)
RNG 0.883 (0.008) 0.873 (0.004) 3476.074(6.427) 2769(16)
RNG(Ny 10%) 0.639(0.168) 0.660(0.057) 3742.972(466.172) 2767(45)
RNG(Ny 2%) 0.781(0.010) 0.840(0.004) 3582.827(13.728) 801(22)
RNG(Ny 1%) 0.761(0.016) 0.825 (0.009) 3712.956(55.872) 437(27)
PRNG(k=1) 0.857 (0.006) 0.858 (0.003) 3738.329(16.182) 863(5)
PRNG(k=3) 0.628 (0.029) 0.633 (0.010) 3628.645(31.275) 1285(12)
PRNG(k=5) 0.639 (0.018) 0.635 (0.010) 3588.068(17.277) 1712(16)
RGTM 0.700(0.000) 0.702 (0.015) 3943.099(0.000) 78518(635)
RGTM(Ny 10%) 0.579(0.172) 0.620 (0.076) 3937.313(454.717) 14582(160)
RGTM(Ny 2%) 0.841(0.035) 0.769 (0.010) 3582.751(89.055) 8045(57)
RGTM(Ny 1%) 0.831(0.041) 0.630 (0.017) 3651.053(89.256) 7247(171)
PRGTM(k=1) 0.423(0.039) 0.398 (0.023) 4177.034(116.670) 5059(372)
PRGTM(k=3) 0.451(0.034) 0.412 (0.016) 4069.374(45.699) 6755(289)
PRGTM(k=5) 0.465(0.049) 0.388 (0.006) 4003.668(78.533) 8917(1852)

Table 7: Results on the SwissProt data set, the different methods are trained
for the full data set and evaluated with the classification accuracy (column
accuracy) and the dual quantization error (dualQE), and they are trained in
a repeated cross-validation and evaluated by the classification error (column
crossVal). The CPU time is measured for one run for the full data set.

In summary, any approximation of AP and RNG seems suited in this case
if the goal is a good clustering structure (as measured by the dual quantization
error), while AP and PAP lead to the best classification accuracy in this setting.
For comparison, an SVM has been trained in a 2-fold cross-validation for the
given Gram matrix (standard Matlab implementation in bioinformatics tool-
box). It yields 98% classification accuracy. Hence AP and PAP are in the same
order of magnitude, albeit they do not take into account the class labels during
training. Interestingly, SVM training is quite affected when taking the Nyström
approximation for speed-up. The classification accuracy drops down to 86% for
1% data for approximation, and to 63% for 10% data for approximation. These
results are in the same order of magnitude as the classification results of the
Nyström approximation of RNG.

Quality of the Nyström approximation

In the experiments, we generally observe the fact that patch processing leads
to better results the larger the approximation parameter k, which is expected.
In contrast, the Nyström approximation does not alway lead to better results if
a larger fraction of the data is used for the approximation. In this paragraph,
we investigate in how far this observation can be traced back to the quality of
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Figure 2: Quality of the Nyström approximation as evaluated by the Spearman
correlation of the rows of the approximated matrix and the original one. The
approximation is based on a different fraction of the data set as indicated by
the x-achses. The graphs show the result for the Chromosomes (top) and Vibrio
(bottom).

the Nyström approximation when using different fractions of the data. For this
purpose, we sample a fraction ranging from 1% up to 50% (10% for SwissProt)
of the data based on which the Nyström approximation is computed. For the
clustering techniques, the absolute value of the dissimilarities is generally less
relevant as compared to the induced order of the data. Therefore, we compare
the resulting Nyström approximation with the original dissimilarity matrix tak-
ing Spearman correlation of the rows. We average over ten random selections
of the data.
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Figure 3: Quality of the Nyström approximation as evaluated by the Spearman
correlation for SwissProt.

The results are displayed in Fig. 2 and Fig. 3 for all three data sets. All val-
ues are significant corresponding to p-values smaller than 0.1. Interestingly, the
graphs are not monotonously increasing. That means, the Nyström approxima-
tion in terms of the induced ordering of data points does not necessarily become
better the larger the fraction of the data used for approximation. In particular
for Chromosomes, approximations with only 1% of the data yield an almost
perfect correlation, while this drops down for larger sizes. In contrast, the ap-
proximation quality of the Vibrio data set increases for a percentage ≤ 15%.
This observation can be one reason why the accuracy of the clustering results
is also not monotonic with respect to the percentage of data points as detailed
above. For SwissProt, the approximation quality seems universally good for a
range from 1% to 5% resulting in a high correlation.

Computational complexity

As already mentioned, the computational complexity of all clustering techniques
AP, RGTM, and RNG is O(N2). Further, the full dissimilarity matrix D has to
be computed, which also has time and space complexity O(N2). Where are the
current limits for the exact methods? Assuming double precision and standard
memory of 12 Gigabytes, a dissimilarity matrix of up to 30,000 objects would
currently fit into main memory. Hence the SwissProt data set is already in the
order of data sets which only just fit into main memory – it amounts to about
500 Megabytes. Probably the larger bottleneck is given by the computation of
the dissimilarity matrix. For the SwissProt data set, its computation took about
8 days (using the Bioinformatics toolbox of Matlab for Smith Waterman).

If either approximation is used, the computational complexity as well as the
size of the matrix which is required reduces to a linear part with respect to N ,
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assuming fixed approximation parameters (i.e. a fixed percentage of data for the
Nyström approximation and a fixed patch size, respectively. Further, naturally,
initialization of RGTM (Ny) has to rely on landmark MDS to transfer this linear
complexity to the initialization.) For an approximation with 100 points for the
Nyström technique or patch sizes of 100 points, the required space would reduce
to about 4.5 Megabytes and a computation time of less than 2 hours for the
required dissimilarities.

4 Conclusions

We have presented two different ways to speed-up prototype-based clustering
of dissimilarity data: the Nyström approximation and patch processing. We
showed whether and how these techniques can be included into three repre-
sentative clustering techniques, affinity propagation, relational neural gas, and
relational generative topographic mapping, respectively. Assuming a fixed qual-
ity of the approximation, this way, linear instead of squared complexity can be
achieved. The corresponding speed up has been presented in a large scale set-
ting, a fraction of the popular SwissProt data set.

As demonstrated in several experiments, the approximation techniques lead
to a decrease of accuracy which is, depending on the setting, only in the range
of a few percentage. However, the result depends on the chosen evaluation
measure, the chosen approximation technique, and the data set. It seems that
patch approximation is often suited if k is chosen sufficiently large. The Nyström
approximation gives good results if the quality of the approximation of the dis-
similarity matrix is sufficient. This can depend on the data set and, surprisingly,
it is not necessarily monotonic with respect to the fraction of the data taken
into account.

Note that the two approximation techniques presented in this paper are
suited for different settings. For the Nyström approximation, it can be specified
a priori which parts of the dissimilarity matrix are required for training. To be
applicable, however, a representative subsample of the data need to be available
a priori, thus it is not suited if streaming data are dealt with. Further, it can
only be integrated into algorithms which include the dissimilarity matrix in full
matrix form. Affinity propagation, which deals with these values in a distributed
way, cannot be accelerated using this technique.

In contrast, patch processing requires a (right from the beginning fixed) lin-
ear part of the dissimilarity matrix located along the diagonal, and, in addition,
dissimilarities of data and exemplars which are determined during training only.
Hence it can be applied only in settings where additional dissimilarities can be
retrieved on demand. However, due to its way in which information is com-
pressed, it can also deal with streaming data. Hence it seems particularly suited
for life-long adaptation. Further, it constitutes a very simple meta-heuristic
which is directly applicable for every clustering scheme which represents clus-
ters in terms of exemplars, and which can deal with multiple data points in an
efficient way.
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Since both techniques rely on a linear subpart of the full dissimilarity matrix,
they can lead to a severe information loss: in theory, it is possible that the
most relevant information is located at those parts of the dissimilarity matrix
which are not even computed in the approximations. Thus, there cannot exist
a non-trivial upper bound on the information loss if no further assumptions
on the dissimilarity matrix are assumed. However, in practice, it seems that
the approximation schemes are well suited to preserve the relevant information.
This is mirrored in an information loss of only a few percentage provided an
appropriate approximation technique is chosen.

The best approximation technique as well as the meta-parameters such as
the size of the subsamples and the number of exemplars used to approximate
the prototypes are not clear a priori and the quality can differ a lot depending
on the data setting. Hence it would be desirable to derive characteristics of the
dissimilarity matrix which guarantee that a certain approximation technique is
well suited in the given setting. This question could be tackled empirically as
well as from a theoretical side. It is the subject of ongoing research.
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