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a b s t r a c t

Since they represent a model in terms of few typical representatives, prototype based learning such as
learning vector quantization (LVQ) constitutes a directly interpretable machine learning technique.
Recently, several LVQ schemes have been extended towards a kernelized or dissimilarity based version
which can be applied if data are represented by pairwise similarities or dissimilarities only. This opens
the way towards its application in domains where data are typically not represented in vectorial form.
Albeit kernel LVQ still represents models by typical prototypes, interpretability is usually lost this way:
since no vector space model is available, prototypes are represented indirectly in terms of combinations
of data. In this contribution, we extend a recent kernel LVQ scheme by sparse approximations to
overcome this problem: instead of the full coefficient vectors, few exemplars which represent the
prototypes can be directly inspected by practitioners in the same way as data in this case. For this
purpose, we investigate different possibilities to approximate a prototype by a sparse counterpart during
or after training relying on different heuristics or approximation algorithms, respectively, in particular
sparsity constraints while training, geometric approaches, orthogonal matching pursuit, and core
techniques for the minimum enclosing ball problem. We discuss the behavior of these methods in
several benchmark problems as concerns quality, sparsity, and interpretability, and we propose different
measures how to quantitatively evaluate the performance of the approaches.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Due to their intuitive learning and classification rule based on a
winner-takes-all scheme, prototype-based techniques such as
learning vector quantization (LVQ) enjoy a great popularity in
diverse application domains ranging from telecommunication and
robotics up to bioinformatics and data mining [32,4,20]. Apart
from an only linear training time and its suitability for online
scenarios, as demonstrated e.g. in [31,15], one of its benefits is
given by the fact that models are represented in terms of few
prototypes which can be inspected by practitioners in the same
way as data. Hence this inherent representation scheme lends
itself as an intuitive interface to the model, unlike many black box
alternatives in machine learning which offer state-of-the-art
results but, usually, do not provide a justification why a certain
classification takes place [1]. In complex settings where the overall
task is not necessarily clear a priori or in settings where the
human has to take responsibility for a subsequent action, inter-
pretability becomes crucial: here, human insight is often the only
way to further specify a priorly unclear training setting or to
substantiate mere observations by causalities. Due to this reason,

there is an increasing demand of interpretable models which
provide a human understandable interface to their decisions
besides excellent classification accuracy in areas such as biomedi-
cal data analysis or interactive data inspection [56].

Recently, quite a few approaches have addressed the interpret-
ability of powerful machine learning algorithms, including, for
example, intelligent approximation techniques and feature selec-
tion mechanisms for SVM, blind signal separation, enhanced score
methods, or visualization techniques [44,54,8,53,23]. One promi-
nent example, for which interpretability is guaranteed per the
design of the model, is offered by prototype based techniques such
as learning vector quantization (LVQ) or generalizations thereof as
proposed in [48,50,32,7]. LVQ relies on prototypical class repre-
sentatives as model parameters. Decisions are taken based on the
distance of a data point and the prototypes by means of a winner-
takes-all rule. Interestingly, some LVQ techniques can be easily
enhanced such that they provide an inherent low dimensional
visualization of their decisions [11], or an extension of the models
by directly interpretable relevance terms is possible [49,48].
Further, very strong learning theoretical guarantees substantiate
LVQ algorithms as classification models with excellent general-
ization behavior [3,5,49].

Classical LVQ methods are restricted to vectorial data such that
they cannot be applied if data are non-vectorial and represented in
terms of pairwise similarities or dissimilarities. Examples for such
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settings include structured data such as graphs, trees, sequence
data, XML, or the like [17,19,46]. Often, these data can be
addressed by means of a dedicated similarity measure or kernel,
including e.g. sequence alignment, the normalized compression
distance, graph kernels, or similar [19,13,12,40,26,30,34,35].
As such, the similarity or dissimilarity measure can serve as a
canonical interface of the model towards the given data set, as is
the case e.g. in popular kernel approaches.

Several extensions of prototype methods to general distances
or kernels have recently been proposed, see e.g. [33,14,24,9,42,
29,18,27,38,41]. The key problem which is addressed in these
approaches is the definition of a space where prototypes can be
represented since no embedding vector space is explicitly available
for this purpose. Some of these approaches restrict the prototype
locations to exemplars, i.e. data points, and adapt prototypes
within this discrete set. Alternatives rely on an implicit embedding
of the data in a kernel space, or, more generally, pseudo-Euclidean
space or Krein space, in which vector operations can be done [39].
Concrete learning algorithms usually provide means of how to
perform this embedding implicitly by means of kernelization or
relationalization. This technique results in methods which have
squared complexity as opposed to cubic complexity for an explicit
embedding result. Interestingly, approximation techniques as
proposed in [21,24,47] can improve the complexity to linear time.
While exemplar based techniques often suffer from the restricted
numerical flexibility, relational or kernel approaches in particular
have obtained results which are competitive to state-of-the-art
alternatives such as SVM [29,25].

For kernel LVQ schemes, one important property of prototype-
based techniques is lost: prototypes are no longer given as explicit
points in the data space, rather, an indirect representation as a
linear combination of an underlying (usually not explicitly given)
feature space is used. Thus, interpretability of the models, one of
the main benefits of LVQ techniques, is no longer given. In this
contribution, we address the question how to get around this
problem by means of sparse approximations of prototypes. In this
case, prototypes are represented by one or few exemplars only,
whereby the latter can be directly inspected by practitioners in the
same way as data. At the same time, training benefits from the
larger flexibility of a continuous adaptation space as provided by
the full model.

The principle of sparsity constitutes a common paradigm in
nature-inspired learning, as discussed e.g. in the seminal work
[37]. Interestingly, apart from an improved complexity, sparsity
can often serve as a catalyzer for the extraction of semantically
meaningful entities from data. In our case, the basic entities are
represented by the data itself, and the task is to approximate given
prototypes by sparse counterparts, thereby minimizing the loss of
accuracy. It is well known that the problem of finding smallest
subsets of coefficients such that a set of linear equations can still
be fulfilled constitutes an NP hard problem, being directly related
to NP-complete subset selection. Because of this fact, approxima-
tion techniques have to be considered, one popular approach
being e.g. a l1-relaxation of the problem [16] as used in LASSO.

In this contribution, we propose a few possibilities to approx-
imate prototypes in a classical LVQ scheme by sparse approxima-
tions, thereby partially relying on classical solutions, but also
taking into account simple heuristics which are motivated by the
underlying geometrical background. Thereby, we propose one
technique which emphasizes sparsity already while training,
comparing this to two mathematical approximation schemes of
the representation, namely classical orthogonal matching pursuit
[10] and core techniques to approximately solve the minimum
enclosing ball problem for the receptive fields of prototypes. As an
alternative, we investigate two simple heuristics: an approxima-
tion of the prototypes by their closest exemplars, and a simple

numerical rounding of the coefficient vector obtained by full
training. We investigate the performance of these different tech-
niques as concerns their classification accuracy and degree of
sparsity. As one quantitative measure which can be related to the
model interpretability, we use Rissanen's description length prin-
ciple in a supervised setting as well as the overall data entropy to
judge the representativity of prototypes in an unsupervised
perspective [43].

Now we first introduce robust soft learning vector quantization
(RSLVQ) as a LVQ scheme based on a statistical model where
training can be derived as likelihood ratio optimization [50], and
its extension towards general kernels [25,29]. Afterwards, we
introduce different sparse approximation schemes for the repre-
sentation of prototypes. We test the approaches using different
benchmarks from similarity based learning [12] and evaluate the
degree of sparsity obtained in the diverse approaches as well as
their accuracy. We conclude with an interpretation of the results in
the light of the data signature.

2. Kernel robust soft learning vector quantization

LVQ as originally proposed by Kohonen constitutes a very
intuitive classifier which bases its decision on a winner-takes-all
scheme and its learning rule on variants of Hebbian learning. Original
LVQ 1 is surprisingly good in typical model situations as investigated
e.g. in [5], but its adaptation rule is based on heuristic grounds only
and cannot be interpreted as direct optimization of a valid cost
function [6]. One of the first proposals of an underlying cost function
related to large margin maximization can be found in [45], see
e.g. [28,49] for a corresponding proof. The alternative proposal pre-
sented in [50] takes the perspective of generative models by relying
on a mixture of Gaussians. A learning rule similar to LVQ2.1 can be
derived thereof as likelihood ratio maximization.

Formally, assume that data ξiARn are labeled yi. A trained RSLVQ
network represents a mixture distribution characterized by m proto-
types wjARn. The labels of the prototypes cðwjÞ are fixed. sj denotes
the bandwidth. Mixture component j induces pðξjjÞ ¼ constj � exp
ðf ðξ;wj;s2

j ÞÞ with normalization constant constj and function f ðξ;wj;

s2
j Þ ¼ � Jξ�wj J2=s2

j . The probability of data point ξ is defined as

mixture pðξjWÞ ¼∑jPðjÞ � pðξjjÞ with prior P(j) and parameters W of
the model. The probability of a data point ξ and a given label y is
pðξ; yjWÞ ¼∑cðwjÞ ¼ yPðjÞ � pðξjjÞ. Learning aims at an optimization of
the log likelihood ratio

L¼∑
i
log

pðξi; yijWÞ
pðξijWÞ :

For optimization, usually a stochastic gradient ascent is used which
yields update rules similar to LVQ2.1 provided class priors are equal,
see [50] for details.

Given a novel data point ξ, its class label is the most likely label
y corresponding to a maximum value pðyjξ;WÞ � pðξ; yjWÞ. For
typical settings, this rule can be approximated by the standard
winner-takes-all rule. We refer to the data ξi which are closest to a
given prototype wj as the receptive field Rj of the prototype.

In this standard form, RSLVQ can be used to classify Euclidean
vectors only. Often, data are presented in more general form,
representing pairwise similarities or dissimilarities of the data.
Depending on whether the underlying similarity corresponds to
an Euclidean feature space, an implicit underlying vector space is
present in the case of kernel variants of prototype based techni-
ques (see e.g. [9,29,42,41,47,57]), or a more general Krein space is
present in relational variants (see e.g. [24,38,25]). Here we con-
sider a recent kernelized version of RSLVQ model [50,29,25]. We
assume a fixed kernel k corresponding to a feature map Φ. We set
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kil≔kðξi; ξlÞ ¼ΦðξiÞtΦðξlÞ. Usually, pairwise similarities are given
and the feature map Φ is not known. A matrix K ¼ ðkilÞi;l corre-
sponds to a valid kernel matrix if and only if it is positive-
semidefinite.

Since the feature space is usually not known, prototypes have
to be represented implicitly in feature space. Usually, one restricts
to linear combinations

wj ¼∑
i
γjiΦðξiÞ:

In this setting, the cost function of RSLVQ becomes

L¼∑
i
log

∑cðwjÞ ¼ yi PðjÞpðΦðξiÞjjÞ
∑jPðjÞpðΦðξiÞjjÞ

:

Here, we assume equal bandwidth s2 ¼s2
j , for simplicity. Further,

we assume constant prior P(j) and mixture components induced
by normalized Gaussians. These can be computed in the data space
based on the Gram matrix because of the identity

JΦðξiÞ�wj J2 ¼ ΦðξiÞ�∑
m
γjmΦðξmÞ

����
����
2

¼ kii�2 �∑
m
γjmkimþ∑

s;t
γjsγjtkst

where the distance in the feature space is referred to by J � J2.
There are two ways to optimize the cost function of kernel

RSLVQ as explained in [25] in terms of a general framework: it
L can be optimized directly with respect to the model parameters
γjm by means of a gradient ascent technique. As an alternative, the
cost function can be optimized with respect to the prototypes wj,
and the resulting update rules can be decomposed into contribu-
tions of the coefficient vectors γjm, resulting in update rules for the
latter. Note that there is no guarantee that the gradient commutes
with linear combinations of parameters such that the two update
rules yield numerically different behavior, albeit the same local
and global minima are present. Further, it is not clear a priori
whether a decomposition of the update rule of wj in terms of
coefficients is possible; this is indeed not the case if adaptation
takes place in the pseudo-Euclidean space, while Euclideanity
allows such a decomposition, see [25].

Here, we rely on an optimization of the costs by implicit
updates of the prototypes, which exactly mimics the numerical
behavior of the vectorial setting. It has been shown in [29,25] that
a stochastic gradient ascent of the cost function with respect to the
prototypes can be expressed in terms of the coefficients only,
leading to the following adaptation rules:

Δγjm �

�ðPyðjjΦðξiÞÞ�PðjjΦðξiÞÞÞγjm if ξmaξi; cðwjÞ ¼ yi
ðPyðjjΦðξiÞÞ�PðjjΦðξiÞÞÞð1�γjmÞ if ξm ¼ ξi; cðwjÞ ¼ yi
PðjjΦðξiÞÞγjm if ξmaξi; cðwjÞayi
�PðjjΦðξiÞÞð1�γjmÞ if ξm ¼ ξi; cðwjÞayi

8>>>><
>>>>:

It performs exactly the same updates as RSLVQ in the feature space if
prototypes are in the linear span of the data. Often, a further
restriction of the parameters to the convex hull takes place to ensure
a representative location of the prototypes within the convex hull of
the data. We will follow this principle to already boost the interpret-
ability of the prototype coefficients while training.

Note that, unlike vectorial RSLVQ, prototypes are represented
implicitly in terms of linear combinations. The inspection of a
prototype thus requires to inspect the coefficients representing the
prototype γj and all data, the latter usually being characterized in
terms of pairwise similarities only. Thus, the method does no
longer give interpretable results, and sparsity of the model is lost.

3. Approximation of the prototypes

Kernel RSLVQ yields prototypes which are implicitly repre-
sented as linear combinations of data points. Since the training

algorithm and classification depends on pairwise distances only,
simple linear algebra allows us to compute the distance of a data
point and a prototype based on the pairwise similarity of the data
point and all training data only. However, sparseness of the
prototype is lost this way.

Here we propose different ways to arrive at sparse prototype
representations. If only a few coefficients γjm are non-vanishing, a
direct inspection of the corresponding exemplars ξm allows
practitioners to judge the characteristics of the correlated proto-
type and its receptive field by a direct inspection of the exemplars.
A sparse representation of a prototype wj ¼∑mγjmΦðξmÞ refers to a
set of one or more prototypes f ~wi

jjig of the form

~wi
j ¼∑~γ ijmΦðξmÞ

such that

� the size of this set is small, ideally, only one approximating
prototype ~w1

j for wj is necessary,
� these vectors are sparse, i.e. j~γ ijj0 is as small as possible,
� the set approximates wj in the sense that the receptive field of wj

as compared to the union of the receptive fields of its approxima-
tions ~wi

j contains approximately the same set of data points.

One possibility to ensure that the last condition holds is to enforce
~wi
j �wj as measured by the distance in the feature space.
This formulation includes as a subproblem the task to find a

vector ~wj ¼∑~γ jmΦðξmÞ ¼wj such that j~γ jj0 is minimum. This
problem is NP-hard, such that we have to rely on approximations.
In the following, we introduce a variety of possible schemes.

3.1. Sparse training

A classical way to enforce sparsity constraints consists in the
addition of a regularization term while training. This technique has
been proposed, among others, in the pioneering work of Olshausen
and Field based on a probabilistic model, for example [37]. Thus, we
substitute the cost function L by the sum

L�Const � SðγÞ
where SðγÞ constitutes a constraint which emphasizes sparse solu-
tions such as

SðγÞ ¼∑
ji
jγijj1

and Const40 is a priorly chosen constant which weighs the two
objectives of the combination. Optimization of these costs can be
done by a subgradient method [51], which reduces to a standard
gradient ascent for most of the regions. For γij ¼ 0, the subgradient is
set to the constant 0 to emphasize sparse solutions. Note that, this
way, sparse prototypes are chosen already while training, which has
usually the effect that the final location of the resulting prototypes
can be very different from the prototypes obtained by standard
kernel RSLVQ without sparsity constraint. This technique is the only
one among the proposed ones which changes the shape of the
prototypes already while training, all other techniques start from a
trained set of prototypes and try to exchange the linear combina-
tions by a sparse variant. Therefore, we refer to this method as
sparse training in the following.

3.2. Simple heuristic approximation of the prototypes

Geometric heuristic: As a simple alternative, we propose two
very simple approximation schemes which substitute trained
prototypes by sparse approximations. The first approach relies
on the geometry of LVQ. For kernels, the distance of prototypes to
points in their receptive field is changed to a small amount only, if
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we approximate the prototype by the closest exemplar. As a
generalization thereof, in particular to meet settings where the
feature space is not densely populated, we can use the Kapprox

closest exemplars for some fixed Kapprox. Note that this method,
which we refer to as Kapprox-approximation in the following,
represents a prototype by a set of Kapprox new sparse ones with
l0 norm equal to one.

Numerical heuristic: As an alternative, we can consider the
coefficient vector γj and take the size of the coefficients as an
indicator for the importance of the underlying exemplar. For the
Khull-convex hull, we select the Khull largest coefficients γjm and we
delete all but these coefficients in the vector γj. This is then
normalized to 1: ∑m ~γ jm ¼ 1; thereby, we neglect the upper index
since only one prototype is used for the approximation.

3.3. Approximate representation of the prototypes

As an alternative to these simple heuristic approximation
schemes, we can use more fundamental optimization techniques
which try to represent a given prototype as accurately as possible
regarding some explicit mathematical objective. Based on such an
explicit objective, an optimization can be performed.

3.3.1. Numeric approximation
We can formalize the task to approximate a given prototype as

the mathematical objective to approximate a prototype by a sparse
linear combination of data such that the residual error of this
approximation and the original prototype is as small as possible.
This corresponds to the following mathematical problem (again,
we use only one prototype for the approximation and, in conse-
quence, neglect the corresponding index):

min j~γ jj0
such that ∑

m
~γ jmΦðξmÞ�wj

����
����rϵ

for a given ϵ40. It is well-known that this problem is NP hard.
Hence a variety of approximate solution strategies exist in the
literature. Here, we rely on a popular and very efficient approx-
imation offered by orthogonal matching pursuit (OMP) [10]. Given
an acceptable error ϵ40 of the approximation, a greedy approach
is taken: the algorithm iteratively determines the most relevant
direction and the optimum coefficient for this axis to minimize the
remaining residual error. The algorithm can be easily kernelized,
such that it can directly be used in our setting, where we assume a
normalized kernel kmm ¼ 1 corresponding to a fixed length ΦðξiÞ
(alternatively, the normalization could be added to the greedy
selection step):

Kernelized OMP:
I≔∅;
~γ j≔0;

while ðγj� ~γ jÞtKðγj� ~γ jÞ4ϵ2 do
r≔γj� ~γ j;

l0≔argmaxlj½Kr�lj;
I≔I [ fl0g
~γ jm≔ðKIIÞ�1KIm with KII≔ restriction of K to index set I;

end while
return ~γ j;

3.3.2. Geometric approximation
An alternative mathematical approximation can be derived

based on a geometric view. The prototype represented by γj is
located at a central position of its receptive field, since it repre-
sents the center of the corresponding Gaussian mode. We denote
the latter receptive field of wj by Rj. Under the assumption of

spherical classes, we can characterize a prototype as the center of a
ball which encloses all data assigned to it. To achieve uniqueness,
we choose the smallest ball. The following geometric optimization
problem referred to as minimum enclosing ball (MEB) results:

minR2 ;C R2

such that JC�ΦðξiÞJ2rR2; 8ξiARj

here C is the center and R the radius of the MEB. We expect that
C �wj. The key observation of a sparse approximation technique
starting from this characterization consists in the fact that the MEB
can be approximately solved with a sparse vector C where the
degree of sparsity is independent of the size of Rj. Further, a linear
time approximation algorithm is available, see [2]. We shortly
outline the idea of this sparse approximation, typically referred to
as core approximation.

First, the dual problem of MEB can be phrased as follows:

minαi Z0 ∑
ij
αiαjkij�∑

i
αik

2
ii

where ∑
i
αi ¼ 1

Any solution of the dual problem gives rise to a primal solution in
terms of C ¼∑αiΦðξiÞ. This dual is a convex problemwith a unique
solution, but worst case effort OðjRjj3Þ and no bound on the
sparsity of the resulting solution. Therefore, this problem is not
solved for the entire receptive field Rj, rather, starting from the
empty set, a core set of points is built for which this dual problem
is solved. A surprising fact proved e.g. in [2] is that a fixed finite
number of such points are sufficient to form a core set which
represents the entirety of Rj. The size is thereby independent of the
size of Rj and the dimensionality of points.

This iterative algorithm to determine a core set uses the dual
MEB as a subroutine. It terminates with a core set of limited size as
a subset of Rj, for which the dual variables αi induce a center of the
MEB for the entirety of Rj. We refer to this sparse center as ~wj:

MEB:
S≔fξi; ξmg for a pair of largest distance JΦðξiÞ�ΦðξmÞJ2 in Rj
repeat
solve MEB ðSÞ-C;R

if exists ξlARj where JΦðξlÞ�C J24R2ð1þϵÞ2 then
S≔S [ fξlg

end if
until all ξl are covered by the Rð1þϵÞ ball in the feature space
return ~wj≔C

It has been proved in [2] that the number of loops of this
algorithm is limited by a constant of order Oð1=ϵ2Þ independent of
Rj. In each loop, the dual MEB problem is solved for a small subset S
of constant size, such that each loop has linear complexity only.
An approximation of wj as center of an approximate MEB is given by
the dual variables of the found core set: Cj ¼∑iASαiΦðξiÞ hence a
sparse approximation ofw results by setting ~γ ji to αi iff the coefficient
i corresponds to a core point. We arrive at a sparse solution, whereby
the quality of the approximation ϵ determines the resulting sparsity.
Since data are used in the form of dot products only, all computations
can be kernelized. Note that similar tricks have been used to speed
up e.g. support vector machine training, see [52].

3.4. Characteristics of the techniques

Note that the proposed techniques differ in several character-
istics, regarding
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� their motivation being heuristics (for the K-approximation and
K-convex hull) or grounded in an explicit mathematical objec-
tive to approximate the prototypes,

� their application during or after training: only the sparse
approximation changes the representation of prototypes
already while training,

� the way in which the degree of sparsity can be controlled,
� the way in which prototypes are represented in a sparse approx-

imation; these correspond to one exemplar for a heuristic
approximation using K¼1, a set of exemplars for the Kapprox-
approximation, or a sparsely populated element of the kernel
space for all other techniques. In consequence, classification takes
place by computing the distance to the new exemplar, or the
minimum distance to all exemplars in the set representing a
prototype in the case of the Kapprox-approximation,

� the sign and size of the coefficients; for RSLVQ, the coefficients
are convex to increase interpretability, and we would like to
maintain this fact also for the approximations. While OMP
restricts to convex combinations, MEB does not allow this in an
easy way, because of which it is dropped at this place;

� the location of the non-vanishing index set, which can be
central as for the Kapprox-approximation, induced by dimen-
sionality characteristics like OMP, at boundaries as for MEB,
which focuses on extremal points.

We summarize the characteristics of the methods in Table 1.
We demonstrate the effect of these different characteristics

exemplarily in Figs. 2 and 3. In Fig. 1, the result of sparse training is
compared to the result of OMP. Obviously, the location of the
prototypes is very different which can be attributed to the fact that
sparse training influences the prototype locations already while
training (Table 2).

In Fig. 2, the location of the exemplars underlying the MEB
approximation versus the Kapprox-approximation is shown in a
benchmark. The Kapprox-approximation tends to locate the exem-
plars closer to the class centers, while MEB also puts some of the
exemplars on extremal positions.

Table 1
Characteristics of different sparse approximations of prototype based models.

Method Control Coefficients Location
of sparsity of exemplars

RSLVQ No sparsity Convex Prototype is central
Sparse training Soft Const Convex Not clear
Kapprox-approx. Fixed Kapprox Set of exemplars Central
Khull-convex hull Fixed Khull Convex Not clear
OMP Soft ϵ Possibly negative Determined by variance
MEB Soft ϵ Convex Extremal

Fig. 1. Aural Sonar with spectrum flip visualized by t-stochastic neighbor embedding [55]. The left figure shows the results of sparse training and the right of OMP. In both
settings, the location of the prototypes (not the corresponding exemplars) is shown. Obviously, very different prototype locations are obtained.

Fig. 2. Voting with spectrum clip visualized by MDS. The left figure shows the results of MEB and the right the results of the 1-approximation. In both cases, the exemplars
corresponding to coefficients larger than zero are shown. Obviously, the 1-approximation puts exemplars close to the centers, while MEB also selects boundary positions due
to its grounding in an MEB problem.

Table 2
Results of kernel RSLVQ in comparison to kNN-NN, SVM and AP classifiers without
preprocessing. The percentage of misclassifications is given. The standard deviation
is given in parenthesis. The results for SVM and kNN-NN are taken from [12].

kNN-NN SVM Kernel RSLVQ AP

Amazon47 16.95(4.85) 75.98(7.33) 15.37(0.36) 24.10(0.90)
Aural Sonar 17.00(7.65) 14.25(7.46) 11.50(0.37) 31.50(4.00)
Patrol 11.88(4.42) 40.73(5.95) 17.50(0.25) 41.90(1.60)
Protein 29.88(9.96) 2.67(2.97) 26.98(0.37) 22.90(1.00)
Voting 5.80(1.83) 5.52(1.77) 5.46(0.04) 6.50(0.50)
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3.5. A remark on direct exemplar based approaches

When considering sparse prototype approximations, the ques-
tion occurs whether it is possible to directly learn a sparse
prototype model instead of a posterior approximation only.
Techniques which represent solutions in terms of prototypical
exemplars only, i.e. prototypes w!j ¼ ξ

!
i which equal exactly a

given data point, have been proposed in prototype-based research
under the umbrella of median techniques, see e.g. [14] and
references therein. Essentially, this corresponds to the case of a
sparse model where the number of exemplars used to represent
prototypes is reduced to K¼1. Recently, a median approach for
supervised LVQ has also been proposed [36]. Essentially, median
techniques try to devise efficient methods which optimize the
given cost function but restricting prototypes to the discrete space
formed by the given data.

One problem of such median approaches consists in the fact
that their optimization is essentially discrete; hence optimization
is either costly, when relying on meta-heuristics for cost function
optimization such as simulated annealing or similar, or optimiza-
tion is prone to local optima due to the very restricted representa-
tion abilities in the discrete data space. This effect has been
observed in unsupervised median prototype-based methods such
as median neural gas in comparison to its continuous relational
counterparts, such as relational neural gas, see [24]. Albeit median
approaches of this form have quadratic costs only comparable to
kernel methods, their performance is often inferior as compared to
kernel or relational approaches.

One notable exception of this observation is offered by affinity
propagation [18] which rephrases an exemplar based prototype-
based clustering scheme in terms of a factor graph representing the
data likelihood, for which efficient continuous optimization is
possible using message passing algorithms. Hence this technique
combines the efficiency of kernel approaches with a direct interpret-
ability of the result by restricting prototypes to exemplars. Still, it is
restricted to an unsupervised optimization of the quantization error,
such that the obtained classification accuracy is inferior to supervised
kernel LVQ approaches, as we will see in experiments.

4. Experiments

We compare kernel RSLVQ and its sparse approximations on a
variety of benchmarks as introduced in [12]. Additionally the two
more illustrative data sets VBB Midi and Artificial data are investi-
gated, which will be introduced in a later subsection. Thereby, we
particularly want to check whether characteristics of the data allow
us to infer which approximation is best suited for the given task. The
data sets in [12] consist of similarity matrices which are, in general,
non-Euclidean. The matrices are symmetrized and normalized before
processing. Since the given similarity matrices do not constitute a
valid kernel we apply standard preprocessing tools which transfer a
given similarity matrix into a valid kernel, as presented e.g. in [12,39].
We test the two transformations Spectrum clip: set negative eigen-
values of the matrix to 0. Spectrum flip: negative eigenvalues are
substituted by their positive values.

� Amazon47: This data set consists of 204 books written by 47
different authors. The similarity is determined as the percen-
tage of customers who purchase book j after looking at book i.

� Aural Sonar: This data set consists of 100 wide band solar signals
corresponding to two classes, observations of interest versus
clutter. Similarities are determined based on human perception,
averaging over two random probands for each signal pair.

� Patrol: 241 samples representing persons in seven different
patrol units are contained in this data set. Similarities are based
on responses of persons in the units about other members of
their groups.

� Protein: 213 proteins are compared based on evolutionary
distances comprising four different classes according to differ-
ent globin families.

� Voting: Voting contains 435 samples with categorical data
compared by means of the value difference metric. Class
labeling into two classes is present.

The eigenvalue spectra of the data are shown in Fig. 3. Obviously,
the data differ in the number and characteristic of dimensions
which are different from zero. Voting and Protein possess a large
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Fig. 3. Characteristic spectrum of the considered similarities. The data sets differ as concerns negative eigenvalues corresponding to non-Euclideanity, and the number of
eigenvalues which is different from zero, corresponding to a high dimensional feature space.
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number of eigenvalues close to zero, while Amazon47 and Patrol
have a significant number of comparably large eigenvalues. Aural
Sonar has relatively small but still non-vanishing eigenvalues. Only
Amazon47 and Voting are almost Euclidean, for the other data,
preprocessing by clip or flip significantly changes the data.

For training, we use the same setting as in [12], we report the
results of a 20-fold cross-validation. To judge the overall quality of
kernel RSLVQ, we also report the results as obtained with an SVM
and a kNN-NN classifier as reported in [12]. The settings for
standard RSLVQ are taken from [29] as regards parameters. For
comparison, we also report the results of a sparse exemplar-based
unsupervised clustering technique equipped with posterior label-
ing, affinity propagation (AP), which optimizes the classical
quantization error by means of a reformulation of this problem
as a factor graph and optimization using the max-sum algorithm
[18]. See Table 1 for the results. Obviously, kernel RSLVQ is capable
of obtaining results which are comparable to SVM or kNN-NN
classifiers. Taking supervised information into account improves
the result as compared to a fully unsupervised method such as AP
in all but one case.

We approximate the solutions of kernel RSLVQ by sparse
approximations using the methods as specified above. Thereby,
we set the sparsity to Kapprox;KhullAf1;10g. If training with sparsity
constraint is used, an appropriate weighting parameter Const is
determined by binary search such that a desired sparsity is
obtained. The parameter Const can be very sensitive depending
on the data, leading to non-trivial results in a small range only. For
the approximations using OMP and MEB, the quality ϵ of the
approximation is determined such that a sparsity in the range of
1–10 is obtained.

4.1. Results as regards sparsity and accuracy

The classification accuracy is shown in Table 3. Interestingly,
the obtained classification results when considering sparse
approximations differ depending on the data set and the used
technique. For the intrinsically low-dimensional data sets, Protein
and Voting, different sparse approximations give results

comparable to full prototypes, while the situation seems more
difficult for the other data sets. For Amazon47, none of the sparse
approximations reaches the accuracy of the full model, which can
be attributed to a high dimensionality of the data with few data
points and a large number of classes. This is a situation where we
would possibly expect that the full information of the data set is
necessary to obtain a good classification accuracy. For Aural Sonar
and Patrol, some sparse techniques yield results comparable to the
full models.

It seems that there exists no universally suited method to
enforce sparsity. Sparse approximation already while training
yields best results in three of the cases. However, the choice of
the parameter Const is crucial and a high degree of sparsity is not
easy to achieve for this setting, as can be seen from the variance of
the sparsity as reported in Table 4. In many cases a simple Kapprox-
approximation yields surprisingly good results, indicating that the
location of the prototypes can often be well preserved by a simple
substitution with its closest exemplar. Besides these observations,
one can also detect two cases where the mathematical approx-
imations OMP and MEB yield best results with respect to alter-
native posterior regularizations, whereby the degree of sparsity is
easier to handle as compared to sparse training.

4.2. Results as regards representativity

How can we evaluate the representativity of the obtained
prototypes for the given data? Eventually, this question has to be
answered by practitioners in the field who inspect the found
exemplars. Naturally, the degree of sparsity as reported in Table 4
is a first indicator about the complexity of the resulting model.
However, a sparse model does not necessarily correlate with a
good classification accuracy, or the representativity of the found
exemplars. Here, we investigate two principled ways to access the
representativity of the models as a first try to quantitatively
measure in how far models could be seen as interpretable.

As a first measure which takes supervised labeling into
account, we evaluate Rissanen's minimum description length as
introduced in [22]. The minimum description length estimates the

Table 3
Results of kernel RSLVQ and diverse sparse approximations on the investigated benchmark data. The best results (given as percentage misclassifications) of the
approximation methods are shown in boldface.

Kernel RSLVQ Kapprox-approx Khull-convex hull OMP MEB Sparse tr.

Kapprox¼1 Kapprox¼10 Khull¼1 Khull¼10

Amazon47
Clip 15.37 32.26 43.82 33.09 55.85 70.12 87.79 39.92
Flip 16.34 32.32 46.06 34.18 54.51 68.66 88.54 43.18

Aural Sonar
Clip 11.25 25.75 14.50 58.50 23.25 15.00 13.50 10.75
Flip 11.75 22.75 15.12 61.50 19.75 26.00 14.75 15.50

Patrol
Clip 17.40 39.84 19.90 39.17 24.58 29.79 25.42 40.00
Flip 19.48 38.91 21.03 40.16 25.52 33.33 24.17 41.56

Protein
Clip 4.88 18.49 26.94 36.28 27.44 52.09 14.59 13.84
Flip 1.40 23.84 24.48 25.35 3.95 49.07 3.72 2.21

Voting
Clip 5.34 8.82 11.39 86.44 82.76 5.34 17.70 5.34
Flip 5.34 7.99 9.91 86.95 82.53 5.46 17.18 5.80

VBB Midi
Clip 0.00 22.73 21.45 43.75 14.77 15.62 17.33 18.18
Flip 0.00 29.55 20.45 38.35 18.47 21.31 17.05 12.50

Artificial data
0.00 6.67 0.00 33.33 0.00 0.00 0.00 3.33
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number of information it takes to represent the prototypes on the
one hand and the errors induced by the prototypes on the data on
the other hand. The resulting quantity is depicted in Table 5 for the
different sparse approximations. In all cases sparsity clearly yields
a more compact representation of the available information as
shown by the results reported in Table 5. Further, this measure
highlights that simple techniques such as the Kapprox-approxima-
tion seem a good compromise of accuracy and sparsity of the
models.

As an unsupervised evaluation measure, we evaluate the entropy
of the probability distribution which assigns data to prototypes. To

account for different numbers of prototypes, a normalization by
its logarithm takes place. Results are depicted in Table 6. The
intuition is that a small entropy allows for clearly separated clusters,
i.e. representative exemplars, while a large entropy is an indicator for
a more uniform distribution. Naturally, the result depends on the
cluster structure of the underlying data, indicating e.g. that Voting
does not seem to be easily separable into classes with gaps in
between the classes. But also within data sets, differences of the
different techniques can be found, indicating that the Kapprox-approx-
imation for Kapprox ¼ 1, for example, surprisingly is not able to
separate the clusters as well as alternatives.

Table 4
Sparsity (number of non-negative coefficients per prototype and label) of kernel RSLVQ and diverse sparse approximations on the investigated benchmark data. Due to
exemplars becoming identical, a sparsity smaller than 1 is possible.

Kernel RSLVQ Kapprox-approx Khull-convex hull OMP MEB Sparse tr.

Kapprox¼1 Kapprox¼10 Khull¼1 Khull¼10

Amazon47
Clip 3.67 0.75 5.28 1.00 3.51 1.96 1.61 1.00
Flip 3.67 0.75 5.31 1.00 3.51 1.95 1.60 1.00

Aural Sonar
Clip 40.00 0.53 3.15 1.00 10.00 3.79 5.30 12.75
Flip 40.00 0.47 3.07 1.00 10.00 1.28 5.72 12.73

Patrol
Clip 24.12 0.68 4.85 1.00 9.95 6.66 6.93 6.71
Flip 24.12 0.68 4.43 1.00 9.95 3.55 6.98 6.69

Protein
Clip 42.50 0.47 3.25 1.00 10.00 1.84 4.89 13.37
Flip 42.50 0.43 2.75 1.00 10.00 8.43 4.97 13.52

Voting
Clip 174.00 0.29 2.42 1.00 10.00 11.71 2.16 68.68
Flip 174.00 0.30 2.31 1.00 10.00 8.82 1.99 59.92

VBB Midi
Clip 29.33 1.00 10.00 1.00 9.92 4.08 7.00 14.42
Flip 29.33 1.00 10.00 1.00 9.92 1.75 7.25 13.42

Artificial data
10.00 1.00 10.00 1.00 10.00 2.00 4.33 4.00

Table 5
Rissanen's minimum description length of kernel RSLVQ and diverse sparse approximations on the investigated benchmark data.

Kernel RSLVQ Kapprox-approx Khull-convex hull OMP MEB Sparse tr.

Kapprox¼1 Kapprox¼10 Khull¼1 Khull¼10

Amazon47
Clip 151.82 42.17 43.39 43.59 44.44 246.80 367.90 252.33
Flip 147.47 39.49 43.26 42.66 45.69 416.98 389.68 253.24

Aural Sonar
Clip 23.30 4.74 5.35 15.20 13.84 24.63 24.42 18.98
Flip 21.94 5.21 4.52 12.60 13.42 31.31 23.08 16.87

Patrol
Clip 235.12 35.65 33.41 53.63 56.99 274.79 226.68 174.57
Flip 232.20 45.57 36.71 56.67 53.40 268.95 229.75 172.31

Protein
Clip 74.59 14.83 16.86 23.25 33.41 208.16 75.35 60.40
Flip 51.42 20.34 20.41 22.91 18.12 339.72 49.56 38.34

Voting
Clip 190.86 12.25 12.38 200.83 199.01 75.94 174.90 103.37
Flip 190.89 15.84 18.32 181.60 136.44 72.86 183.62 103.16

VBB Midi
Clip 18.22 25.01 21.68 45.43 18.35 18.35 23.24 20.63
Flip 18.21 29.60 22.60 42.41 20.41 24.84 23.91 20.46

Artificial data
1.47 5.15 1.47 29.83 1.47 3.50 1.78 2.88
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Fig. 4 shows the approximations for extremal values of the
entropy in an example data set. The smallest entropy is found in
the Kapprox-approximation setting, whereas most information can
be found with Khull-convex hull. Since data points at the border of
the data set carry the most information about the location of the
whole class it is not surprising that these points get a larger value
in the linear combination and give indeed most information about
the data set, since they define the borders well. On the other hand
the approximated location of the prototypes give more interpre-
table results, but cannot specify the borders as well, ending in a
lower entropy overall.

4.3. Two illustrative examples

The examples as introduced above allow already some insight
into the behavior of the techniques, indicating that

� it is not always possible to find sparse solutions of the same
quality in particular when data dimensionality is large, but it is
possible in many cases,

� for sparse approximations, a simple K-nearest neighbor heur-
istics seems as appropriate as more fundamental approaches,

� the approximation methods differ in the final location of the
exemplars, focusing partially on boundary points rather than
central representatives,

� these effects are partially mirrored in measures such as the
minimum description length or the entropy.

However, the experiments are in some way preliminary since the
involved data are only implicitly given by their pairwise dissim-
ilarities; a direct inspection of the underlying data and its inter-
pretability is problematic. Because of this fact we investigate two
further data sets which can directly be inspected: an artificial two-
dimensional Euclidean set, and a data set stemming from a
transportation system.

� Artificial data: Data are randomly generated in two dimensions
with 10 data points for each of three classes, see Fig. 5.
Since data are Euclidean, we can also directly inspect the
prototypes, its approximations, and the exemplars used for
the approximation.

� VBB Midi: This data set is based on openly accessible public
transportation time-tables provided by the Verkehrsverbund
Berlin Brandenburg (VBB).1 As data points we used a subset of
352 train and metro stops in Berlin and defined the distance of
two stops as the shortest possible trip between them using the
Berlin public transportation system (including bus, train, or

Table 6
Entropy of kernel RSLVQ and diverse sparse approximations on the investigated benchmark data.

Kernel RSLVQ Kapprox-approx Khull-convex hull OMP MEB Sparse tr.

Kapprox¼1 Kapprox¼10 Khull¼1 Khull¼10

Amazon47
Clip 3.18 3.99 0.81 4.37 3.16 3.25 3.93 3.98
Flip 2.90 3.66 0.74 4.23 2.90 3.09 3.71 3.86

Aural Sonar
Clip 3.43 6.03 1.41 1.97 2.85 2.49 2.45 2.30
Flip 1.10 2.23 0.43 1.88 0.82 0.73 0.76 0.73

Patrol
Clip 3.31 4.81 0.90 3.16 2.93 2.68 2.36 2.28
Flip 2.48 3.62 0.72 3.04 2.17 2.30 1.67 1.95

Protein
Clip 8.05 13.53 3.20 3.22 6.28 1.94 5.78 7.08
Flip 6.58 11.36 2.98 3.14 5.39 4.71 4.80 5.47

Voting
Clip 89.86 76.23 56.71 50.06 77.84 80.68 72.14 75.16
Flip 88.40 82.74 57.72 51.37 77.22 84.08 71.23 71.71

VBB Midi
Clip 9.63 5.64 7.51 5.10 8.90 8.07 6.96 9.02
Flip 5.54 4.34 6.35 3.72 5.04 3.61 3.29 4.48

Artificial data
2.22 1.53 2.22 1.70 2.22 2.00 1.57 2.45

Fig. 4. Aural Sonar with spectrum clip visualized by MDS. The left figure shows the results of 1-approximation and the right of 1-convex hull.

1 http://daten.berlin.de/datensaetze/vbb-fahrplan-2013
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Fig. 5. Two-dimensional artificial data set with prototype locations (crosses) and the respective approximation (big symbols). Note that the approximation is identical to the
prototypes for OMP due to the dimensionality of the data. For OMP, MEB, and sparse training, the exemplars used to represent the approximated prototypes are shown via
filled symbols. In addition, some prototype approximations cause errors, highlighted by black circles around the misclassified points.

Fig. 6. VBB Midi data set with classes (i.e. districts) marked with different colors. The train, tram, and bus connections are shown and stations correspond to diamonds. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper.)
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metro). The supervised learning task is generated by using the
12 administrative districts of Berlin as class labels. Data are
non-Euclidean (see Fig. 3 for its spectrum) and the distances
are preprocessed using clip. See Fig. 6 for the train, metro, and
bus lines for the whole area.

Training takes place using one prototype per class and all data
points in the training set. The classification results are displayed in
Table 3. Interestingly, the classification accuracy is excellent for
both data sets provided original kernel RSLVQ is used, while the
accuracy deteriorates quite a lot for approximations for the VBB
Midi data set due to its high intrinsic dimensionality. In contrast,
the artificial data set allows a good approximation of the

prototypes, with a drop in accuracy only for the two heuristic
approximations. This indicates that more fundamental mathema-
tical methods are better suited to find a close approximation of the
prototypes, as can be expected due to the explicit mathematical
modeling of the objective. Still, the k approximation gives reason-
able results in both cases.

Interestingly, the exemplars which are used to represent the
prototypes are qualitatively very dissimilar for the different
approximation methods. For the artificial data set, only the
1-approximation searches exemplars from the class centers. All
other approximations select exemplars which are located more at
the class boundaries. Further, the number of exemplars which
are necessary to obtain a good approximation is higher than for

Fig. 7. Central part of the VBB Midi data set with classes (i.e. districts) marked with different colors. Prototypes are represented by their closest exemplar (the data being
non-Euclidean), displayed as a star. Further, the exemplars which are used to represent the prototypes, are marked with big circles. Points correspond to diamonds;
in addition, train and tram connections are shown, but no bus connections. Misclassifications are indicated by color codes of the stations. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this paper.)
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the 1-approximation. A similar conclusion can be drawn in the
VBB Midi data set, see Fig. 7, where the central part of the
transportation map is displayed. For the 1-approximation, the
prototypes and exemplars are located in the center, but distortions
are observed for the other techniques. In particular the two
techniques based on mathematical optimization, OMP and MEB,
put exemplars at the boundaries of the receptive fields, as
indicated by the encircled points. Interestingly, the prototypes
itself (which are displayed as closest exemplar due to the non-
Euclideanity of the data set) are often located at central positions
of the traffic map, hence we would expect those to be representa-
tive as concerns centrality of the traffic stops. Note that bus lines
are not displayed since these are too many. Nevertheless, bus lines
often account for short distances of stations in particular at class
boundaries, such that misclassifications can easily occur.

5. Discussion

We have proposed different ways to arrive at sparse solutions
for kernel RSLVQ schemes, which open the way towards inter-
pretable prototypes also for kernel LVQ. Interestingly, it is indeed
possible to obtain sparse representations of high accuracy for all
but one data set within a benchmark suite, however, the optimum
method varies. Very simple techniques such as an approximation
by the closest exemplars seem to work as well as formal optimiza-
tion approaches as provided by OMP or MEB. The accuracy of MEB
and OMP can be better due to their explicit mathematical mini-
mization of the representation error, but they use exemplars
located at class boundaries due to the used mathematical formal-
ism. Hence it is not clear whether they are more interpretable:
a higher number of exemplars are necessary to describe the class
boundaries, while simple heuristics use exemplars at central
positions of the classes. We have proposed first quantitative
measures to evaluate the usefulness of the results as regards
interpretability, relying on Rissanen's minimum description length
and the entropy. Alternative principled evaluation techniques as
well as their suitability for concrete applications will be the
subject of future work.

Acknowledgement

Financial support by the DFG under Grant numbers HA2719/7-1
and HA2719/6-1 and by the CITEC center of excellence funded in the
frame of the excellence initiative is gratefully acknowledged.

References

[1] A. Backhaus, U. Seiffert, Quantitative measurements of model interpretability
for the analysis of spectral data, in: Proceedings of IEEE SSCI, 2013.

[2] M. Badoiu, K.L. Clarkson, Optimal core sets for balls, in: DIMACS Workshop on
Computational Geometry, 2002.

[3] P.L. Bartlett, S. Mendelson, Rademacher and Gaussian complexities: risk
bounds and structural results, J. Mach. Learn. Res. 3 (2002) 463–482.

[4] M. Biehl, K. Bunte, P. Schneider, Analysis of flow cytometry data by matrix
relevance learning vector quantization, PLOS One 8 (3) (2013).

[5] M. Biehl, A. Ghosh, B. Hammer, Dynamics and generalization ability of LVQ
algorithms, J. Mach. Learn. Res. 8 (2007) 323–360.

[6] M. Biehl, B. Hammer, P. Schneider, T. Villmann, Metric learning for prototype-
based classification, in: M. Bianchini, M. Maggini, F. Scarselli (Eds.), Innova-
tions in Neural Information Paradigms and Applications, Studies in Computa-
tional Intelligence, vol. 247, Springer, Heidelberg, 2009, pp. 183–199.

[7] M. Biehl, B. Hammer, M. Verleysen, T. Villmann (Eds.), Similarity Based
Clustering, Springer Lecture Notes Artificial Intelligence, vol. 5400/2009,
Springer, Heidelberg, 2009.

[8] C. Bottomley, V. Van Belle, E. Kirk, S. Van Huffel, D. Timmerman, T. Bourne,
Accurate prediction of pregnancy viability by means of a simple scoring
system, Hum. Reprod. 28 (1) (2013) 68–76.

[9] R. Boulet, B. Jouve, F. Rossi, N. Villa, Batch kernel SOM and related Laplacian
methods for social network analysis, Neurocomputing 71 (7–9) (2008)
1257–1273.

[10] A.M. Bruckstein, D.L. Donoho, M. Elad, From sparse solutions of systems of
equations to sparse modeling of signals and images, SIAM Rev. 51 (1) (2009)
34–81.

[11] K. Bunte, P. Schneider, B. Hammer, F.-M. Schleif, T. Villmann, M. Biehl, Limited
Rank Matrix Learning, discriminative dimension reduction and visualization,
Neural Netw. 26 (2012) 159–173.

[12] Y. Chen, E.K. Garcia, M.R. Gupta, A. Rahimi, L. Cazzanti, Similarity-based
classification: concepts and algorithms, J. Mach. Learn. Res. 10 (June) (2009)
747–776.

[13] R. Cilibrasi, M.B. Vitanyi, Clustering by compression, IEEE Trans. Inf. Theory 51
(4) (2005) 1523–1545.

[14] M. Cottrell, B. Hammer, A. Hasenfuss, T. Villmann, Batch and median neural
gas, Neural Netw. 19 (2006) 762–771.

[15] A. Denecke, H. Wersing, J.J. Steil, E. Kor̈ner, Online figure-ground segmentation
with adaptive metrics in generalized LVQ, Neurocomputing 72 (7–9) (2009)
1470–1482.

[16] D.L. Donoho, For most large underdetermined systems of linear equations the
minimal l1-norm solution is also the sparsest solution, Commun. Pure Appl.
Math. 56 (6) (2006) 797–829.

[17] P. Frasconi, M. Gori, A. Sperduti, A general framework for adaptive processing
of data structures, IEEE Trans. Neural Netw. 9 (5) (1998) 768–786.

[18] B.J. Frey, D. Dueck, Clustering by passing messages between data points,
Science 315 (2007) 972–976.

[19] T. Gärtner, Kernels for structured data (Ph.D. thesis), Univ. Bonn, 2005.
[20] I. Giotis, K. Bunte, N. Petkov, M. Biehl, Adaptive matrices and filters for color

texture classification, J. Math. Imaging Vision 20 (2012).
[21] A. Gisbrecht, B. Mokbel, F.-M. Schleif, X. Zhu, B. Hammer, Linear time relational

prototype based learning, Int. J. Neural Syst. 22 (5) (2012).
[22] P. Grünwald, The Minimum Description Length Principle, MIT Press,

Cambridge MA, 2007.
[23] B. Hammer, A. Gisbrecht, A. Schulz, Applications of discriminative dimension-

ality reduction, in: Proceedings of ICPRAM, 2013.
[24] B. Hammer, A. Hasenfuss, Topographic mapping of large dissimilarity datasets,

Neural Comput. 22 (9) (2010) 2229–2284.
[25] B. Hammer, D. Hofmann, F.-M. Schleif, X. Zhu, Learning vector quantization for

similarities, Neurocomputing 131 (2014) 43–51.
[26] B. Hammer, A. Micheli, A. Sperduti, Universal approximation capability of

cascade correlation for structures, Neural Comput. 17 (2005) 1109–1159.
[27] B. Hammer, B. Mokbel, F.-M. Schleif, X. Zhu, Prototype Based Classification of

Dissimilarity Data, IDA, 2011.
[28] B. Hammer, T. Villmann, Generalized relevance learning vector quantization,

Neural Netw. 15 (8–9) (2002) 1059–1068.
[29] D. Hofmann, B. Hammer, Kernel robust soft learning vector quantization, in:

ANNPR, 14–23, 2012.
[30] P.J. Ingram, M.P.H. Stumpf, J. Stark, Network motifs: structure does not

determine function, BMC Genomics 7 (2006) 108.
[31] S. Kirstein, H. Wersing, H.-M. Gross, E. Kor̈ner, A life-long learning vector

quantization approach for interactive learning of multiple categories, Neural
Netw. 28 (2012) 90–205.

[32] T. Kohonen, Self-Oganizing Maps, 3rd ed., Springer, Heidelberg, 2000.
[33] T. Kohonen, P. Somervuo, How to make large self-organizing maps for

nonvectorial data, Neural Netw. 15 (8–9) (2002) 945–952.
[34] C. Lundsteen, J. Phillip, E. Granum, Quantitative analysis of 6985 digitized

trypsin g-banded human metaphase chromosomes, Clin. Genet. 18 (5) (1980)
355–370.

[35] B. Mokbel, A. Hasenfuss, B. Hammer, Graph-based representation of symbolic
musical data, in: GbRPR, vol. 42–51, 2009.

[36] David Nebel, Barbara Hammer, Thomas villmann: a median variant of
generalized learning vector quantization, in: ICONIP, vol. 2, 2013, pp. 19–26.

[37] B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties
by learning a sparse code for natural images, Nature 381 (1996) 607–609.

[38] M. Olteanu, N. Villa-Vialaneix, M. Cottrell, On-line relational SOM for dissim-
ilarity data, in: CoRR, abs/1212.6316, 2012.

[39] E. Pekalska, R.P. Duin, The Dissimilarity Representation for Pattern Recogni-
tion. Foundations and Applications, World Scientific, Singapore, 2005.

[40] O. Penner, P. Grassberger, M. Paczuski, Sequence alignment, mutual information,
and dissimilarity measures for constructing phylogenies, PLOS One 6 (1) (2011).

[41] A.K. Qin, P.N. Suganthan, Kernel neural gas algorithms with application to
cluster analysis, in: Proceedings of the 17th International Conference on
Pattern Recognition, 2004, pp. 617–620.

[42] A.K. Qin, P.N. Suganthan, A novel kernel prototype-based learning algorithm, in:
Proceedings of the 17th International Conference on Pattern Recognition, 2004.

[43] J. Rissanen, Modeling by the shortest data description, Automatica 14 (1978)
465–471.

[44] H. Ruiz, I.H. Jarman, P.J.G. Lisboa, S. Ortega-Martorell, A. Vellido, E. Romero, J.D.
Martin, Towards interpretable classifiers with blind signal separation, in:
Proceedings of the International Joint Conference on Neural Networks, 2012.

[45] A. Sato, K. Yamada, Generalized learning vector quantization, in: NIPS, 1995.
[46] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, G. Monfardini, Computational

capabilities of graph neural networks, IEEE Trans. Neural Netw. 20 (1) (2009)
81–102.

[47] F.-M. Schleif, T. Villmann, B. Hammer, P. Schneider, Efficient kernelized
prototype based classification, Int. J. Neural Syst. 21 (6) (2011) 443–457.

D. Hofmann et al. / Neurocomputing 141 (2014) 84–96 95

http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref3
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref3
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref4
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref4
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref5
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref5
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref6
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref6
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref6
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref6
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref8
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref8
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref8
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref9
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref9
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref9
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref10
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref10
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref10
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref11
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref11
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref11
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref12
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref12
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref12
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref13
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref13
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref14
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref14
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref15
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref15
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref15
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref15
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref16
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref16
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref16
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref17
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref17
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref18
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref18
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref20
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref20
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref21
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref21
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref22
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref22
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref24
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref24
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref25
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref25
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref26
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref26
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref28
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref28
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref30
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref30
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref31
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref31
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref31
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref31
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref32
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref33
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref33
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref34
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref34
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref34
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref37
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref37
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref39
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref39
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref40
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref40
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref43
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref43
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref46
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref46
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref46
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref47
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref47


[48] P. Schneider, M. Biehl, B. Hammer, Distance learning in discriminative vector
quantization, Neural Comput. 21 (2009) 2942–2969.

[49] P. Schneider, M. Biehl, B. Hammer, Adaptive relevance matrices in learning
vector quantization, Neural Comput. 21 (2009) 3532–3561.

[50] S. Seo, K. Obermayer, Soft learning vector quantization, Neural Comput. 15
(2003) 1589–1604.

[51] N.Z. Shor, Minimization Methods for Non-differentiable Functions. Springer
Series in Computational Mathematics, Springer, Heidelberg, 1985.

[52] I.W. Tsang, J.T. Kwok, P.-M. Cheung, Core vector machines: fast SVM training
on very large data sets, J. Mach. Learn. Res. 6 (2005) 363–392.

[53] V. Van Belle, P. Lisboa, Automated selection of interaction effects in sparse
kernel methods to predict pregnancy viability, in: Proceedings IEEE CIDM,
2013.

[54] V. Van Belle, B. Van Calster, D. Timmerman, T. Bourne, C. Bottomley,
L. Valentin, P. Neven, S. Van Huffel, J. Suykens, S. Boyd, A mathematical model
for interpretable clinical decision support with applications in gynecology,
PLoS One 7 (3) (2012).

[55] L. van der Maaten, G. Hinton, Visualizing high-dimensional data using t-SNE,
J. Mach. Learn. Res. 9 (2008) 2579–2605.

[56] A. Vellido, J.D. Martin-Guerroro, P. Lisboa, Making machine learning models
interpretable, in: ESANN'12, 2012.

[57] H. Yin, On the equivalence between kernel self-organising maps and self-
organising mixture density networks, Neural Netw. 19 (6–7) (2006) 780–784.

Daniela Hofmann received her Diploma in Computer
Science from the Clausthal University of Technology,
Germany. Since early 2012 she is a PhD student at the
Cognitive Interaction Technology Center of Excellence
at Bielefeld University, Germany.

Frank-Michael Schleif received his Ph.D. in Computer
Science from the University of Clausthal, Germany, in
2006. From 2004 to 2006 he was working for the R&D
Department at Bruker Biosciences. From 2006 to 2009
he was a research assistant in the research group of
computational intelligence at the University of Leipzig
working on multiple bioinformatic projects. In 2010 he
joined the chair of theoretical computer science and
did research in multiple projects in machine learning
and bioinformatics. From 2014 he will be a member of
the University of Birmingham, UK as a Marie Curie
Fellow. His areas of expertise include machine learning,
signal processing, data analysis and bioinformatics.

Several long term research stays have taken him to UK, the USA, the Netherlands
and Japan. He is the co-editor of the Machine Learning Reports and reviewer for
multiple journals and conferences in the field of machine learning and computa-
tional intelligence. He is a founding member of the Institute of Computational
Intelligence and Intelligent Data Analysis (CIID) e.V. (Mittweida, Germany), a
member of the GI, the DAGM and secretary of the German chapter of the ENNS
(GNNS). He is coauthor of more than 70 papers in international journals and
conferences on different aspects of Computational Intelligence, most of which can
be retrieved from http://www.techfak.uni-bielefeld.de/~fschleif/.

Benjamin Paassen recieved his Bachelors degree in
Cognitive Informatics from the Bielefeld University,
Germany. Since 2012 he is employed as scientific
assistant in the DFG funded research project “Learning
Feedback in Intelligent Tutoring Systems” at the Cog-
nitive Interaction Technology Center of Excellence at
Bielefeld University, Germany.

Barbara Hammer received her Ph.D. in Computer
Science in 1995 and her venia legendi in Computer
Science in 2003, both from the University of Osnab-
rueck, Germany. From 2000 to 2004, she was leader of
the junior research group ‘Learning with Neural Meth-
ods on Structured Data’ at University of Osnabrueck
before accepting an offer as Professor for Theoretical
Computer Science at Clausthal University of Technol-
ogy, Germany, in 2004. Since 2010, she is holding a
professorship for Theoretical Computer Science for
Cognitive Systems at the CITEC cluster of excellence at
the Bielefeld University, Germany. Several research
stays have taken her to Italy, UK, India, France, the

Netherlands, and the USA. Her areas of expertise include hybrid systems, self-
organizing maps, clustering, and recurrent networks as well as applications in
bioinformatics, industrial process monitoring, or cognitive science. She is currently
leading the IEEE CIS Technical Committee on Data Mining, and the Fachgruppe
Neural Networks of the GI.

D. Hofmann et al. / Neurocomputing 141 (2014) 84–9696

http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref48
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref48
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref49
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref49
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref50
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref50
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref51
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref51
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref52
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref52
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref54
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref54
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref54
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref54
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref55
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref55
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref57
http://refhub.elsevier.com/S0925-2312(14)00396-8/sbref57
http://www.techfak.uni-bielefeld.de/~fschleif/

	Learning interpretable kernelized prototype-based models
	Introduction
	Kernel robust soft learning vector quantization
	Approximation of the prototypes
	Sparse training
	Simple heuristic approximation of the prototypes
	Approximate representation of the prototypes
	Numeric approximation
	Geometric approximation

	Characteristics of the techniques
	A remark on direct exemplar based approaches

	Experiments
	Results as regards sparsity and accuracy
	Results as regards representativity
	Two illustrative examples

	Discussion
	Acknowledgement
	References




