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a b s t r a c t

Neighbor-preserving embedding of relational data in low-dimensional Euclidean spaces is studied.
Contrary to variants of stochastic neighbor embedding that minimize divergence measures between
estimated neighborhood probability distributions, the proposed approach fits configurations in the
output space by maximizing correlation with potentially asymmetric or missing relationships in the
input space. In addition to the linear Pearson correlation measure, the use of soft formulations of
Spearman and Kendall rank correlation is investigated for optimizing embeddings like 2D point cloud
configurations. We illustrate how this scale-invariant correlation-based framework of multidimensional
scaling (cbMDS) helps going beyond distance-preserving scaling approaches and how the embedding
results are characteristically different from recent neighborhood embedding techniques.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Data visualization is an important tool during stages of initial
data screening, validation, and analysis. Scatter plot displays are
frequently used to study the context of data items and their
relationship with other data being represented as point clouds [1].
Traditionally, dimension reduction is being sought for displaying
vectorial data items in a scatter plot. Beyond this, complex relational
data sets containing pairwise scores, affinities, or preferences are
available for being visually inspected nowadays. While dimension
reduction problems gave rise to a plethora of methods, the treat-
ment of partially missing relational data beyond mere pairwise
distances is a rather young topic [2] being mainly addressed in the
current work.

Principal component projection refers to a widely used techni-
que for mapping data tables in a linear fashion to points along axes
of maximum attribute variance. The key concept is an eigen-
decomposition of the covariance matrix or, alternatively, a singular
value decomposition of the data matrix [3]. For the reconstruction
of relational pairwise distances in a lower-dimensional Euclidean
space, classical multidimensional scaling (cMDS) can be applied to
such square input matrices [4]. Kernel principal component
analysis (kPCA) can be seen as a generalization of cMDS in the
sense that kernel functions are used to construct Gram matrices,
i.e. pairwise data similarities, to be visualized [5]; thereby,

standard PCA point configurations are obtained by assigning
negative squared Euclidean distances as elements of the Gram
matrix. The potential computational burden of kPCA can be
reduced by low-rank approximations of the kernel matrix [6].

Kernel PCA is also used for local and specialized manifold
learning. Locally linear embedding (LLE) models local data neigh-
borhoods as a connection weight matrix, including zeros for data
outside the local neighborhood range [7]; ISOMAP compares data
points by their geodesic distances along the locally constructed
neighborhood graph [8]. Both methods give rise to connectivity
matrices specifically derived from the data that can be used as
Gram matrices for reconstruction by kPCA. Generally, flexible
functional mappings of new data vectors are desirable, but they
are not available for pairwise relational representations for which
the inclusion of new data points changes the structure of corre-
sponding data similarity matrices.

Kernel PCA offers some flexibility for processing different types
of input relationships, however, the above-mentioned methods are
often found in the domain of dimension reduction of Euclidean
input data, such as the synthetic three-dimensional swiss-roll data
set [7] or high-dimensional images like hand gestures or hand-
written digits [8]. Some applications of these methods to non-
vectorial data exist [9], but a principal restriction remains: the
inevitable symmetry of the underlying kernel matrix derived from
data comparisons. Such symmetry is not always natural. For
example, if – in a set of points – A is nearest neighbor of point B,
this does often not hold true the other way round in case of
skewed densities.
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In contrast to algebraic solutions of the point embedding problem
by eigen-decomposition of the kernel matrix, non-linear iterative
solutions are constructed by non-classical multidimensional scaling
(MDS) and neighbor embedding approaches. Iterative scaling
methods arrange a set of low-dimensional points of which the pair-
wise distances approximate given input dissimilarities. These dis-
similarities are not necessarily Euclidean distances, but often they
use Euclidean distances for further transformation by user-defined
stress functions, e.g. for emphasizing on certain scales in the data
[10]. Again, symmetric relationships are assumed for the input data,
because MDS stress functions match Euclidean distances in the
embedding space.

Stochastic neighbor embedding (SNE) is a more flexible concept
for approximately reconstructing pairwise data neighborhood
relationships in the Euclidean space [11,12]. Adjacent data items
are identified as neighborhood probabilities. Based on this concept
metric relationships, dissimilarities and pairwise scoring data
could be treated in the same manner. The minimization of Kull-
back–Leibler divergence between probability distributions of
neighborhoods in the input and output spaces is the optimization
goal. Recently, a generalization of Jensen–Shannon divergences
has been proposed to better resolve undesired density concentra-
tions in the input distributions, helping to better control the
quality of neighborhood reconstruction [13,14]. While the original
articles limit their embedding schemes to dimension reduction of
Euclidean distances, more general pairwise relationships can be
considered, such as Minkowski distances or string compression
distance. Even more generic scoring data can be addressed like
greedy string tiling [15] or kernel function values [16]. As opposed
to dissimilarity relations, higher score values indicate higher
similarity. With suitable embedding algorithms such pairwise
relationships can be used as input for creating intuitive visual
displays of document topics and gene expression data [17], for
example.

In this work we present a non-parametric embedding techni-
que that is conceptually located between iterative MDS and
stochastic neighbor embedding approaches. While MDS uses some
stress criterion for reconstructing distances identical to the trans-
formed input measure, SNE operates on neighborhood probability
distributions. Correlation measures offer a compromise between
strict distance matching stress, aiming at vectors to become equal,
and divergence measures that operate on vectors of neighborhood
density estimates and which are invariant under scalar translation
and scaling transformations. Linear Pearson correlation was earlier
utilized in the MDS context as a fast and scale-independent way to
globally compare distances in input and output spaces [18]. The
application of weighted rank correlation measures between
object-specific relationships in both spaces was recently proposed
as alternative to isotonic regression [19,20] for the reconstruc-
tion of local neighborhood orders [21,22]. Other authors have
addressed the problem of neighborhood reconstruction earlier.
Venna and Kaski propose local MDS to optimize the embedding for
matching neighbors in the input space also in the output space
and vice versa [23]. While their approach still relies on smooth
transformations of distances within pre-defined radii, the Rank-
Visu method compares between ranks of input and output
distance matrices and it makes use of force-directed placement
of points in the embedding space to minimize the discrepancy
[24]. By its design it favors preservation of local neighborhoods
rather than global. Its great flexibility comes at the cost of large
computational efforts for dealing with discrete ranks. Onclinx et
al. proposed a rank-based optimization scheme where rank-
induced discrete plateaus in the embedding stress function are
avoided by distance-based interpolation between ranks [25].

In the following, a framework for correlation-based multidimen-
sional scaling will be described in detail. Particularly, soft-rank

optimization approaches are being discussed. Illustrative examples
are provided along with relevant applications to protein data.

2. Embedding framework

Data embedding methods follow a general principle [26] which
can be summarized as follows. For a given finite set of n data items
some characteristics charX are derived and the aim is to match
them as well as possible with corresponding characteristics charY
in the low-dimensional space:

tensionðX;YÞ ¼ ∑
n

i ¼ 1
mðcharXðX; xiÞ; charYðY; yiÞÞ: ð1Þ

Here mð�Þ denotes a measure of mismatch between the chara-
cteristics, and the index i refers to the ith data object xi and its
low-dimensional counterpart yi. The source matrix contains pair-
wise similarity information about the data items. Optimization of
usually low-dimensional point coordinates fyigni ¼ 1 or of para-
meters θ of a functional point placement model Y¼ FθðXÞ allows
for minimization of the overall tension. Preferably, continuous
tension functions are employed for gradient-based coordinate
optimization.

In dimension reduction scenarios, pairwise input information
refers to distances of high-dimensional input vectors. For visualiza-
tion, one-, two-, or three-dimensional Euclidean spaces are com-
mon embedding targets. Using the above formalism with m¼mMDS

being the sum of squares and charð�; �Þ picking pairwise distances
Dij, classical MDS can be expressed as

tensionMDSðX;YÞ ¼ ∑
n

i ¼ 1
∑
n

j ¼ 1
ðDX

ij �DY
ij Þ2: ð2Þ

In practice, algebraic eigen-decomposition is used for solving this
classical scaling problem efficiently [4]. However, a large variety of
modifications exists for modeling embedding stress in customized,
e.g. scale sensitive, ways by iterative optimization of suitably
designed tension functions m [10].

In a comparison of distance distributions of high-dimensional
Euclidean data points and low-dimensional points it turns out
that the former one is shifted to higher average distances with
relatively low standard deviation. This phenomenon is referred
to as concentration of the norm [27]. In order to embed such dis-
tances with their specific properties properly in a low-dimensional
space, versions of SNE [12] and the neighbor retrieval visualizer
NeRV [28] apply different input and output distributions. Gaussian
distributions PðXÞ are used in the high-dimensional input space
and Student t-distributions QðYÞ in the low-dimensional output
space aiming at minimizing the Kullback–Leibler divergence (KL)
between them by adapting low-dimensional points Y. Mismatch
between per-object neighborhood probabilities is thus modeled
by mt�SNE ¼ KLðPJQðYÞÞ :

tensiont�SNEðX;YÞ ¼ ∑
n

i ¼ 1
KLðPiðXÞJQiðYÞÞ: ð3Þ

Neighborhoods are expressed in terms of si-localized Gaussian
transformations of squared Euclidean distances:

Pij ¼
expð�1

2‖xi�xj‖2=siÞ
∑ka iexpð�1

2‖xi�xk‖2=siÞ
: ð4Þ

The neighborhood probability is modeled indirectly by setting the
bell shape width si for each point to capture to which degree
nearby points are considered as neighbors for a fixed radius of
‘effective’ neighbors. This number is referred to as perplexity
parameter and is usually set to 5rpr50. Naturally, variations
in data densities lead to different si and, consequently, to asym-
metric matrices P. Gaussian distributions could be used in the
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embedding space too, but in order to embed large input distances
with relatively low variability in a low-dimensional space, the
heavy-tailed Student t-distribution

QijðYÞ ¼
ð1þ‖yi�yj‖2Þ�1

∑n
ka lð1þ‖yk�yl‖2Þ�1 ð5Þ

turned out to have more suitable characteristics [12]. The use of
distributions has an often desirable smoothing effect on the degree
to which points are considered neighbors. From a practical point of
view, distances get stretched compared to the Gaussian and can be
embedded with less clutter in low-dimensional Euclidean spaces.
From a theoretical perspective it is not obvious, though, which
underlying process justifies a change from one family of distribu-
tions to another for mediating between, say, 30-dimensional and
three-dimensional spaces. Concentration of the norm was origin-
ally stated for Euclidean spaces to argue for different distribution
models in the input and output spaces. For general input data
relationships, like pairwise scorings, other demands regarding the
distributions and neighborhood probability estimation models for
P can be expected.

Kullback–Leibler divergence is a scale-invariant measure
between distributions P and QðYÞ [13]. In contrast to potential
misconception, this does not imply scale-invariance of embedding
points Y, because rescaling of Y leads to non-proportional changes
of QðYÞ, i.e. Qðγ � YÞ ¼ gðγÞ �QðYÞ ) γ ¼ 14gð1Þ ¼ 1, irrespective of
QðYÞ being a Gaussian or Student-t distribution. While an opti-
mum scale might be desirable for restricting the solution space,
degenerate solutions may exist, though prevented by numerical
limitations in practice. We will seek at scale-invariant embeddings
by design.

2.1. Symmetry considerations

While the original SNE formulation takes into consideration
asymmetric local distance density estimates P, symmetry
PsympPþP> is forced in t-SNE to improve speed and visualiza-
tion properties, as stated by the authors [12]. Such improvements
sacrifice parts of the original neighborhood topology though, but
interestingly forcing symmetry seems to better separate between
clusters of labeled data clouds in the t-SNE experiments.

For some pairwise scoring data asymmetric information should
be maintained as much as possible. For example, in social net-
works it might be good to know if Jim loves Mary but not vice
versa. We follow the convention to consider high scores as high
degree of similarity. Asymmetric score data also naturally con-
tributes to bioinformatics tasks like protein sequence alignments.
For example, homology in transmembrane proteins was found to
be faithfully modeled by the SLIM family of asymmetric amino
acid block substitution matrices [29]. Table 1 contains scores for a
subset of five amino acids from the original 20�20 SLIM 161
substitution matrix. The number subscripts are ranks, smaller
means higher affinity. These ranks point out an asymmetric per-
object neighborhood structure that should not be forced into
a symmetric rank matrix. This asymmetric structure can be
perfectly reproduced in two dimensions as shown by some point

configuration in Fig. 1 with corresponding distances and neighbor
ranks reported in Table 2. Thus, to a certain degree, asymmetric
relationships can be expressed as neighbor ranks in the Euclidean
space despite its symmetric distance structure.

3. Correlation-based embedding framework

Let S be an n�n matrix of pairwise similarity scores denoting
the characteristics of the original data. DY is the matrix containing
the Euclidean distances of the adjustable m-dimensional objects Y
implying the characteristics of the ith object in the embedding
space:

DY
ij ¼ ∑

m

k ¼ 1
ðyik�yjkÞ2

 !1=2

: ð6Þ

Correlation is a common measure of correspondence that can be
applied to the vectors of per-object scores Si defined as ith row of
matrix S and reconstructed distances DY

i . Such measure is a value
in the range between �1 (negative correlation, inverse similarity)
and þ1 (positive correlation); values around zero indicate uncor-
relatedness. Since high correlation values denote common pat-
terns of similarity, the correlation between negative scores and
distances is to be maximized. The three most commonly used
correlation measures are linear Pearson correlation, Spearman
rank correlation, and Kendall rank correlation for quantifying
the degree of similarity between two vectors of identical dimen-
sion [30].

Pearson correlation is a measure of linear association between
real-value vectors; Spearman rank correlation is used for compar-
ing integer-valued rankings, i.e. simultaneously monotonic rela-
tionships, of the entries of two vectors; and Kendall correlation is
used for quantifying co-occurrences of positive and negative signs
in pairwise comparisons of potentially ordinal components in two
data vectors. The maximization of Pearson correlation can be seen

Table 1
SLIM 161 subset score matrix. Subscripts indicate row-wise neighbor rank.

R C E P S

R 101 �22 �115 �74 �43
C �83 111 �125 �114 22
E �75 �23 71 �44 �12
P �94 �73 �105 111 �32
S �84 42 �95 �53 61

−10 −5 0 5 10 15

−5

0

5

10

R
C E

P

S

Fig. 1. Neighbor-preserving scatter plot representation of a SLIM 161 subset.

Table 2
SLIM 161 subset distance matrix from points in Fig. 1 rounded in a rank-preserving
way to integer values. Ranks are given as subscripts and highlight the asymmetry of
neighbor relationships for the five amino acids. These ranks are in perfect
correspondence to the original scores from Table 1.

R C E P S

R 01 82 275 184 133
C 83 01 195 144 52
E 275 193 01 234 162
P 184 143 235 01 102
S 134 52 165 103 01
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as scale-free alternative to least-squares optimization in typical
MDS tasks [18]. Spearman rank correlation constitutes a natural
measure for neighbor embedding tasks, that is, for reconstructing
ordered neighborhoods based on negative input scores and output
distances. Kendall correlation is best for use with ordinal scoring
information that are even more general than being described by a
given score matrix S, like object B being qualitatively more similar
to A than C is to A, without knowing quantitative information such
as exact rank differences. All three correlation measures are
described in separate sections below.

Each object i is described by its relationship to all other ðn�1Þ
objects, that is, each row of the Euclidean distance matrix DY

i in
the low-dimensional embedding space should match the corre-
sponding row of input scores Si. Thus, neighborhood embedding
might be performed by maximizing the averaged correlations r
along all rows of both matrices:

arg max
YARm

r≔
1
n

∑
n

i ¼ 1
rð�Si;D

Y
i Þ: ð7Þ

The signs of the original scores contained in S are flipped, such
that smaller values appear analogous to smaller distances as
higher degree of similarity. Integrating this way over per-object
correspondences is an object-conditional reconstruction problem,
which is similarly modeled in variants of SNE.

Object-conditional reconstruction is in contrast to uncondi-
tional (also called matrix-conditional or global) reconstruction
where object placement depends on the whole matrix with
contributions also across rows. Classical MDS with squared dis-
tance stress criterion belongs to both types, because the average
sum of row-wise or column-wise squares is proportional to the
average of all squares. Nonmetric versions of MDS on the other
hand are traditionally defined for vectorized all-pair distances of
the whole input and output matrices and not separately for rows
or columns [31]. For example, individual row maxima that might
be used for object-specific rescaling purposes differ from the
global maximum distance. The gradient of the cost function (7)
for the proposed row-wise correlation-based multidimensional
scaling (cbMDS) approach can be found in Appendix A. In the
following sections we will introduce and discuss different correla-
tion measures r for the cost function (7) that share the property of
being invariant under scaling and translation of the arguments, i.e.
rð�Si;D

Y
i Þ ¼ rð�γ1 � Siþδ1; γ2 � DY

i þδ2Þ for γ1; γ2ARþ ; δ1; δ2AR.

3.1. Pearson correlation

In multidimensional scaling, scatter plots of reconstructed
distances against original distances, so-called Shepard diagrams,
are commonly used to visually assess the quality of fit [32]. Perfect
reconstruction is obtained if this scatter of reconstructed and
original distances coincides with the diagonal line. Yet, any
straight line with positive slope and arbitrary intercept represents
a good reconstruction target, because the relationships between
distances are still maintained in a scale-invariant manner.
Formally, this goal can be expressed by maximizing the linear
Pearson correlation between reconstructed and original distances.

The Pearson correlation coefficient rPðw;uÞA ½�1;1� between
two vectors w and u is given by

rPðw;uÞ ¼ ∑n
i ¼ 1ðwi�μwÞ � ðui�μuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð∑n
i ¼ 1ðwi�μwÞ2Þ � ð∑n

i ¼ 1ðui�μuÞ2Þ
q ð8Þ

Setting w¼ �Si and u¼DY
i and replacing r by rP in (7) allows to

maximize the Pearson correlation between input space similarity
scores and Euclidean distances in the low-dimensional space. The
gradient of rP can be found in Appendix B.

We point out that unweighted Pearson correlation is structu-
rally related to the Cauchy–Schwarz divergence via logarithmic
transformation:

dCSðw;uÞ ¼ 1
2 � log ð〈w;w〉 � 〈u;u〉Þ� log ð〈u;w〉Þ: ð9Þ

In contrast to dissimilarity vectors in the Pearson correlation, here
w and u represent distributions, that is, they remain uncentered
items. Some benefits of Cauchy–Schwarz divergence over Kull-
back–Leibler divergence have been discussed for pattern recogni-
tion scenarios recently [33,13].

Beyond the discussed least-squares modeling of reconstructed
distances against true distances or negative scores, real neighbor
embedding requires more advanced models: recovery of local
distributions is one option [34], ranking is another one [35]. Since
ranking aims, in a non-parametric way, at putting objects into a
given order, this approach is ideal for proper neighborhood
reconstruction if per-object orderings are being optimized. Thus,
for directly modeling neighborhood, order-based rankings instead
of linear correlation quantities should be considered for bridging
from the reconstruction of distance to neighbor relationships, as
addressed in the following.

3.2. Soft Spearman rank correlation

The Spearman rank correlation coefficient rρ is easily obtained
by first converting data vectors into the order ranks of their
elements. These rank vectors are used as arguments of Pearson
correlation in (8)

rρðw;uÞ ¼ rPðrnkðwÞ; rnkðuÞÞ ð10Þ

For deriving a continuous ranking approach which is not based on
discrete sorting operations, the ranking rnkð�Þ of vector elements is
alternatively achieved by summing up rows of the indicator
matrix Z:

rnkðuÞ ¼
∑n

i ¼ 1Zðu1;uiÞ
…

∑n
i ¼ 1Zðun;uiÞ

0B@
1CA for

ZðuÞ ¼
Zðu1;u1Þ … Zðu1;unÞ

…
Zðun;u1Þ … Zðun;unÞ

0B@
1CA: ð11Þ

For the Heaviside step function Zðuk;ulÞ ¼Hðuk�ulÞ, providing
zero for negative arguments and else one, correct ranks are
obtained for vector elements uk in the absence of ties. We focus
on u for ranking points distances in the iteratively adapted
embedding, while w in 10 can be assumed as precomputed ranks
of fixed input object scores. As a continuous approximation of
distance ranking in the embedding, the step function Hðuk�ulÞ
can be replaced by a differentiable sigmoid

Zðuk;ulÞ ¼ sgdklκ þ
1
2n

¼ sgdκ
uk�ul

su

� �
þ 1
2n

¼ 1
1þe�κ�ðuk �ulÞ=su

þ 1
2n

ð12Þ

with mid-tied ranks of vector elements ui being approximated
for κ-1. Self-comparisons ðui�uiÞ along the diagonal lead to
sigmoid values of 1/2, thus, n times the offset of 1=ð2nÞ lets the
approximated ranks start at 1 without affecting derivatives.
Generally, large κ are preferred for strict rank approximations,
but the induced flat tails of the sigmoid derivative complicate the
optimization. In practice κo100 is considered as numerically
feasible in most cases. Adaptation signals from derivatives of the
sigmoid may else vanish numerically to zero whenever expð�746Þ
or smaller, that is, double precision underflow, is encountered.
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To cope with potentially large variations in differences uk�ul,
i.e. for a scale-invariant setting of κ, a division by the standard
deviation su is carried out. The usefulness of this rescaling is
shown by expressing standard deviation su as the square root of
variance, naturally written as overall average of squared paired
differences:

s2
u ¼

1
n�1

∑
n

i ¼ 1
ðui�μuÞ2 ¼

1
n�1

∑
n

i ¼ 1
ui�

1
n

∑
n

j ¼ 1
uj

 !2

¼ 1
2nðn�1Þ ∑

n

i ¼ 1
∑
n

j ¼ 1
ðui�ujÞ2: ð13Þ

For gradient-based optimization the gradient vector of the soft
Spearman rank correlation is provided:

∂rρðw;uÞ
∂u

¼ JrP jrnkðwÞðrnkðuÞÞJrnkðuÞðuÞ: ð14Þ

Therein, JrP denotes the gradient of the Pearson correlation rP , and
JrnkðuÞ is the Jacobian matrix of the approximated ranks. The
necessary derivatives are given in Appendix C. Substituting w¼
�Si and u¼DY

i this gradient is plugged into (7) for optimizing
a point set Y with ranks of Euclidean relationships best matching
the ranks of original data relationships. This way neighborhood
ranks can be reconstructed by continuous optimization.

3.3. Soft Kendall correlation

The Spearman correlation is a basic measure for the compar-
ison of two given rank vectors and thus a good candidate for the
reconstruction of neighborhoods. In this section we consider an
alternative measure that is not based on whole rankings but on
pairwise comparisons.

For optimization let one score be less than another score for a
fixed object in the input space; then, the corresponding Euclidean
distance relationship in the embedding space should be reversed.
More generally, for every three objects in the input space the
inverse similarity relationships should be reestablished by point
distances in the Euclidean embedding space. For reaching this goal
we make use of the Kendall correlation coefficient rτ for compar-
ing vectors w of negative scores from the input space and u of
corresponding Euclidean distances from the embedding space by
assessing the local ordering of all their elements and counting the
number of concordant (Cij) and discordant (Dij) pairs:

Cij ¼ ðwi4wj4ui4ujÞ3 ðwiowj4uioujÞ; ð15Þ

Dij ¼ ðwi4wj4uioujÞ3 ðwiowj4ui4ujÞ: ð16Þ
For all i; jAf1;…;ng let #C be the total number of occasions
whenever Cij evaluates to TRUE, and likewise #D summarizes Dij.
Ignoring the pairs i¼ j, the maximum number of mutually exclu-
sive concordant and discordant pairs is #CþD¼ ðn � n�nÞ=2. Thus,
the normalized difference of the pair counts is used to quantify
trends of positive or negative correlation:

rτðw;uÞ ¼ 2 � #C�#D
nðn�1ÞA ½�1;1�: ð17Þ

This common definition does not consider ties, and we also
assume their absence in the following.

In order to get a differentiable measure we use a soft version of
Kendall correlation:

brτ;κðw;uÞ ¼ 1�2 �
ð∑n

i ¼ 1∑
n
j ¼ 1Zð ~pijÞÞ�q

nðn�1Þ ; ð18Þ

which is based on the products of differences:

~pij ¼ ðwj�wiÞ � ðui�ujÞ
o0 for concordant pairs
40 for discordant pairs

(
ð19Þ

and an indicator matrix Z constructed from all pairs:

Zð ~pÞ ¼
Zð ~p11Þ … Zð ~p1nÞ

…
Zð ~pn1Þ … Zð ~pnnÞ

0B@
1CA: ð20Þ

For the step function ZðzÞ ¼ 1
2ðsignðzÞþ1Þ, providing zero for

negative arguments, 0.5 for zero and 1 otherwise, the Kendall
correlation rτ ¼ brτ;κ is recovered by (18) if q¼ n=2. This value of
q compensates for the fact that zero differences occurring for pairs
i¼ j get counted as partial discordances Zð0Þ ¼ 0:5. In (18) twice
the relative amount of discordant pairs is subtracted from the
highest possible correlation value. This is valid, because untied
data induces a complementary amount of concordant pairs.

In order to get a differentiable measure we use again the
sigmoidal approximation of the step function as soft indicator
function:

Zð ~pijÞ ¼ sgdκ
~pij

swsu

� �
: ð21Þ

Again, the larger the value of κ the steeper the sigmoidal transition
from zero to one, such that limκ-1brτ;κðw;uÞ ¼ rτðw;uÞ. Rescaling
of ~pij by the standard deviations of w and u follows the same
argument as outlined in (13) for Spearman correlation. Again, the
variables w and v are substituted back to scores and distances
w¼ �Si and u¼DY

i .
All building blocks of soft Kendall correlation are differentiable,

and the overall gradient of brτ;κ is derived in Appendix D. Generally,
per-object gradients – determining effective directions of point
movements – can be used to assess the goodness of the embed-
ding for individual objects. Points fall to stationary positions after
convergence, but there are net forces of n�1 relations acting on
any point. These forces are described by the sum of absolute values
of the components of the per-object input–output correlation
gradients (B.1), (C.1) and (D.1). Large values, for example displayed
by larger glyphs, highlight points under strong tension that either
cannot be embedded easily or which serve as important hubs of
the connectivity structure.

4. Practical issues

In this section some statements are made regarding optimiza-
tion, runtime, and output standardization.

4.1. Optimization

Gradients of Pearson, soft Spearman and soft Kendall correla-
tion allow for utilization of unconstrained gradient-based optimi-
zation methods. The maximization of correlation by moving
embedding points is a non-convex problem. Similar to other
neighbor embedding methods, partially optimal configurations
may fail to converge optimally on the large scale. Some approaches
try to circumvent local optima by stochastic gradient descent [12].
For our problem, we found that the memory-limited quasi-New-
ton l-BFGS gradient batch optimization scheme with built-in
default parameters provides good convergence, with termination
triggered at changes of objective function values below 10�7.

For exploiting some structure of the data, initial embedding
coordinates can be obtained by treating rank vectors of per-object
input scores as features to be mapped by random linear projection
into the embedding space. According to the Johnson–Linden-
strauss lemma this helps to map nearby matrix rows into similar
regions of the low-dimensional embedding space [36].
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4.2. Runtime

The runtime of embeddings based on Pearson correlation is
Oðn2Þ, that is OðnÞ for the correlation over n objects, with a factor
depending on the number of iterations to convergence. This is
a common complexity when pairwise scoring data are operated
on without advanced methods like Nystrom̈ approximation [6].
In contrast to this and to the original sorting-based Oðn � log ðnÞÞ
formulations [37], soft Spearman and Kendall correlation already
involve an Oðn2Þ complexity for the comparison of each of n
objects in the input and embedding space via the construction of
soft indicator matrices. The total runtime for those approaches is
thus Oðn3Þ. It will be illustrated that rather good embeddings can
be obtained even though many pairs of input relationships are not
considered during the optimization. Thus, by using sparse input
score matrices, the runtime is substantially reduced. For example,
removing 50% of the input relationships leads to a quarter of
runtime for evaluating the indicator matrices for thinned-out rows
Si and DY

i .
Soft correlation problems can be efficiently solved on GPUs,

because the data transfer-to-processing ratio is 1=n to evaluate the
indicator matrices. Problems with up to about 5000 items can be
processed on consumer graphics boards within two days, and the
break even point in favor of GPU over CPU is reached at about
500 items for a current quad-core machine. For large problems
a speedup of a factor of eight of GPU against CPU is obtained for
the provided MATLAB implementation.

4.3. Output standardization

The discussed embedding techniques do not provide a unique
output, because correlation is a scale-invariant measure, and
distance information is invariant to rotation and reflection. Thus,
for standardizing rotational components, posterior PCA is applied
to the mean-centered output points, i.e. without changing the
dimensionality. For planar plots this defines a rotation to align the
point cloud horizontally along the axis of maximum variance.
Reflection invariance is addressed by flipping to positive skewness
along the axes. Point clouds are finally scaled to attain maximum
axis variance of one. These three actions are a useful subset of
steps of the more general Procrustes analysis problems [38].

5. Quality measures

The assessment of data embeddings is a non-trivial task,
because qualitative (appearance) and quantitative (neighborhood
reconstruction performance) goals might be conflicting. Users may
feel comfortable by looking at a posteriori labeled point clouds of
embedded data. At the same time, calculated measures of neigh-
borhood preservation may point out problems for local or global
neighborhood sizes. Even worse, people look differently at point
clouds, and quality measures for confusion, correlation or exact
reconstruction of original and embedded neighborhoods yield
values that are hard to compare. As a compromise, relaxed
measures are used for comparing the overlap between neighbor-
hoods in the original and the embedding space.

Embedding procedures yield sets of points for which the utility
can be either visually assessed or by comparison of the obtained
neighborhood configurations with the original neighborhoods. The
co-ranking framework was designed exactly for such quantitative
studies [39]. The framework allows one to measure not only
neighborhoods ranking errors of the embedding, but also to
describe the behavior if original neighborhoods are missed in
the reconstruction (‘extrusion’) or if false neighborhoods are
created (‘intrusion’).

Let ϕij ¼ jfk : DY
ikrDY

ij gj be neighborhood ranks of object j
given object i for the reconstructed distances of the embeddings,
and let ξij ¼ jfk : SikZSijgj be ranks of the input scores. Then the
co-ranking matrix counting pairwise rank combinations is defined
as

R¼ ½Rkl�1rk;lrn�1 with

Rkl ¼ jfði; jÞ : ξij ¼ k and ϕij ¼ lgjAf1…ng: ð22Þ

Then, K-ary neighborhoods of size K are described by

UNðKÞ ¼
1
nK

∑
K

k ¼ 1
∑
K

l ¼ kþ1
Rkl;

UXðKÞ ¼
1
nK

∑
K

l ¼ 1
∑
K

k ¼ lþ1
Rkl;

UPðKÞ ¼
1
nK

∑
K

k ¼ 1
Rkk: ð23Þ

For a perfectly embedded K-ary neighborhood all entries in the
first K elements of the diagonal of the count matrix R are n. Thus,
1=nK is needed for scaling UPðKÞ, the paired matches, to a
maximum of one. More generally, at most n � K counts can occur
– in a mutually dependent way – in the K�K quadratic sub-matrix
of R. Entries might also occur in undesired far-away regions of
the adjacent rectangular K � ðn�1�KÞ and ðn�1�KÞ � K sub-
matrices counting missed or false neighborhood reconstruction.
The expressions UNðKÞ and UXðKÞ describe mild intrusions and
extrusions, respectively, which refer to the correct set of neighbors
in the K-ary neighborhood up to permutation errors. Thus, the
combination of all three descriptors

QNXðKÞ ¼UNðKÞþUXðKÞþUPðKÞA ½0;1� ð24Þ

characterizes the quality of reconstruction. The largest value of
QNXðKÞ ¼ 1 indicates complete neighborhood retrieval which must
not be confused with perfect reconstruction. The behavioral
quantity

BNXðKÞ ¼ UNðKÞ�UXðKÞA ½�1;1� ð25Þ

becomes positive for intrusive and negative for extrusive embed-
dings. The measures QNXðKÞ and BNXðKÞ can be related to precision
and recall in information retrieval: intrusion events are false
positively created neighbors that decrease the precision, while
extrusions decrease the recall. More details on the theoretical
foundations of the co-ranking framework are found in separate
works [39,40].

Using the co-ranking framework the distance matrix of the
points embedded in the 2D visual plane is compared to the
negative source similarity matrix in the experiments, that is, the
original score ranking is again reversed for matching the attained
distance ranks, and the assessments in (24) and (25) are sensitive
to transposition of the score matrix.

6. Applications

Different scenarios of correlation-based multidimensional scal-
ing are studied with three data sets. A synthetic two-dimensional
data set allows for investigating reconstruction using different
neighborhood models and sparse data. A 4096-dimensional face
image database is used for dimension reduction purposes, and a
protein database is used in the last application for processing
asymmetric score data. Depending on the application, different
methods are used for comparison, like non-metric MDS, kPCA, or
SNE and t-SNE from the MATLAB toolbox for dimensionality
reduction [2].
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6.1. Synthetic data

An illustrative data set is used to demonstrate a number
of properties of the correlation-based embedding techniques.
Different from the 2D SwissRoll manifold designed for optimum
embedding with geodesic distances by LLE and IsoMap [7,8] and
from the hollow sphere designed for being torn and cut at
fluctuating point densities on its surface by stochastic neighbor
methods [14], the proposed data set exhibits more structure.
A logarithmic spiral with increasing point distance is combined
with a rectangle composed of equidistant points, and two mini-
clusters occur as satellites. Since this 2D Euclidean data set shown
in Fig. 2 contains an intelligible number of only 236 points, effects
of re-embedding them into the plane can be studied by visual
inspection. In a classical MDS context such data is not very
valuable, because a perfect reconstruction can be expected.
In neighbor embedding scenarios, though, it is not intuitively clear
how well object-conditional neighborhood models perform in
data reconstruction.

Perfect embedding results are obtained for all three correlation
measures in the cbMDS framework for the trivial tasks of recon-
structing the given distance matrix. These results are not shown
here, but they can easily be verified by running the demo script
included in the software package. We focus on potentially more
interesting aspects in the following.

6.1.1. Reconstruction from neighborhood probabilities
From an ordering point of view distance-based neighbor ranks

and neighborhood probability estimates should represent the
same configuration for a given data set. Yet, ranks induce uniform
distributions even under scalar shifts, scalings, or monotone
transformations of the relational input data, while distance-
based probability distributions are usually strongly skewed. Two
experiments aim at the following aspects: a valid reconstruction of
probability-induced neighbor ranks and the properties of recon-
structions of symmetrized probability matrices. The former aspect
takes relationships as a SNE view of the asymmetric neighborhood
probability matrix and the latter represents the symmetric prob-
ability matrix as used by t-SNE. Both input matrices are estimated
by Gaussian distributions by using the x2p function from the
MATLAB toolbox for dimensionality reduction [2].

The top right panel in Fig. 3 contains the results by cbMDS for
soft Spearman with κ ¼ 5 for a typical perplexity value of p¼15

for the input neighborhood probability estimation. Soft Spearman
is chosen as embedding method, because neighbor probabilities
and ranks are closely related, while Pearson would reconstruct
rather the raw probability values, and the triangle-based recon-
struction in soft Kendall would not fully utilize the available
complete ranking information.

Black diamond points in the top right panel in Fig. 3 show the
very good results for the asymmetric input matrix, if compared to
the original data set in Fig. 2. Mild bending artifacts occur only
where the rectangle and the spiral are very close. Almost perfect
rank-based embedding results, being supported by the excellent
corresponding quality and behavior graph in the upper left panel,
can be expected. This is because the Gaussian neighbor probability
estimation is a monotonic function of the distance (radius). For
comparison, the embedding results of SNE are found in the lower
left panel. Due to the necessarily fixed perplexity value (here 15),
this number of points is always accounted for in the neighborhood
model. Such a forced inclusion of points turns the logarithmic
spiral into a more linear spiral, and the edges of the rectangle are
bent into curves. The general topology is validly reconstructed,
though, including the two mini-clusters.

The colored points in the top right panel represent the cbMDS
results for the symmetric neighborhood probability matrix as seen
by t-SNE. Many distortions become apparent. A valid reconstruc-
tion of the original point configurations is not possible, because of
the loss of information by symmetrization, that is, by averaging
pairs of probabilities ðpij;pjiÞ. Consequently, as seen in the lower
right panel, a t-SNE embedding does not capture the overall
topology correctly, but local features as rectangle edges and
mini-clusters get reproduced. A large diversity of results is
achieved by t-SNE, from which a representative one is shown.
This points out the difficulty of solving this low-dimensional
reconstruction problem by matching Gaussian and Student-t
distributions of the neighborhood probabilities by KL divergence.

6.1.2. Embedding of sparse relationship data
Currently, unknown pairwise relationships are unsupported in

most implementations of neighbor embedding methods. Setting
the corresponding entries in the neighborhood probability matrix
to zero would induce zero neighborhood probabilities in the
embedding, but this would lead to repelling instead of neutral
embedding forces for these relationships. Still, SNE and t-SNE are
inherently sparse methods, because they look only for a given
number of effective neighbors per row: at a perplexity of p and for
n data points, there is a fraction of p=n significantly contributing
entries in each row. Thus, most entries of the neighborhood
probability matrix are close to zero if p5n.

The proposed correlation-based methods are implemented to
truly ignore unknown input relationships by skipping quantitative
contributions to the correlation measures for tagged entries of the
original score matrix. This is a potentially useful feature, because
generally pairwise object relationships contain vastly redundant
information about relations in a data set for deriving still valid
embeddings.

For example, the above set of 236 2D points is being repre-
sented by 27 730 informative distance pairs. We randomly
removed 215 entries from each line of the original distance matrix
(i.e. E91% dropped) and applied cbMDS for soft Kendall and
Spearman for the reconstruction. The results of cbMDS are shown
in the middle two panels. Generally, rather good results are found,
but the Kendall embedding looks a bit more scattered locally
compared to the Spearman approach. This is also shown in the
co-ranking quality graph, but undesired intrusion of Spearman can
be observed for larger neighborhood sizes in the behavior graph.
Generally, the success of reconstruction of unknown relationships
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Fig. 2. Synthetic 2D data set featuring changing densities in the logarithmic spiral,
an rectangle overlay with equi-distant points, and two mini clusters.
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depends mostly on the data, and especially objects with naturally
few relationships might be difficult to reconstruct under such an
uncertainty.

6.1.3. Olivetti faces data set
The Olivetti faces database contains 400 gray images of

40 individuals in 10 different poses [41]. The number of dimen-
sions is 4096 per image. In contrast to the previous synthetic
reconstruction task, this one is a true dimension reduction
problem, because negative pairwise Euclidean distances between

these image vectors are used to constitute Sij. In this dimension
reduction scenario, it is better to account for the distance informa-
tion. This is better respected by Pearson correlation rather than by
rank correlation measures. Again t-SNE is used for comparison.
Results are shown in Fig. 4.

Pearson correlation exhibits a visually cluttered output in the
top right panel, but the corresponding quality graph shows best
performance beyond a neighborhood size of about 40. Since each
person is represented by 10 faces, this means that faces of different
persons are visually confused. For t-SNE a perplexity value of
p¼15 was used to allow for some tolerance in dealing with
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Fig. 3. Comparison of embeddings of the synthetic spiral data. In the top left co-ranking panel the quality and behavior values Q and B on the ordinate correspond to (24) and
(25); Q and B are both plotted against neighborhood size K on the abscissa.
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between-person class boundaries. The output looks well-
structured with strong separation of the 40 persons. Accordingly,
the quality graph shows very high values, starting at 0.8, for very
small neighborhood sizes of 8 points, but being less accurate on
the overall scale. Such characteristic is to be expected for this
prime example of what t-SNE was originally designed for: local
neighborhood preservation in dimension reduction based on
Euclidean distances.

To simulate the t-SNE concept of effective neighborhood size,
per-face distance ranks were squashed by a mirrored sigmoid
transformation, as shown in Fig. 5. The function approximates
neighborhood probabilities of 1 for low distance ranks and 0 for
high ranks with a turning point of 50% probability at a rank of 15,
using a transition width of κ ¼ 2. The resulting transformed
distance matrix was used as score-type input data for cbMDS.
Again Pearson correlation is employed, because results of soft
Spearman and Kendall correlation do not possess the desired
properties under this monotonic distance transformation. The
resulting scatter plot is shown in the lower left panel. A structure
is obtained that shares some properties of t-SNE and of the
original distance embedding by cbMDS. This observation is con-
firmed by the quality and behavior graph being located between
both. The straight-forward sigmoidal rank transformation led to
the desired emphasis on local neighborhood reconstruction. At the
same time, also global distance features are comparably well
recovered. While t-SNE performs best for the important goal of
local neighborhood reconstruction, cbMDS can be successfully
modulated to focus on localized features and still achieve good
average overall results.

6.2. Protein data

The data set consists of 2900 samples of protein sequences
taken as a random subset from the full Swiss-Prot database [42].
The database contains protein sequences of length from 30 to
more than 1000 amino acids related to 32 common classes such as
globin, cytochrome a and b, tubulin, kinases, as provided by the
Prosite labeling [43]. The basic local alignment search tool (BLAST)
was used to calculate pairwise sequence similarities, leading to an
asymmetric scoring matrix because of local sequence comparisons
[44]. The maximum score varies strongly between 8.5 and 6353
across all sequences, which indicates the need for object-
conditional embedding techniques unless data are being normal-
ized in a desirably appropriate preprocessing step.

Fig. 4. Comparison of embeddings of the Olivetti faces data. Images of 40 people in different poses are referred by the 40 symbols in the scatter plots. Magnitudes of
gradients can be identified as tension and they are shown by proportional point size in cbMDS.

Fig. 5. Distance transformation function. Distances are turned into neighborhood
probabilities by mapping their per-object ranks, here using f ðxÞ ¼ ð1þexp
ð�ðrank�15Þ=2ÞÞ�1.
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Different embedding methods are used for comparing cbMDS
with kernel PCA, non-metric MDS, and t-SNE. Since nonmetric
multidimensional scaling and t-SNE rely on dissimilarity data D
as inputs, original score data in S need to be transformed before
their application. The following common score transformation is
carried out, according to the work of Pekałska [45]:

Dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SiiþSjj�Sij�Sji

q
: ð26Þ

The resulting symmetric dissimilarity matrix comes at the price of
some loss of information which we can avoid by using cbMDS
directly on the original score matrix. Note that t-SNE even suffers a
second loss of information by involving a transformation of D into
a symmetrized neighborhood probability matrix P.

Results are shown in Fig. 6 and summarized here:

� Soft Kendall correlation with a sigmoidal approximation of
κ ¼ 5 leads to a cross-like scatter point configuration with

some protein classes becoming visible fairly well in the top
right panel.

� Soft Spearman correlation and different choices of the sigmoi-
dal approximation κ are not shown, because they turned out be
similar to soft Kendall, but with slightly worse quality values.
Pearson correlation yields the structurally different, more
circular scatter plot shown in the middle left panel.

� As frequently observed, t-SNE provides a visually appealing plot
with rather specific class assignments for a perplexity value of
p¼50; this is displayed in the middle right panel.

� For the symmetrized BLAST score matrix 1
2ðSþS> Þ taken as

Gramian, rays are being formed for the three major protein
classes by kernel PCA, as shown in the lower left panel. This is a
clear visual result, but it collects most other protein classes in a
singular spot near the coordinate origin.

� The scatter plot in the lower right panel for nonmetric scaling
based on isotonic regression resembles convection patterns
with protein classes appearing as neighbored patches and
ribbons. Class members are rather contiguously grouped, but

500 1000 1500 2000 2500

0

0.2

0.4

0.6

0.8

1
Protein data: quality & behaviour

K

Q

B

cbMDS Kendall κ=5
cbMDS Pearson
t-SNE p=50
Kernel PCA
MDScale

cbMDS Kendall κ=5 

cbMDS Pearson t-SNE p=50 (Pekalska)

Kernel PCA MDScale (Pekalska)

Fig. 6. Comparison of embeddings of the protein data. Colors indicate 32 different protein classes. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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the overall arrangements are structurally different from the
other embedding results. Note that 153 proteins are not shown,
because they are placed widely scattered far beyond the chosen
axis intervals.

� Finally, quality and behavior graphs for the visual outputs are
combined in the upper left panel. According to its design, t-SNE
performs best for small neighborhood sizes, but drops quality
for larger neighborhoods. Pearson-based cbMDS performs very
well for neighborhood sizes of about 180–200. Kendall-based
cbMDS provides good average overall results. Kernel PCA
focusses too much on three major protein classes and has a
rather poor quality performance. MDScale, despite its generally
interesting grouping, provides the worst results which may be
partially caused by (26) for the score-to-dissimilarity transfor-
mation or its unconditional, i.e. non-object-specific, nature.

7. Discussion and outlook

The present work is supposed to strengthen the yet under-
represented method development of methods for directly proces-
sing relational, potentially asymmetric score data. Reconstructing
optimized object neighborhoods, that is, data topology, via score
ranking becomes feasible in the proposed soft Spearman and
soft Kendall correlation approaches for embedding complex data
relationships in a Euclidean space. Essentially, both correlation
measures are based on soft counting operations modeled by a
sigmoidal function. Theoretically, hard approximations of the step
function would be desirable, but softer transitions turn out to be
more robust and easier to optimize in practice.

A synthetic data set was used to illustrate distortion-free
embeddings where state-of-the-art neighbor embedding methods
would generate local neighborhood magnifications. Also, a per-
spective was taken on forced symmetries of inherently, though
usually weakly, asymmetric neighbor relations. As an expected
result, the original data topology could not be validly recovered for
these structural modifications. Further experiments showed that a
very good reconstruction is possible by the proposed soft-rank
cbMDS methods, even after deleting more than 90% of the input
relationships.

One of the current limitations of rank-based approaches is their
weak statement about conceptually indistinguishable relations.
For example, it is important to properly order high-scoring items,
while low scores would not need good ordering precision, and
rankings would even be misleading in the presence of noise.
Robustness under noise is one of the major advantages of localized
embedding methods like t-SNE, because items far beyond the
effective neighborhood do not contribute much to the result.
As shown for the face dimension reduction problem, it is possible
to emulate such a behavior by using the proposed cbMDS with
Pearson correlation on sigmoidal transformations of score ranks.

Processing of asymmetric pairwise protein scoring data turned
out to be a great challenge. Embedding results of five different
models looked very different. Two of the methods suffered from
the need for symmetric dissimilarity data, thus, inducing lossy
data transformation. A good compromise of local and global
neighbor reconstruction quality was found for the developed soft
Kendall cbMDS method.

Generally, the proposed correlation-based MDS methods are
conceptually located between usual ’least-square’ MDS and recent
neighbor embedding approaches. The framework is rather generic
with correlation taking over the role of scale-free mediator between
input scores and embedding distances. Depending on the problem
at hand, Pearson correlation can be applied, if input score distribu-
tions shall be accounted for. Alternatively, one of soft Spearman
or Kendall correlation can be used for distribution-invariant

reconstruction. Although specialized methods tend to perform
better for specific tasks, the applications ranging from sparse recon-
struction via dimension reduction to embedding of asymmetric
score data illustrate how the cbMDS framework can be used for
a versatile set of different tasks.

Implementations of the cbMDS methods discussed here, includ-
ing data, are available at http://mloss.org as package ‘cbMDS’ for
MATLAB/GNU-Octave.
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Appendix A. Derivative of r

This section contains the gradient of r (cf. (7)) with respect to
the point positions yi:

Jr j�SðyiÞ ¼
1
n
Jrj�Si

ðDY
i ÞJDY

i
ðyiÞ:

The notation Jr j�SðyiÞ refers to the Jacobian of the correlation
function r given the scores S with respect to yi. The distance
matrix derivatives are given by

JDY
i
ðyiÞ ¼

∂DY
i1=∂Y

1
i … ∂DY

i1=∂Y
d
i

…
∂DY

in=∂Y
1
i … ∂DY

in=∂Y
d
i

0BB@
1CCA

with
∂DY

ij

∂Yk
i

¼Yk
i �Yk

j

DY
ij

where Yd
i denotes the dth attribute of yi.

Appendix B. Derivative of Pearson correlation rP

This section contains the gradient of rP (cf. (8)) with respect to yi,
using the abbreviation rP≔B= ffiffiffiffiffiffiffiffiffiffiC �Dp

:

∂rPðw;uÞ
∂u

¼ JrP jwðuÞ ¼ rPðw;uÞ � u�μu

B �w�μw

D
� �

ðB:1Þ

with μw ¼ 1
n

∑
n

i ¼ 1
wi and μu ¼

1
n

∑
n

i ¼ 1
ui:

Appendix C. Derivative of rρ

The standard deviation ru and its derivative are

su ¼
1

n�1
� ∑

n

i ¼ 1
ðui�μxÞ2

 !1=2

and
∂su

∂ut
¼ ut�μx

ðn�1Þ � su
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Derivatives for (11) and (12) are

∂Zðuk;ulÞ
∂uk

¼ ∂sgdκððuk�ulÞ=suÞ
∂uk

¼ 1
su

�uk�ul

s2
u

� ∂su

∂uk

� �
� sgd0klκ

∂Zðuk;ulÞ
∂ul

¼ ∂sgdκððuk�ulÞ=suÞ
∂ul

¼ �1
su

�uk�ul

s2
u

� ∂su

∂ul

� �
� sgd0klκ

∂Zðuk;ulÞ
∂um

¼ ∂sgdκððuk�ulÞ=suÞ
∂um

¼ �uk�ul

s2
u

� ∂su

∂um
� sgd0klκ

with sgd0klκ ¼ κ � sgdklκ � ðsgdklκ �1Þ:

The Jacobian of the soft rank JðrnkðuÞÞ is constructed by the above
derivatives in corresponding to the proper summation indices in
(11). Since n summations are carried out for which the Jacobian
involves derivatives for all variables u1…n, JðrnkðuÞÞ is an n� n
matrix. The complete gradient vector of the soft Spearman rank
correlation is given by

∂rρðw;uÞ
∂u

¼ JrP jrnkðwÞðrnkðuÞÞJrnkðuÞðuÞ: ðC:1Þ

Appendix D. Derivative of brτ;κ
The sigmoid-based formulation (18) allows for gradient ascend

optimization of Kendall τ with respect to the adaptive vector u
assuming a fixed vector w:

∂brτ;κðw;uÞ
∂uk

¼ � 2
nðn�1Þ ∑

n

i ¼ 1
∑
n

j ¼ 1

∂sgdκ
wi�wj

sw
� ui�uj

suk

� �
∂uk

; ðD:1Þ

where

∂
∂uk

sgdκ
wi�wj

sw
� ui�uj

su

� �
¼ ∂
∂uk

sgdκðzðui;ujÞÞ ¼
∂sgdκðzÞ

∂z
� ∂zðui�ujÞ

∂uk

with zðui�ujÞ ¼ ~wij �
ui�uj

su
and ~wij ¼

wi�wj

sw
:

The derivative of the sigmoid and the standard deviation is given
by

∂sgdκðzÞ
∂z

¼ κ � sgdκðzÞ � ðsgdκðzÞ�1Þ
∂su

∂uk
¼ uk�μu

ðn�1Þsu
:

For the derivative of zðui;ujÞ we distinguish three cases:

∂zðuk;ulÞ
∂uk

¼ 1
s�

uk�ul

s2
u

� ∂su

∂uk

� �
� ~wkl

∂zðul;ukÞ
∂uk

¼ ∂zðuk;ulÞ
∂uk

because ðzðul;ukÞ ¼ zðuk;ulÞÞ

∂zðum;ulÞ
∂uk

¼ �um�ul

s2
u

� ∂su

∂uk
� ~wml

assuming ka l, kam and lam. The standard deviation causes
non-vanishing derivatives for the frequent last case in which the
kth attribute does not appear in the difference part of z.
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