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Abstract

Efficient learning of a data analysis task strongly depends on the data representation.

Most methods rely on (symmetric) similarity or dissimilarity representations by means

of metric inner products or distances, providing easy access to powerful mathematical

formalisms like kernel or branch-and-bound approaches. Similarities and dissimilarities

are however often naturally obtained by non-metric proximity measures which can not

easily be handled by classical learning algorithms. In the last years major efforts have

been undertaken to provide approaches which can either directly be used for such data

or to make standard methods available for these type of data.We provide a comprehen-

sive survey for the field of learning with non-metric proximities. First we introduce the

formalism used in non-metric spaces and motivate specific treatments for non-metric

proximity data. Secondly we provide a systematization of the various approaches. For

each category of approaches we provide a comparative discussion of the individual algo-

rithms and address complexity issues and generalization properties. In a summarizing



chapter we provide a larger experimental study for the majority of the algorithms on

standard datasets. We also address the problem of large scale proximity learning which

is often overlooked in this context and of major importance to make the method rele-

vant in practice.The algorithms discussed in this paper are in general applicable

for proximity based clustering, one-class classification,classification, regression or

embedding approaches. In the experimental part we focus on classification tasks.

1 Introduction

The notion of pairwise proximities plays a key role in most machine learning algo-

rithms. The comparison of objects by ametric, often Euclidean, distance measure is

a standard element in basically every data analysis algorithm. This is mainly due to

the easy access to powerful mathematical models in metric spaces. Based on work of

(Schoelkopf & Smola, 2002) and others, the usage of similarities by means of metric

inner products or kernel matrices has lead to a great successof similarity based learn-

ing algorithms. Thereby the data are represented by metric pairwise similarities only.

We can distinguish similarities, indicating how close or similar two items are to each

other and dissimilarities as measures of the unrelatednessof two items. Given a set

of N data items, their pairwise proximity (similarity or dissimilarity) measures can be

conveniently summarized in aN × N proximity matrix. In the following we will refer

to similarity and dissimilarity type proximity matrices asS andD, respectively. For

some methods symmetry of the proximity measures is not strictly required, while some

other methods add additional constraints, such as non-negativity of the proximity ma-

trix. These notions enter into models by means of similarityor dissimilarity functions

f (x, y) ∈ R wherex andy are the compared objects. The objectsx, y may exist in a

d-dimensional vector space, so thatx ∈ Rd, but can also be given without an explicit

vectorial representation, e.g. biological sequences (seeFigure 1). However, as pointed

out in (Pekalska & Duin, 2005), proximities often occur to benon-metric and their us-
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Figure 1: Left: Illustration of a proximity (in this case dissimilarity) measure between

pairs of documents - the compression distance (Cilibrasi & Vitányi, 2005). It is based

on the difference between the total information theoretic complexity of two documents

considered in isolation and the complexity of the joint document obtained by concate-

nation of the two documents. In its standard form it violatesthe triangle inequality.

Right: a simplified illustration of the blast sequence alignment providing symmetric

but non-metric similarity scores in comparing pairs of biological sequences.

age in standard algorithms leads to invalid model formulations.

The function f (x, y) may violate the metric properties to different degrees. Sym-

metry is in general assumed to be valid because a large numberof algorithms become

meaningless for asymmetric data. However, especially in the field of graph analysis,

asymmetric weightings have already been considered. Asymmetric weightings have

also been used in the fields of clustering and data embedding (Strickert et al., 2014;

Olszewski & Ster, 2014). Examples of algorithms capable of processing asymmet-

ric proximity data in supervised learning are exemplar based methods (Nebel et al.,

2014). A recent article focusing on this topic is available in (Calana et al., 2013). More

frequently, proximities are symmetric, but the triangle inequality is violated, proximi-

ties are negative, or self-dissimilarities are not zero. Such violations can be attributed

to different sources. While some authors attribute it to noise (Luss & d’Aspremont,

2009), for some proximities and proximity functionsf this may be purposely caused

by the measure itself. If noise is the source, often a simple eigenvalue correction

(Y. Chen, Garcia, et al., 2009a) can be used, although this canbecome costly for large
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datasets. A recent analysis of the possible sources of negative eigenvalues is provided in

(Xu et al., 2011). Such analysis can be potentially helpful in, for example, selecting the

appropriate eigenvalue correction method applied to the proximity matrix. Prominent

examples for genuine non-metric proximity measures can be found in the field of bioin-

formatics where classical sequence alignment algorithms (e.g. smith-waterman score

(Gusfield, 1997)) produce non-metric proximity values. Forsuch data some authors

argue that the non-metric part of the data contains valuableinformation and should not

be removed (Pekalska et al., 2004).

For non-metric inputs the support vector machine formulation (Vapnik, 2000) no

longer leads to a convex optimization problem. Prominent solvers. such as sequential

minimization (SMO) will converge to a local optimum (J. C. Platt, 1999; tien Lin & Lin,

2003) and other kernel algorithms may not converge at all. Accordingly, dedicated

strategies for non-metric data are very desirable.

A previous review on non-metric learning was given in (Y. Chen, Garcia, et al.,

2009b) with a strong focus on support vector classification and eigenspectrum correc-

tions for similarity data evaluated on multiple small worlddata sets. While we include

and update these topics, our focus is on a broader context general supervised learning.

Most approaches can be transferred to the unsupervised setting in a straightforward

manner.

Besides eigenspectrum corrections making the similarity matrix positive semi defi-

nite (psd), we also consider generic novel proxy approaches(which learn a psd matrix

from a non-psd representation), different novel embeddingapproaches and, crucially,

natural indefinite learning algorithms, which are not restricted to psd matrices. We also

address the issue of out of sample extension and the widely ignored topic of larger scale

data processing (given the quadratic complexity in sample size).

The paper is organized as follows. In Section 2 we outline thebasic notation and

some mathematical formalism, related to machine learning with non-metric proximities.

Section 3 discusses different views and sources of indefinite proximities and addresses
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the respective challenges in more detail. A taxonomy of the various approaches is pro-

posed in Section 4, followed by Section 5-6, which detail thetwo families of methods.

In Section 7 we discuss some techniques to improve the scalability of the methods for

larger datasets. Section 8 provides experimental results comparing the different ap-

proaches for various classification tasks and Section 8.1 concludes this paper.

2 Notation and basic concepts

We now briefly review some concepts typically used in proximity based learning.

2.1 Kernels and kernel functions

LetX be a collection ofN objectsxi, i = 1,2, ...,N, in some input space. Further, letφ :

X 7→ H be a mapping of patterns fromX to a high-dimensional or infinite dimensional

Hilbert spaceH equipped with the inner product〈·, ·〉H . The transformationφ is in

general a non-linear mapping to a high-dimensional spaceH and may in general not

be given in an explicit form. Instead a kernel functionk : X × X 7→ R is given which

encodes the inner product inH . The kernelk is a positive (semi) definite function

such thatk(x, x′) = φ(x)⊤φ(x′) for any x, x′ ∈ X. The matrixK := Φ⊤Φ is anN × N

kernel matrix derived from the training data, whereΦ : [φ(x1), . . . , φ(xN)] is a matrix

of images (column vectors) of the training data inH . The motivation for such an

embedding comes with the hope that the non-linear transformation of input data into

higher dimensionalH allows for using linear techniques inH . Kernelized methods

process the embedded data points in a feature space utilizing only the inner products

〈·, ·〉H (kernel trick) (Shawe-Taylor & Cristianini, 2004), withoutthe need to explicitly

calculateφ. The specific kernel function can be very generic. Most prominent are

the linear kernel withk(x, x′) = 〈φ(x), φ(x′)〉 where〈φ(x), φ(x′)〉 is the Euclidean inner

product or the rbf kernelk(x, x′) = exp
(

− ||x−x′ ||2
2σ2

)

, with σ as a free parameter. Thereby

it is assumed that the kernel functionk(x, x′) is positive semi definite (psd).
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2.2 Krein and Pseudo-Euclidean spaces

A Krein space is anindefiniteinner product space endowed with a Hilbertian topology.

LetK be a real vector space. An inner product space with an indefinite inner product

〈·, ·〉K onK is a bi-linear form where allf ,g,h ∈ K andα ∈ R obey the following

conditions. Symmetry:〈 f ,g〉K = 〈g, f 〉K ; linearity: 〈α f + g,h〉K = α〈 f ,h〉K + 〈g,h〉K ;

and 〈 f ,g〉K = 0 implies f = 0. An inner product is positive definite if∀ f ∈ K ,

〈 f , f 〉K ≥ 0, negative definite if∀ f ∈ K , 〈 f , f 〉K ≤ 0, otherwise it is indefinite. A

vector spaceK with inner product〈·, ·〉K is called an inner product space.

An inner product space (K , 〈·, ·〉K ) is a Krein space if we have two Hilbert spaces

H+ andH− spanningK such that∀ f ∈ K we have f = f+ + f− with f+ ∈ H+ and

f− ∈ H− and∀ f ,g ∈ K , 〈 f ,g〉K = 〈 f+,g+〉H+ − 〈 f−,g−〉H−.

Indefinite kernels are typically observed by means of domainspecific non-metric

similarity functions (such as alignment functions used in biology (Smith & Waterman,

1981)), by specific kernel functions - e.g. the Manhattan kernel k(x, y) = −||x − y||1,

tangent distance kernel (Haasdonk & Keysers, 2002) or divergence measures plugged

into standard kernel functions (Cichocki & Amari, 2010). Another source of non-psd

kernels are noise artifacts on standard kernel functions (Haasdonk, 2005). A finite-

dimensional Krein-space is a so called pseudo Euclidean space.

For such spaces vectors can have negative squared ”norm”, negative squared ”dis-

tances” and the concept of orthogonality is different from the usual Euclidean case.

Given a symmetricdissimilarity matrix with zero diagonal, an embedding of the data

in a pseudo-Euclidean vector space determined by the eigenvector decomposition of

the associated similarity matrixS is always possible (Goldfarb, 1984)1. Given the

eigendecomposition ofS, S = UΛU⊤, we can compute the corresponding vectorial

1The associated similarity matrix can be obtained by double centering (Pekalska & Duin, 2005) of
the dissimilarity matrix.S= −JDJ/2 with J = (I − 11⊤/N), identity matrixI and vector of ones1.
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representationV in the pseudo-Euclidean space by

V = Up+q+z

∣
∣
∣Λp+q+z

∣
∣
∣
1/2

(1)

whereΛp+q+z consists ofp positive,q negative non-zero eigenvalues andz zero eigen-

values. Up+q+z consists of the corresponding eigenvectors. The triplet (p,q, z) is also

referred to as the signature of the Pseudo-Euclidean space.A detailed presentation

of similarity and dissimilarity measures, and mathematical aspects of metric and non-

metric spaces is provided in (Pekalska & Duin, 2005; Deza & Deza, 2009; Ong et al.,

2004).

3 Indefinite proximities

Proximity functions can be very generic but are often restricted to fulfill metric proper-

ties to simplify the mathematical modeling and especially the parameter optimization.

In (Deza & Deza, 2009) a large variety of such measures was reviewed and basically

most nowadays public methods make use of metric properties.While this appears to be

a reliable strategy researchers in the field of e.g. psychology (Hodgetts & Hahn, 2012;

Hodgetts et al., 2009), vision (Kinsman et al., 2012; Xu et al., 2011; Van Der Maaten & Hinton,

2012; Scheirer et al., 2014) and machine learning (Pekalskaet al., 2004; R. P. W. Duin & Pekalska,

2010) have criticized this restriction as inappropriate inmultiple cases. In fact in

(R. P. W. Duin & Pekalska, 2010) multiple examples from real problems show that many

real life problems are better addressed by proximity measures which are not restricted

to be metric.

The triangle inequality is most often violated if we consider object comparisons in

daily life problems like the comparison of text documents, biological sequence data,

spectral data or graphs (Y. Chen, Garcia, et al., 2009b; Kohonen & Somervuo, 2002;

Neuhaus & Bunke, 2006). These data are inherently compositional and a feature rep-
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Figure 2: Visualization of two non-metric distance measures which are frequently used.

Left: Dynamic time warping (DTW) - a frequently used measure to align one dimen-

sional time series(Sakoe & Chiba, 1978); Right: Inner distance - a common measure in

shape retrieval (Ling & Jacobs, 2005)

resentation leads to information loss. As an alternative, tailored dissimilarity mea-

sures such as pairwise alignment functions, kernels for structures or other domain

specific similarity and dissimilarity functions can be usedas the interface to the data

(Gärtner et al., 2004; Poleksic, 2011). But also for vectorial data, non-metric proxim-

ity measures are common in some disciplines. An example of this type is the use of

divergence measures (Cichocki & Amari, 2010; Z. Zhang et al.,2009; Schnitzer et al.,

2012) which are very popular for spectral data analysis in chemistry, geo- and medical

sciences (Mwebaze et al., 2010; Nguyen et al., 2013; Tian et al., 2013; van der Meer,

2006; Bunte, Haase, et al., 2012), and are not metric in general. Also the popular Dy-

namic Time Warping (DTW) (Sakoe & Chiba, 1978) algorithm provides a non-metric

alignment score which is often used as a proximity measure between two one-dimensional

functions of different length. In image processing and shape retrieval indefinite prox-

imities are often obtained by means of the inner distance. Itspecifies the dissimilarity

between two objects which are solely represented by their shape. Thereby a number of

landmark points is used and the shorted pathswithin the shape are calculated in con-

trast to the Euclidean distance between the landmarks. Further examples can be found

in physics where problems of the special relativity theory naturally lead to indefinite

spaces.

Examples of indefinite measures can be easily found in many domains, some of

them are exemplary shown in Figure 2. A list of non-metric proximity measures is given
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Measure Application field
Dynamic Time Warping (DTW) (Sakoe & Chiba, 1978) Time series orspectral alignment
Inner distance (Ling & Jacobs, 2005) Shape retrieval e.g. inrobotics
Compression distance (Cilibrasi & Vitányi, 2005) Generic used also for text analysis
Smith Waterman Alignment (Gusfield, 1997) Bioinformatics
Divergence measures (Cichocki & Amari, 2010) Spectroscopy and audio processing
Generalized Lp norm (Lee & Verleysen, 2005) Time series analysis
Non-metric modified Hausdorff (Dubuisson & Jain, 1994) Template matching
(Domain specific) alignment score (Maier et al., 2006) Mass spectrometry

Table 1: List of commonly used non-metric proximity measures in various domains

in Table 1. Most of these measures are very popular but often violate the symmetry or

triangle inequality condition or both. Hence many standardproximity based machine

learning methods like kernel methods are not easy accessible for these data.

3.1 Why is a non-metric proximity function a problem?

A large number of algorithmic approaches assume that the data are given in a metric

vector space, typically an Euclidean vector space, motivated by the strong mathematical

framework which is available for metric Euclidean data. But with the advent of new

measurement technologies and many non-standard data this strong constraint is often

violated in practical applications and non-metric proximity matrices are more and more

common.

This is often a severe problem for standard optimization frameworks as used e.g.

for the Support Vector Machines (SVM), where psd matrices ormore specific mercer

kernels, are expected (Vapnik, 2000). The naive usage of non-psd matrices in such a

context invalidates the guarantees of the original approach (like ensured convergence to

a convex or stationary point or the expected generalizationaccuracy to new points).

In (Haasdonk, 2005) it was shown that the SVM not any longer optimizes a global

convex function but is minimizing the distance between reduced convex hulls in a

pseudo-Euclidean space leading to a local optimum. In (Laub, 2004) and (Filippone,

2009) different cost functions for clustering where analyzed and the authors point out
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that the spectrum shift operation (discussed in the following) was found to be very ro-

bust with respect to the used optimization function.

Currently, the vast majority of approaches encodes such comparisons by enforcing

metric properties into these measures or by using alternative, in general less expres-

sive measures, which do obey metric properties. With the continuous increase of non-

standard and non-vectorial data sets non-metric measures and algorithms in Krein or

pseudo-euclidean spaces are getting more popular and have recently raised wide interest

in the research community (Gnecco, 2013; J. Yang & Fan, 2013;Liwicki et al., 2013;

Kanzawa, 2012; Gu & Guo, 2012; Zafeiriou, 2012; Miranda et al., 2013; Epifanio, 2013;

Kar & Jain, 2012). In this article we review major research directions in the field of

non-metric proximity learning where data are given by pairwise proximities only.

10



��������	�

����

���

���������
������
���

������ �� 	
�
������
���

��������	

����	����


������	� ����	���

������ ���
����
����	�

�	������
��
������

��

�����
�	�

����

B A

B1 B2

A1 A2 A3

Figure 3: Schematic view of different approaches to analyzenon-psd data

4 A systematization of non-metric proximity learning

The problem of non-metric proximity learning has been addressed before by some re-

search groups and multiple approaches were proposed withinthe last years. A schematic

view summarizing the major research directions is show in Figure 3 and in Table 2 and

Table 3.

Basically, there exist two main directions:

(A) Transforming the non-metric proximities to become metric

(B) Stay in the non-metric space by providing a method which isinsensitive to metric

violations or can naturally deal with non-metric data

The first direction can again be divided to the following sub-strategies:

A.1 Applying direct eigenvalue corrections. The original data are decomposed by an
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Turn non-metric proximities into metric ones (Sec. 5)
(A1) Eigenvalue cor-
rections (like clipping,
flipping, shifting) are
applied to the eigen-
spectrum of the data
(Muoz & De Diego,
2006; Roth et al., 2002;
Y. Chen, Garcia, et al.,
2009a; Filippone, 2009).
This can also be ef-
fectively done for
dissimilarities by a
specific pre-processing
(Schleif & Gisbrecht,
2013)

(A2) Embedding ap-
proaches like (variants of
MDS (Cox & Cox, 2000;
Choo et al., 2012), t-SNE
(Van Der Maaten & Hinton,
2012), NeRV
(Venna et al., 2010)
can be used to obtain an
Euclidean embedding
in a lower dimensional
space but also the (dis-
)similarity (proximity)
space is a kind of em-
bedding leading to a
vectorial representa-
tion (Pekalska & Duin,
2008a, 2002, 2008b;
Pekalska et al., 2001,
2006; Kar & Jain, 2011;
R. P. W. Duin et al.,
2014), as well as non-
metric locality sensitive
hashing (Mu & Yan,
2010) and local em-
bedding or triangle
correction techniques
(L. Chen & Lian, 2008)

(A3) Learning of a proxy
function is frequently
used to obtain an al-
ternative psd proximity
matrix which has maxi-
mum alignment with the
original non-psd matrix.
(J. Chen & Ye, 2008;
Luss & d’Aspremont,
2009;
Y. Chen, Gupta, & Recht,
2009; Gu & Guo,
2012; Lu et al., 2005;
Brickell et al., 2008;
Li et al., 2015)

Table 2: Classification of the methods which have been reviewed in Sections 5–6. The

table provides a brief summary and the most relevant references.
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Algorithms for learning on non-metric data (Sec. 6)
(B1) Algorithms with
a decision function
which can be based
on non-metric prox-
imities: (Kar & Jain,
2012; M. Tipping, 2001a;
H. Chen et al., 2014,
2009a; Graepel et al.,
1998)

(B2) Algorithms which
define their models in the
pseudo-Euclidean space:
(Haasdonk & Pkalska,
2008;
Pekalska & Haasdonk,
2009; Liwicki et al.,
2013, 2012; Zafeiriou,
2012; Kowalski et al.,
2009; Xue & Chen, 2014;
J. Yang & Fan, 2013;
Pekalska et al., 2001)

Theoretical work for indefinite data analysis and related overviews
Focusing on SVM: (Haasdonk, 2005; Mierswa & Morik, 2008; tien Lin & Lin,
2003; Ying et al., 2009), indefinite kernels and pseudo-euclidean spaces
(Balcan et al., 2008; Wang et al., 2009; Brickell et al., 2008; Schleif & Gisbrecht,
2013; Schleif, 2014; Pekalska & Duin, 2005; Pekalska et al.,2004,
2001; Ong et al., 2004; Laub et al., 2006; D.-G. Chen et al., 2008;
R. P. W. Duin & Pekalska, 2010; Gnecco, 2013; Xu et al., 2011; Higham,
1988; Goldfarb, 1984; Graepel & Obermayer, 1999; Zhou & Wang, 2011; Alpay,
1991; Haasdonk & Keysers, 2002), indexing, retrieval and metric modification
techniques (Z. Zhang et al., 2009; Skopal & Loko, 2008; Bustos& Skopal, 2011;
Vojt & Eckhardt, 2009; Jensen et al., 2010), overview papersand cross discipline
studies (Y. Chen, Garcia, et al., 2009a; Muoz & De Diego, 2006;R. P. W. Duin,
2010; Kinsman et al., 2012; Laub, 2004; Hodgetts & Hahn, 2012; Hodgetts et al.,
2009; Kanzawa, 2012)

Table 3: Classification (continued) of the methods which havebeen reviewed in Sec-

tions 5–6. The table provides a brief summary and the most relevant references.
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Eigenvalue decomposition and the eigenspectrum is corrected in different ways

to obtain a corrected psd matrix.

A.2 Embedding of the data in a metric space. Here, the input data are embedded into

a (in general Euclidean) vector space. A very simple strategy is to use Multi-

Dimensional Scaling (MDS) to get a two- dimensional representation of the dis-

tance relations encoded in the original input matrix.

A.3 Learning of a proxy function to the proximities. These approaches learn an alter-

native (proxy) psd representation with maximum alignment to the non-psd input

data.

while the second branch is less diverse but one can identify at least two sub-strategies:

B.1 Model definition based on the non-metric proximity function. Recent theoretical

work on generic dissimilarity and similarity functions is used to define models

which can directly employ the given proximity function withonly very moderate

assumptions.

B.2 Krein space model definition. The Krein space is the natural representation for

non-psd data and some approaches have been formulated within this much less

restrictive, but hence more complicated, mathematical space.

In the following we detail the different strategies and their advantages and disad-

vantages. As a general comment the approaches covered in B stay closer to the original

input data whereas for the strategy A the input data are in parts substantially modi-

fied which can lead to a reduced interpretability and also limits a valid out-of sample

extension in many cases.

5 Make the input space metric
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5.1 Eigenspectrum approaches (A1)

The metric violations cause negative eigenvalues in the eigenspectrum ofS leading to

non-psd proximity matrices. Many learning algorithms are based on kernels yielding

symmetric and psd similarity (kernel) matrices. The mathematical meaning of a kernel

is the inner product in some Hilbert space (Shawe-Taylor & Cristianini, 2004). How-

ever, it is often loosely considered simply as a pairwise ”similarity” measure between

data items. If a particular learning algorithm requires theuse of Mercer kernels and the

similarity measure does not fulfill the kernel conditions, steps must be taken to ensure

a valid model.

A natural way to address this problem and to obtain a psd similarity matrix is to

correct the eigenspectrum of the original similarity matrix S. Popular strategies include

flipping, clipping, shift correction. The non-psd similarity matrixS is decomposed as

S= UΛU⊤, (2)

whereU contains the eigenvectors ofSandΛ contains the corresponding eigenvalues.

Clip eigenvalue correction: all negative eigenvalues inΛ are set to 0. Spectrum clip

leads to the nearest psd matrixS in terms of the Frobenius norm (Higham, 1988). The

clip transformation can also be expressed as (Gu & Guo, 2012):

S∗ = SVclipV⊤clipS, (3)

with Vclip = U |Λ|− 1
2 diag(IΛ1>0, . . . , IΛN>0), whereI · is an indicator function2.

2The validity of the transformation function can be easily shown by: S∗ =

UΛ(U⊤U)|λ|−1diag(IΛ1>0, . . . , IΛN>0)(U⊤U)ΛU⊤ = UΛ|Λ|−1diag(IΛ1>0, . . . , IΛN>0)ΛU⊤ =

UΛdiag(IΛ1>0, . . . , IΛN>0)U⊤. Similar derivations can also be found for the other transformation
functions (flip, shift, square).
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Flip eigenvalue correction: all negative eigenvalues inΛ are set toΛi := |Λi | ∀i

which at least keeps the absolute values of the negative eigenvalues and can be rele-

vant if these eigenvalue contain important information (Pekalska et al., 2004). The flip

transformation can be expressed as (Gu & Guo, 2012):

S∗ = SVflipV⊤flipS, (4)

with Vflip = U |Λ|− 1
2 .

Shift eigenvalue correction: the shift operation was already discussed earlier by

different researchers (Laub, 2004; Filippone, 2009) and modifies Λ such thatΛ :=

Λ −mini j Λ. The shift transformation can also be expressed as (Gu & Guo,2012):

S∗ = SVshiftV⊤shiftS, (5)

with Vshift = U |Λ|−1(Λ − νI ) 1
2 with ν = mini j Λ. Spectrum shift enhances all the self-

similarities by the amount ofν and does not change the similarity between any two

different data points.

Square and bending eigenvalue correction: further strategies where recently dis-

cussed in (Muoz & De Diego, 2006) and contain thesquare transformationwhereΛ

is changed toΛ := Λ2 (taking the square elementwise) which leads to the following

transformation matrix

S∗ = SVsquareV⊤squareS= SS⊤ (6)

with Vsquare = U(Λ2)−
1
2 andbending, where in an iterative process the matrix is up-

dated such that the influence of points (causing the metric violation) is down-weighted.

In the same work also a brief comparison to some transformation approaches can be

found. The prior transformations can be applied to symmetric similarity matrices. If

the input is a symmetric dissimilarity matrix one has first toapply a double centering
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(Pekalska & Duin, 2005) step. The obtained potentially non-psd similarity matrix can

be converted as shown above and subsequently converted backto dissimilarities using

Eq. (7), if needed.

Complexity: all of these approaches are applicable to similarity (as opposed to dis-

similarity) data and require eigenvalue decomposition of the full matrix. The eigende-

composition (EVD) in Eq. (2) has a complexity ofO(N3) using standard approaches. In

(Gisbrecht & Schleif, 2014) a linear EVD was proposed which is based on the Nyström

approximation and can also be used for indefinite low rank matricesS.

To apply these approaches to dissimilarity data one first needs to apply double cen-

tering (Pekalska & Duin, 2005) to the dissimilarity matrixD:

S = −JDJ/2

J = (I − 11⊤/N)

with identity matrixI and vector of ones1. To get fromS to D is obviously also possible

by calculating the dissimilarity between itemsi and j as follows:

Di j = Sii + Sj j − 2Si j . (7)

The same approach was used in (Graepel et al., 1998) for indefinite dissimilarity data

followed by a flipping transformation. A more efficient strategy combining double

centering and eigenvalue correction for symmetric dissimilarity matrices was provided

in (Schleif & Gisbrecht, 2013) and uses the Nyström approximation to get efficient non-

psd to psd conversions for low-rank matrices with linear costs.

Out of sample extension to new test points: in general, one would like to modify the

trainingand test similarities in a consistent way, that is, to modify theunderlying sim-

ilarity functionand not only modifying the training matrixS. Using the transformation
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strategies mentioned above, one can see that the spectrum modification are in general

based on a transformation matrix applied toS. Using this transformation matrix one

can obtain corrected and consistent test samples in a straightforward way. We calculate

the similarities of the new test point to allN training sample and obtain a row-vector

st ∈ R1xN which replacesS in the above equations. For clip we would get:

s∗t = stVclipV⊤clipst (8)

with Vclip as defined before on the training matrixS.

5.2 Learning of alternative metric representations (A3)

As mentioned before many algorithmic optimization approaches become invalid for

non-metric data. An early approach to address this problem used an optimization frame-

work to address the violation of assumptions in the input data. A prominent way is to

optimize not on the original proximity matrix but on a proxy matrix which is ensured

to be psd and is aligned to the original non-psd proximity matrix.

Proxy matrix for noisy kernels: the proxy matrix learning problem for indefinite

kernel matrices is addressed in (Luss & d’Aspremont, 2009) for support vector classi-

fication (SVC), regression (SVR) and 1-class classification. The authors attribute the

indefiniteness to noise effecting the original kernel and propose to learn a psd proxy

matrix. The SVC or SVR problem is reformulated to be based on the proxy kernel with

additional constraints to keep the proxy kernel psd and aligned to the original non-psd

kernel. A similar conceptually related proxy learning algorithm for indefinite kernel

regression was recently proposed in (Li et al., 2015). The specific modification is done

as an update on the cone of psd matrices which effectively removes the negative eigen-

values of the input kernel matrix.

A similar but more generic approach was proposed for dissimilarities in (Lu et al.,
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2005). Thereby the input can be a noisy, incomplete and inconsistent dissimilarity

matrix. A convex optimization problem is established, estimating a regularized psd ker-

nel from the given dissimilarity information. Also in (Brickell et al., 2008) potentially

asymmetric but non-negative dissimilarity data are considered. Thereby a proxy ma-

trix is searched for such that the triangle violations for triple points sets of the data are

minimized or removed. This is achieved by specifying a convex optimization problem

on the cone of metric dissimilarity matrices constrained toobey all triangle inequal-

ity relations for the data. Various triangle inequality fixing algorithms are proposed to

solve the optimization problem at reasonable costs for moderate data sets. The bene-

fit of (Brickell et al., 2008) is that as few distances as possible are modified to obtain

a metric solution. Another approach is to learn a metric representation based only on

given conditions on the data point relations, such as linkedor unlinked. In (Davis et al.,

2007) a Mahalanobis type metric is learned such thatd(xi , x j) =
√

(xi − x j)⊤G(xi − x j)

where the user given constraints are optimized with the matrix G.

Proxy matrix guided by eigenspectrum correction: in (J. Chen & Ye, 2008) the

work of (Luss & d’Aspremont, 2009) was adapted to a semi-infinite quadratic con-

straint linear program with an extra pruning strategy to handle the large number of

constraints. Further approaches following this line of research were recently reviewed

in (Muoz & De Diego, 2006).

In (Luss & d’Aspremont, 2009) the indefinite kernelK0 is considered to be a noise

disturbed realization of a psd kernelK. They propose a joint optimization of a proxy

kernel aligned toK0 and the (dual) SVM classification problem3:

max
(α⊤y=0,0≤α≤C)

min
(K�0)
α⊤1− 1

2
Tr(K(Yα)(Yα)⊤) + γ‖K − K0‖2F

whereα are the Lagrange variables,K is the proxy kernel,Y is a diagonal label matrix

3Later extended to regression and one-class SVM
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andC, γ are control parameters. For the Frobenius norm the closest psd kernel toK0

is the corresponding clipped kernel, accordingly in (Luss &d’Aspremont, 2009) the

proxy kernel can be calculated explicit (for givenα) as:

K∗ =
(

K0 + (Yα)(Yα)⊤)/(4γ)
)

+
(9)

where+ indicates the clipping operation as discussed before. Accordingly, for γ → ∞

the optimal kernel is obtained by zeroing out negative eigenvalues. We can also see in

Eq (9) that similarities for points with different labels are shifted to zero (and finally

clipped) and similarities for points in the same class are lifted.

Another work based on (Luss & d’Aspremont, 2009) was introduced in (Y. Chen, Gupta, & Recht,

2009), where the proxy or surrogate kernel is restricted to result from few specific trans-

formations. such as eigenvalue flipping, clipping or shifting, leading to a second-order

cone program. In (Y. Chen, Gupta, & Recht, 2009) the optimization problem is similar

to the one proposed in (Luss & d’Aspremont, 2009) but the regularization is handled

differently. Instead a computationally simpler method restricting K∗ to be a spectrum

modification ofK0 is suggested, based on indicator variablesa. This approach also

leads to an easier out of sample extension. The suggested problem in the primal domain

was given as:

minimize
c,b,ξ,α

1
N1⊤ξ + ηc⊤Kac+ γh(a)

s.t. diag(y)(Kac+ b1) ≥ 1− ξ,

ξ ≥ 0,Λa ≥ 0

(10)

whereKa = Udiag(a)ΛU⊤ with K = UΛU⊤ as the eigenvalue decomposition of the

kernel matrix andh(a) is a convex regularizer ofa e.g.‖a− aclip‖2 or ‖a− aflip‖2, which

is chosen by cross-validation. The regularizer is controlled by a balancing parameterγ

having the same role as in Eq (9). The other parameters are with respect to a standard

SVM problem (for details see (Y. Chen, Gupta, & Recht, 2009)).

A similar strategy coupling the SVM optimization with a modified kernel PCA was
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proposed recently in (Gu & Guo, 2012). Here the basic idea is to modify the eigenspec-

trum of the non-psd input matrix as discussed in (Y. Chen, Gupta, & Recht, 2009), but

based on a kernel PCA for indefinite kernels. The whole problemwas formalized in a

multi-class SVM learning scheme.

For all those methods the common idea is to convert the non-psd proximity matrix

into a psd similarity matrix by using a numerical optimization framework. The ap-

proach of (Lu et al., 2005) learns the psd matrix independently of the algorithm which

subsequently uses the matrix. The other approaches solve jointly the matrix conversion

and the model-specific optimization problem.

Complexity: while the approaches of (Luss & d’Aspremont, 2009) and (J. Chen & Ye,

2008) appear to be quite resource demanding, the approachesof (Gu & Guo, 2012) and

(Y. Chen, Gupta, & Recht, 2009) are more tractable by constraining the matrix con-

version to few possible strategies and providing a simple out of sample strategy for

mapping new data points. The approaches of (Luss & d’Aspremont, 2009) uses a full

eigenvalue decomposition in the first step (O(N3)). Further the full kernel matrix is

approximated by a psd proxy matrix withO(N2)) memory complexity. The approach

by (J. Chen & Ye, 2008) has similar conditions. The approach in(Brickell et al., 2008)

showsO(N3) runtime complexity. All these approaches have a rather high computa-

tional complexity and do not scale to larger datasets withN ≫ 1e5.

Out of sample extension to new test points: the work in (Luss & d’Aspremont,

2009; J. Chen & Ye, 2008) and (Lu et al., 2005) extends to new test points by employ-

ing an extra optimization problem. (J. Chen & Ye, 2008) proposed to find aligned test

similarities using a quadratically constrained quadraticprogram (QCQP). Given new

the test similaritiess and an optimized kernelK∗ aligned toS an optimized̃k is found
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by solving
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The optimized kernel values are given ink̃ with self similarities inr, ∆s = S(x, x) and

‖ · ‖F is the Frobenius norm. As pointed out in more detail in (J. Chen& Ye, 2008) one

finally obtains the following rather simple optimization problem:

mink,r 2‖k̃− s‖22 + (r − ∆s)2

s.t. k̃⊤(K∗)−1k̃− r ≤ 0

(I − K∗(K∗)−1)k̃ = 0

which can be derived from (Boyd & Vandenberghe, 2004) (Appendix A.5.5).

In (Gu & Guo, 2012) the extension is directly available by useof a projection func-

tion within a multiclass optimization framework.

5.3 Experimental evaluation

The formerly mentioned approaches are all similar to each other but from the pub-

lished experiments it is not clear how they compare. Subsequently we give a brief study

comparing the approach of (Luss & d’Aspremont, 2009) and (J.Chen & Ye, 2008). We

consider different non-psd standard datasets processed bythe two methods, systemati-

cally varying the penalization parameterγ ∈ [1e− 4, . . . ,1000] at a logarithmic scale

with 200 steps. The various kernel matrices form a manifold in the cone of the psd

matrices. We compared these kernel matrices pairwise usingthe Frobenius norm. The

obtained distance matrix is embedded into two dimensions using the t-SNE algorithm
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Figure 4: Visualization of the proxy kernel matrices (amazon, aural sonar, protein).
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Figure 5: Eigenspectra of the proxy kernel matrices (amazon, aural sonar, protein).

(van der Maaten & Hinton, 2008) and an manually adapted penalty term. As anchor

points we also included the clip, flip, shift, square and the original kernel solution.

The considered data are the Amazon47 data (204pts, two classes), the Aural Sonar

data (100pts, two classes) and the Protein data (213pts, twoclasses). The similarity

matrices are shown in Figure 4 with indices sorted accordingto the class labels. For

all datasets the labeling has been changed to a two class scheme by combining odd or

even class labels, respectively. All datasets are then quite simple classification problems

leading to an empirical error of close to 0 in the SVM model trained on the obtained

proxy kernels. However they are also strongly non-psd as canbe seen from the eigen-

spectra plots in Figure 5.

An exemplary embedding is shown in Figure 7 with arbitrary units (so we omit the

axis labeling). There are basically two trajectories of kernel matrices (each represented

by a circle) where the penalty parameter value is indicated by a red or blue shading.

We also see some separate clusters which are caused by the embedding procedure. We

see the kernel matrices for the protein data set. In the left we have the trajectory of the
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approach provided by Chen and in the right the one as obtained by the method of Luss.

We see that the clip solution is close to the crossing point ofthe two trajectories. The

square, shift and flip solutions are near to the original kernel matrix (light green circle).

We can find the squared solution quite close to the original kernel matrix but also some

points of the Luss trajectory are close to this matrix. Similar observations can be made

for the other datasets.4. We would also like to mention again that both algorithms are

not only optimizing with respect to the Frobenius norm but also in the line of the SVM

optimization.

From the plots we can conclude that both method calculate psdkernel matrices

along a smooth trajectory with respect to the penalty parameter finally leading to the

clip solution. The square, shift and original kernel solution appear to be very similar

and are close but in general not crossing the trajectory of Luss or Chen. The flip solution

is typically less similar to the other kernel matrices.

5.4 A geometric view of eigenspectrum and proxy approaches

As seen in the previous section the surrogate or proxy kernelis not learned from scratch

but is often restricted to be in a set of valid psd kernels originating from some standard

spectrum modification approaches (such as flip or clip) applied toK. The approach in

(Luss & d’Aspremont, 2009) is formulated primary with respect to an increase of the

class separation by the proxy kernel and, as the second objective, to ensure that the

obtained kernel matrix is still psd. This can be easily seen in Equation Eq (9). If a pair

(i, j) of data items are form the same class, i.e.yi = yj, the corresponding similarities in

the kernel matrix are emphasized (increased), otherwise they are decreased. If by doing

this the kernel becomes indefinite, it is clipped back to the boundary of the space of

4It should be noted that the two dimensional embedding is neither unique nor perfect because the
intrinsic dimensionality of the observed matrix space is larger and t-SNE is a stochastic embedding
technique. But also with different parameter settings and multiple runs at different random start points
we consistently observe similar results. As only local relations are valid within the t-SNE embedding the
Chen solutions can also be close to e.g. the squared matrix inthe high dimensional manifold and may
have been potentially teared apart in the plot
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Figure 6: Schematic visualization of the eigenspectrum andproxy matrix approaches

with respect to the cone of psd matrices. The cone interior covers the full rank psd ma-

trices and the cone boundary contains the psd matrices having at least one zero eigen-

value. In the origin we have the matrix with all eigenvalues zero. Out of the cone are

the non-psd matrices. Both strategies project the matrices to the cone of psd-matrices.

The γ parameter controls how strong the matrices are regularizedtowards a clipping

solution with a matrix updateA. Depending on the penalizer and the rank ofS the ma-

trices follow various trajectories (an exemplary one is shown by the curved line in the

cone). Ifγ = ∞ the path reaches the clipping solution at the boundary of thecone.

psd kernel matrices5. This approach can also be considered as a type of kernel matrix

learning (Lanckriet et al., 2004).

In (Y. Chen, Gupta, & Recht, 2009) the proxy matrix is restricted to be a combina-

tion of clip or flip operations on the eigenspectrum of the matrix K. We denote the cone

of N × N positive semi-definite matrices byC (see figure 6). Further, we define the

kernel matrix obtained by the approach of Eq. (9) asKL and at Eq. (10) asKC. The

approaches of Eq. (9) and Eq. (10) can be interpreted as a smooth path inC. Given,

the balancing parameterγ ∈ (0,∞), the optimization problems in Eq. (9) and Eq.

(10) have unique solutionsKL(γ) andKC(γ), respectively. In the interior ofC, a small

5In general a matrix with negative entries can still be psd
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perturbation ofγ will lead to small perturbations inKL andKC, meaning that the opti-

mization problems in Eq. (9) and Eq. (10) defines continuous pathsKL(0,∞) → C≥0

andKC(0,∞)→ C≥0, respectively. It has been shown that asγ grows,KL(γ) approaches

Kclip (Y. Chen, Gupta, & Recht, 2009). Note that for the approach of Chen the vectora

(see Eq. 10) defines the limiting behavior of the pathKC(γ). This can be easily seen

by definingλ = (λ1, . . . , λN) anda = (a1, . . . ,aN) as follows: Ifλi = 0, thenai = 0.

Otherwise,

• clip : ai = 1 if λi ≥ 0 andai = 0 otherwise

• flip : ai =
|λi |
λi

• square:ai = λi

Depending on the setting of the vectora, KC(γ) converges to eitherKclip, Kflip, Ksquare.

Following the idea of eigendecomposition by Chen,K = UΛU⊤, we suggest a

unified intuitive interpretation of proximity matrix psd corrections. Applying an eigen-

decomposition to the kernelK0 =
∑

λiuiu⊤i , we can viewK0 is a weighted mixture ofN

rank-1 ”expert proximity suggestions”6 Ki: K0 =
∑N

i=1 λiKi, whereKi = uiu⊤i .

Different proximity matrix psd corrections result in different weights of the experts

Ki, K =
∑N

i=1ωiKi:

• no correction:ωi = λi

• clip : ωi = [λi]+

• flip : ωi = |λi |

• square:ωi = λ
2
i

• shiftωi = λi −min j λ j

6It can effectively be less thenN experts if rank(K) < N.
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Each expert provides an opinion [Ki](a,b) about the similarity for an object pair (a,b),

weighted byωi. Note that in some cases the similarities [Ki](a,b) and the weightsωi can

be negative. Ifboth terms are positive or negative, the contribution of thei-th expert

increases the overall similarityK(a,b), otherwise it is decreased. If we consider a clas-

sification task, we can now analyze the misclassifications inmore detail by inspecting

the similarities of misclassified entries for individual experts. Depending on the used

eigenvalue correction one gets information whether similarities are increased or de-

creased. In the experiments given in Section 8.1 and Section8 we see that clipping is in

general worse than flipping or square. Clipping removes some of the experts opinions.

Consider a negative similarity value [Ki](a,b) from the i-th expert. Negative eigenvalue

λi of K0 causes the contribution from experti to increase the overall similarityK(a,b)

between itemsa andb. Flipping corrects this by enforcing the contribution fromexpert

i to decreaseK(a,b). Square in addition enhances and suppresses weighting all experts

with |λi | > 1 and|λi | < 1, respectively. On the other hand, Shift consistently ranks up

unimportant experts (weights inK0 close to 0), explaining the (in general) bad results

for shift in Table 6.

An exemplary visualization of the proximity matrix trajectories for the approaches

of (Y. Chen, Gupta, & Recht, 2009) and (Luss & d’Aspremont, 2009) is shown in Fig-

ure 7. Basic eigenspectrum approaches project the input matrix K0 on the boundary

of the coneC if the matrix has low rank, or project it in the interior ofC when the

transformed matrix has still full rank. Hence, the clip and shift approaches give always

a matrix on the boundary and are quite restricted. The other approaches can lead to

projections in the cone and may still permit additional modifications of the matrix e.g.

to enhance inner-class similarities. However the additional modifications may lead to

low rank matrices such that they are projected back to the boundary of the cone.

Having a look at the protein data (see Figure 5) we see that theeigenspectrum ofK0

shows strong negative components. We know that the proximities of the protein data

are generated by a non-metric alignment algorithm, errors in the triangle inequalities
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clip solution

flip solution square solution

shift solution original kernel

Figure 7: Embedding of adapted proxy kernel matrices for theprotein data as ob-

tained by Luss (blue shaded) and Chen (red shaded). One sees typical proxim-

ity matrix trajectories for the approaches of (Y. Chen, Gupta, & Recht, 2009) and

(Luss & d’Aspremont, 2009), both using the clip strategy. The embedding was obtained

by t-distributed stochastic neighbor embedding (t-SNE) (van der Maaten & Hinton,

2008), where the Frobenius norm was used as a similarity measure between two matri-

ces. Although the algorithms start from different initialization points of the proximity

matrices, the trajectories roughly end in the clip solutionfor increasingγ.
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are therefore most likely caused by the algorithm and not by numerical errors (noise).

For simplicity we reduce the protein data to a two class problem by focusing on the

two largest classes. We obtain a proximity matrix with 144× 144 entries and an eigen-

spectrum which is very similar to the one of the original protein data. The smallest

eigenvalue is−12.41 and the largest 68.77. Now we identify those points which show a

stronger alignment to the eigenvector of the dominantnegativeeigenvalue - i.e. points

with high absolute values in the corresponding co-ordinates of the eigenvector. We col-

lected the top 61 of such points in a setB. Training SVM on the two-class problem

without eigenvalue correction lead to 57% training error. We observed that 52% of data

items fromB were misclassified. By applying an eigenvalue correction we still have

misclassifications (flip - 5%, clip - 14%), but for flip none of the misclassified items

and for clip 15% of them are inB. This shows again that the negative eigenvalues can

contain relevant information for the decision process.

5.5 Embedding and mapping strategies (A2)

Global proximity embeddings: an alternative approach is to consider different types

of embeddings or local representation models to effectively deal with non-psd matrices.

After the embedding into an (in general low dimensional) Euclidean space standard data

analysis algorithms e.g. to define classification functionscan be used. While many em-

bedding approaches are applicable to non-metric matrix data the embedding can lead to

a substantial information loss (Wilson & Hancock, 2010). Some embedding algorithms

like laplacian eigenmaps (Belkin & Niyogi, 2003) can not be calculated based on non-

metric input data and pre-processings as mentioned before are needed to make the data

psd.

Data embedding methods follow a general principle (Bunte, Biehl, & Hammer, 2012):

for a given finite set ofN data items some characteristics charX are derived and the aim
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is to match them as well as possible with corresponding characteristics charY in the low

dimensional embedding space:

tension(X,Y) =
N∑

i=1

m(charX(X, xi), charY(Y, yi)) . (11)

Herem(·) denotes a measure of mismatch between the characteristics, and the index

i refers to thei th data objectxi and its low-dimensional counterpartyi. The source

matrix contains pairwise similarity information about thedata items. Optimization of

usually low-dimensional point coordinates{yi}Ni=1 or of parametersθ of a functional

point placement modelY = Fθ(X) allows for minimization of the overall tension.

Using the above formalism with Multi-Dimensional-Scaling(MDS) (Kruskal, 1964)

m = mMDS being the sum of squares and char(·, ·) picking pairwise distancesDi j , clas-

sical MDS can be expressed as

tensionMDS(X,Y) =
N∑

i=1

N∑

j=1

(DX
i j − DY

i j )
2 . (12)

In practice, eigen-decomposition is used for solving this classical scaling problem effi-

ciently. However, a large variety of modification exists formodeling embedding stress

in customized, e.g. scale sensitive, ways by iterative optimization of suitably designed

tension functionsm (France & Carroll, 2011).

In a comparison of distance distributions of high-dimensional Euclidean data points

and low-dimensional points it turns out that the former one is shifted to higher average

distances with relatively low standard deviation. This phenomenon is referred to as

concentration of the norm (Lee & Verleysen, 2007).

In order to embed such distances with their specific properties properly in a low-

dimensional space, versions of stochastic neighbor embedding (SNE) (van der Maaten & Hinton,

2008) and the neighbor retrieval visualizer NeRV (Venna et al., 2010) apply different

input and output distributions. Gaussian distributionsP(X) are used in in the high-
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dimensional input space and Student t-distributionsQ(Y) in the low-dimensional out-

put space aiming at minimizing the Kullback-Leibler divergence (KL) between them

by adapting low-dimensional pointsY. Mismatch between per-object neighborhood

probabilities is thus modeled bymt−SNE = KL(P‖Q(Y)):

tensiont−SNE(X,Y) =
N∑

i=1

KL(Pi(X)‖Qi(Y)) . (13)

Neighborhoods are expressed in terms ofσi-localized Gaussian transformations of

squared Euclidean distances:

Pi j =
exp(−‖xi − x j‖2/2σi)
∑

k,i exp(−‖xi − xk‖2/2σi)
. (14)

The neighborhood probability is modeled indirectly by setting the bell shape widthσi

for each point to capture to which degree nearby points are considered as neighbors for a

fixed radius of ’effective’ neighbors. This number is referred to as perplexity parameter

and is usually set to 5≤ p ≤ 50. Naturally, variations in data densities lead to different

σi and, consequently, to asymmetric matricesP. Gaussian distributions could be used

in the embedding space too, but in order to embed large input distances with relatively

low variability in a low-dimensional space, the heavy-tailed Student t-distribution

Qi j (Y) =
(1+ ‖yi − y j‖2)−1

∑N
k,l(1+ ‖yk − yl‖2)−1

(15)

turned out to be a more suitable characteristics (van der Maaten & Hinton, 2008).

The priorly mentioned multidimensional scaling technique(MDS) takes a symmet-

ric dissimilarity matrixD as input and calculates ad− dimensional vector space repre-

sentation such that for theN×N dissimilarities the newN pointsX = {x1, . . . , xN}, with

X ∈ R are close to those of the original dissimilarity measure using some stress func-

tion. In classical MDS (cMDS) this stress function is the Euclidean distance. During

this procedure, details see (Kruskal, 1964), negative eigenvalues are clipped and a psd
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kernel can be obtained asS∗ = XX⊤, whereX = UΛ
1
2 . The approach is exact if the

input data can be embedded into a Euclidean space without anyextra loss, which is not

always possible (Wilson & Hancock, 2010).

Local embeddings: in (L. Chen & Lian, 2008) an unsupervised retrieval problem is

considered where the used distance function is non-metric.A model is defined, such

that the data can be divided into disjoint groups and the triangle inequality holds within

each group by constant shifting7. Similar approaches where recently discussed in

(Bustos & Skopal, 2011) and the same authors proposed a specific distance modifica-

tion approach in (Skopal & Loko, 2008). Local concepts in theline of non-metric prox-

imities where also recently analyzed for the visualizationa non-metric proximity data

by (Van Der Maaten & Hinton, 2012) where different (local) maps are defined to get

different views on the data. Another interesting approach was proposed in (Goldfarb,

1984) where the non-metric proximities are mapped in a pseudo-Euclidean space.

Proximity feature space: finally also the so called similarity or dissimilarity space

representation (Graepel et al., 1998; Pekalska & Duin, 2008a, 2005) has found wide us-

age. In (Graepel et al., 1998) a SVM in pseudo-Euclidean space is proposed and a gen-

eralized nearest mean classifier and Fisher linear discriminant classifier was proposed

in (Pekalska & Duin, 2008a, 2005) also using the feature space representation.

Thereby the proximity matrix is considered to be a feature matrix with rows as the

data points (cases) and columns as the features. Accordingly each point is represented in

anN dimensional feature space where the features are the proximities of the considered

point to all other points. This few on proximity learning is also conceptually related to

a more advanced theory proposed in (Balcan et al., 2008).

The former mentioned approaches are either transforming the given proximities by a

local strategy or completely change the data space representation as in the last case. The

7Unrelated to the eigenspectrum shift approach mentioned before.
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approach by (Pekalska & Duin, 2005) is cheap but a feature selection problem is raised

because in general it is not acceptable to use allN features to represent a point during

training but also for out of sample extensions in the test phase (Pekalska et al., 2006).

Further this type of representation radically changes the original data representation.

The embedding, suggested in (Goldfarb, 1984) is rather costly because it involves an

eigenvalue decomposition (EVD) of the proximity matrix which can be done effectively

only by using some novel strategies forlow rankapproximations which also provide an

out of sample approach (Schleif & Gisbrecht, 2013).

In (Balcan et al., 2008) a theoretical analysis for using similarities as features was

provided with similar findings for dissimilarities in (Wanget al., 2009). The authors

in (Balcan et al., 2008) provide criteria for a good similarity function to be used in

a discrimination function. Roughly they call a similarity asgood if the expected intra-

class similarity is sufficiently large compared to the expected interclass similarity (more

specific in Theorem 4 of (Balcan et al., 2008)). GivenN training points and a good sim-

ilarity function, there exists a linear separator on the similarities as features that has a

specifiable maximum error at a margin that depends onN (Balcan et al., 2008).

Wang et al. (2007) show that under slightly less restrictiveassumptions on the

similarity function there exists with high probability a convex combination of simple

classifiers on the similarities as features which has a maximum specifiable error.

Complexity: the classical MDS has a complexity ofO(N3) but using Landmark MDS

(de Silva & Tenenbaum, 2002; J. Platt, 2005) (L-MDS) the complexity can be reduced

toO(Nm2) with mas the number of landmarks. L-MDS is however double centering the

input data on the small landmark matrix only and applies a clipping of the eigenvalues

obtained on them× m similarity matrix. It has therefore two sources of inaccuracy,

namely in the double centering and the eigenvalue estimation step (the eigenfunction

of S are only estimated on them× m Landmark matrixDm×m). Further the clipping

may remove relevant information as pointed out before. In (Gisbrecht & Schleif, 2014)
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a generalization of L-MDS was proposed which is more accurate and flexible in these

two points.

The before mentioned local approaches can not directly be used in e.g. a classifica-

tion or standard clustering context but are method specific for a retrieval or inspection

task. The proximity feature space approaches has basicallyno extra costs (given the

proximity matrix is fully available) but defines a finite dimensional space of sized with

d determined by the number of (in this context) called prototypes or reference points.

So oftend is simple chosen asd = N which can lead to a high dimensional vectorial

data representation and costly distance calculations.

Out of sample extension to new test points: To obtain the corrected similarities

for MDS one can calculates∗t = stUΛ
−1
2 Λ

1
2 U⊤ = stUU⊤. If this operation is to

costly also approximative approaches as suggested in (Gisbrecht, Lueks, et al., 2012;

Gisbrecht et al., 2015; Vladymyrov & Carreira-Perpiñán, 2013) can be used. The local

embedding approaches typically generate a model which has to be regenerated from

scratch to be completely valid or specific insertion concepts can be used as shown in

(Skopal & Loko, 2008). The proximity space representation is directly extended to new

samples by providing the proximity scores to the corresponding prototypes, which how-

ever can be costly for a large number of prototypes.

6 Natural Non-metric learning approaches

An alternative to correct the non-psd matrix is to use the additional information in

the negative eigenspectrum in the optimization framework.This is in agreement with

research done by (Pekalska et al., 2004). The most simple strategy is to use a nearest

neighbor classifier (NNC) as discussed in (R. P. W. Duin et al., 2014). The NNC is op-

timal if N → ∞ but is also very costly because for a new item all potential neighbors

have to be evaluated in the worst case. The organization intoa tree structure can resolve
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this issue for the average case using e.g. the NM-Tree as proposed in (Skopal & Loko,

2008) but is complicated to maintain for life long learning and suffers from the short-

comings of NN for a finalN.

There are models that functionally resemble kernel machines, such as SVM, but

do not require Mercer kernels for their model formulation and fitting, e.g. the Rele-

vance Vector Machine (RVM) (M. Tipping, 2001a), Radial-Basis-Function networks

(RBF) (Buhmann, 2003) (with kernels positioned on top of each training point) or

the Probabilistic Classification Vector Machine (PCVM) (H. Chen et al., 2009a). In

such approaches kernels expressing ”similarity” between data pairs are treated as non-

linear basis functionsφi(x) = K(·, xi) transforming inputx into its non-linear image

φ(x) = (φ1(x), ..., φN(x))⊤, making the out-of-sample extension straightforward, while

not requiring any additional conditions onK. The main part of the models is formed

by the projection of the data imageφ(x) onto the parameter weight vectorw: w⊤φ(x).

Subsequently we detail some of these methods.

6.1 Approaches using the Indefinite krein or pseudo Euclidean space

(B2)

Some approaches are formulated using the Krein space and avoid costly transforma-

tions of the given indefinite similarity matrices. Pioneering work about learning with

indefinite or non-positive kernels can be found in (Ong et al., 2004; Haasdonk, 2005).

In (Ong et al., 2004) the authors noticed that if the kernels are indefinite one can not

any longer minimize the loss of standard kernel algorithms but instead stabilize the loss

in average. In (Ong et al., 2004) it is shown that for every kernel there is an associated

Krein space, and for every reproducing kernel krein space (RKKS) (Alpay, 1991), there

is a unique kernel. In the same work a list of indefinite kernels like the linear combi-

nation of Gaussians with negative combination coefficientsis provided and initial work

for learning algorithms in RKKS combined by Rademacher Bounds was proposed. In
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(Haasdonk, 2005) a geometric interpretation of SVMs with indefinite kernel functions

is provided. It was shown that indefinite SVMs are optimal hyperplane classifiers not

by margin maximization, but by minimization of distances between convex hulls in

pseudo-Euclidean spaces. The approach is solely defined on distances and convex hulls

which can be fully defined in the pseudo-Euclidean space. This approach is very appeal-

ing as it shows that SVMs can be learned for indefinite kernelsalthough not as a convex

problem. However it is also mentioned that the approach is inappropriate for proximity

data with a large number of negative eigenvalues. Based on thepriorly address theory

multiple kernel approaches have been extended to be applicable for indefinite kernels.

Indefinite fisher and kernel quadratic discriminant: in (Haasdonk & Pkalska, 2008;

Pekalska & Haasdonk, 2009) indefinite kernel fisher discriminant analysis (iKFDA) and

indefinite kernel quadratic discriminant analysis (iKQDA)was proposed focusing on

classification problems, recently extended by a weighting scheme in (J. Yang & Fan,

2013).

The initial idea is to embed the training data into a Krein space and apply a modified

kernel fisher discriminant analysis (KFDA) or kernel quadratic discriminant analysis

(KQDA) for indefinite kernels.

Given the indefinite kernel matrixK and the embedded data in a pseudo-Euclidean

space (pE), the linear Fisher Discriminant functionf (x) = 〈w,Φ(x)〉pE + b is based on

a weight vectorw such that the between-class scatter is maximized while the within-

class scatter is minimized alongw. This direction is obtained by maximizing the Fisher

criterion:

J(w)
〈w,Σbw〉
〈w,Σww〉 pE

whereΣb is the between andΣw the within scatter matrix. In (Haasdonk & Pkalska,

2008) it is shown that the Fisher Discriminant in the pE space∈ R(p,q,z) is identical

to the Fisher Discriminant in the associated Euclidean spaceRp+q+z. To avoid the ex-

plicit embedding into the pE space a kernelization is considered such that the weight
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vectorw ∈ Rp,q,z is expressed as a linear combination of the training dataφ(xi), which

transferred to the Fisher criterion allows to use the kerneltrick. A similar strategy can

be used for KQDA. Different variations of these algorithms are discussed and also the

indefinite kernel PCA is briefly addressed.

In (Zafeiriou, 2012; Liwicki et al., 2012) an indefinite kernel PCA was proposed

and integrated in the Fisher discriminant framework to get alow-dimensional feature

extraction for indefinite kernels. The basic idea is to definean optimization problem

similar to the psd kernel PCA but using the squared indefinite kernel which has no ef-

fect on the eigenvectors but only on the eigenvalues. In the corresponding derivation of

the principal components the eigenvalues are only considered as|Λ| such that those prin-

cipal components are found corresponding to the largestabsoluteeigenvalues. Later on

this approach was applied in the context of slow-feature analysis for indefinite kernels

(Liwicki et al., 2013). Amultiple indefinite kernel learning approach was recently pro-

posed in (Kowalski et al., 2009) another recent work about indefinite kernel machines

was proposed in (Xue & Chen, 2014). Recently also the kernelized version of localized

sensitive hashing was extended to indefinite kernels (Mu & Yan, 2010) by combining

kernelized hash functions on the associated Hilbert spacesof the decomposed pseudo

Euclidean space.

Complexity: all these methods have a runtime complexity ofO(N2) − O(N3) and

do not directly scale to large data sets. The test phase complexity is linear in the

number of used points to representw. Accordingly sparsity concepts as suggested in

(M. E. Tipping, 2000) can be employed to further reduce the complexity for test cases.

Out of sample extension to new test points: the models of iKFD, iKPCA and iKQDA

allow a direct and easy out of sample extension by calculating the (indefinite) similari-

ties of a new test point to the corresponding training pointsused in the linear combina-

tion of w =
∑N

i αiφ(xi).
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6.2 Learning of decision functions using indefinite proximities (B1)

In (Balcan et al., 2008) a theory for learning with similarityfunction was proposed with

extensions for dissimilarity data in (Wang et al., 2009). The authors in (Balcan et al.,

2008) discussed necessary properties of proximity functions to ensure good generaliza-

tion capabilities for learning tasks. This theory motivates generic learning approaches

purely based on in general symmetric, potentially non-metric proximity functions min-

imizing the hinge loss, relative to the margin. They show that such a similarity func-

tion can be used in a two-stage algorithm. First the data are represented by creating

a empirical similarity mapby selecting a subset of data points as landmarks and then

representing each data point using the similarities to those landmarks. Subsequently

standard methods can be employed to find a large-margin linear separator in this new

space. Indeed in recent years multiple approaches have beenproposed which could be

covered by these theoretical frameworks although most often not explicitly considered

in this way.

Probabilistic classification vector machine: in (H. Chen et al., 2009a) and (H. Chen et al.,

2014) the authors propose theProbabilistic Classification Vector Machine(PCVM)

which can deal also with asymmetric indefinite proximity matrices8. Within a Bayesian

approach a linear classifier function is learned such that each point can be represented

by a sparse weighted linear combination of the original similarities. Similar former ap-

proaches like the Relevance Vector Machine (RVM) (M. Tipping, 2001b) were found

to be unstable without early stopping during learning. In order to tackle this problem,

a signed and truncated Gaussian prior is adopted over every weight in PCVMs, where

the sign of prior is determined by the class label, i.e.+1 or−1. The truncated Gaussian

prior not only restricts the sign of weights but also leads toa sparse estimation of weight

vectors, and thus controls the complexity of the model. Thereby the empirical feature

map is automatically generated by a sparse adaptation scheme using the EM algorithm.

8In general the input is a symmetric kernel matrix, but the method is not restricted in this way.
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As other kernel methods PCVM uses a kernel regression model
∑N

i=1 wiφi,θ(x) + b

to which a link function is applied, withwi being the weights of the basis functions

φi,θ(x) andb as a bias term. The basis functions will correspond to kernels evaluated

at data items. Consider binary classification and a data set ofinput-target training pairs

D = {xi , yi}Ni=1, whereyi ∈ {−1,+1}. The implementation of PCVM (H. Chen et al.,

2014) uses the probit link function, i.e.

Ψ(x) =
∫ x

−∞
N(t|0,1)dt,

whereΨ(x) is the cumulative distribution of the normal distributionN(0,1). Parameters

are optimized by an Expectation Maximization (EM) scheme.

After incorporating the probit link function, the PCVM modelbecomes:

l(x; w,b) = Ψ





N∑

i=1

wiφi,θ(x) + b



 = Ψ (Φθ(x)w + b) (16)

WhereΦθ(x) is a vector of basis function evaluations for data itemx.

In the PCVM formulation (H. Chen et al., 2009b), a truncated Gaussian priorNt

with mode at 0 is introduced for each weightwi. Its support is restricted to [0,∞) for

entries of the positive class and (−∞,0] for entries of the negative class as shown in Eq.

(17). A zero-mean Gaussian prior is adopted for the biasb. The priors are assumed to

be mutually independent.

p(w|α) =
N∏

i=1

p(wi |αi) =
N∏

i=1

Nt(wi |0, α−1
i ),

p(b|β) = N(b|0, β−1),
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whereαi andβ are inverse variances:

p(wi |αi) =






2N(wi |0, α−1
i ) if yiwi > 0

0 otherwise

= 2N(wi |0, α−1
i ) · δ(yiwi). (17)

whereδ(·) is the indicator function1x>0(x).

We follow the standard probabilistic formulation and assume thatzθ(x) = Φθ(x)w+b

is corrupted by an additive random noiseǫ , whereǫ ∼ N(0,1). According to the probit

link model, ifhθ(x) = Φθ(x)w+b+ǫ ≥ 0, y = 1 and ifhθ(x) = Φθ(x)w+b+ǫ < 0, y = −1.

We obtain:

p(y = 1|x,w,b) = p(Φθ(x)w + b+ ǫ ≥ 0) = Ψ(Φθ(x)w + b). (18)

hθ(x) is a latent variable becauseǫ is an unobservable variable. We collect evaluations

of hθ(x) at training points in a vectorHθ(x) = (hθ(x1), . . . ,hθ(xN))⊤. In the expectation

step the expected valuēHθ of Hθ with respect to the posterior distribution over the

latent variables is calculated (given old valueswold,bold). In the maximization step the

parameters are updated through

wnew
= M(MΦ⊤θ (x)Φθ(x)M + IN)−1 (19)

M(Φ⊤θ (x)H̄θ − bΦ⊤θ (x)I ) (20)

bnew
= t(1+ tNt)−1t(I⊤H̄θ − I⊤Φθ(x)w) (21)

whereIN is a N-dimensional identity matrix andI a all-ones vector, the diagonal ele-
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ments in the diagonal matrixM are:

mi = (ᾱi)
−1/2
=






√
2wi if yiwi ≥ 0

0 else

(22)

and the scalart =
√

2|b|. For further details see (H. Chen et al., 2009b).

Supervised Learning with Similarity Functions: the theoretical foundations for

classifier construction based on generic (ǫ0, B)-good similarity functions was proposed

in (Balcan et al., 2008). The theory in this paper suggests a constructive approach to

derive a classifier. After a mapping, like the one described already before, the similarity

functions are normalized and this representation is used ina linear SVM to find a large

margin classifier.

Another approach directly relating to the work of (Balcan et al., 2008) was pro-

posed by (Kar & Jain, 2012) and showed a practical realization of the ideas outlined

in (Balcan et al., 2008) and how to generate a classifier function based on symmet-

ric (non-)psd similarity functions. The procedure takes label vectorsy ∈ {−1,1}, with

Y = {y1, . . . , yN} a (ǫ0, B)-good similarity functionK see (Balcan et al., 2008), and a loss

function lS : R × Y → R+ as input, providing a classifier functionf : x 7→ 〈w,Ψ(x)〉.

First a d-dimensional landmarks set (columns)L = {x1 → xd} is selected from the

similarity mapK and a mapping functionΨLx 7→ 1√
d
(K(x, x1), . . . ,K(x, xd)) ∈ Rd is

defined. Subsequently a weight-vectorw is optimized such that the following mini-

mization problem is solved:

ŵ = arg min
w∈Rd:‖w‖2≤B

N∑

i=1

lS(〈w,Ψ(x)〉, yi)

Reasonable loss functions for classification and regressionproblems are provided in

(Kar & Jain, 2012). In contrast to the work given in (H. Chen et al., 2009a), the identi-

fication of the empirical feature-map or landmark selectionis just realized by a random
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selection procedure instead of a systematic approach. A major limitation is the random

selection of the landmarks which leads to large standard-deviation in the obtained mod-

els. Although the used theory guarantees to get a large margin classifier from a good

similarity measure the random procedure used in (Kar & Jain,2012) may not necessar-

ily find such a model. In general the solution gets better for larger landmarks sets but

due to the usedl − 2 norm in the optimizationw is in general not sparse, such that a

complex model is obtained and the out of sample extension becomes costly.

In (Wang et al., 2009) a similar approach was proposed for dissimilarity functions

whereby the landmarks set is optimized by a boosting procedure.

Some other related approaches are given by so called median algorithms. Thereby

the model parameters are specific data points of the originaltraining, identified during

the optimization and considered as cluster centers or prototypes, which can be used to

assign new points. One may consider this also as a sparse version of 1-nearest neighbor

and it can also be related to the nearest mean classifier for dissimilarities proposed in

(Wilson & Hancock, 2010). An example for such median approaches can e.g. be found

in (Nebel et al., 2014) and (Hammer & Hasenfuss, 2010). Approaches in the same line

but with a weighted linear combination where proposed in (D.Hofmann et al., 2014;

Hammer et al., 2014; Gisbrecht, Mokbel, et al., 2012) for dissimilarity data. Similar as

discussed in (Haasdonk, 2005) these approaches may converge only to a saddle point

for indefinite proximities.

Complexity: algorithms which derive decision functions in the former way are in

general very costly involvingO(N2) to O(N3) operations or make use of random se-

lection strategies which can lead to models of very different generalization accuracy

if the selection procedure is included in the evaluation. The approaches directly fol-

lowing (Balcan et al., 2008) are however very efficient if the similarity measure already

separates the classes very well, regardless of the specific landmark set.
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Table 4: Overview of the complexity (worst case) and application aspects of the former

methods. Most often the approaches are in average less complicated. For MDS like

approaches the complexity depends very much on the used method and whether the

data are given as vectors or as proximities. The proximity space approach may generate

further costs if e.g. a classification model has to be calculated for the representation.

Proxy matrix approaches are very costly due to the raised optimization problem and

the classical solver used. Some proxy approaches solve a similar complex optimization

problem also for out of sample extensions. For low rank proximity matrices the above

mentioned costs can often be reduced by a magnitude or more - see section 7.

Method memory complexity runtime complexity out of sample

Eigenvalue correction (A1) O(N2) O(N3) O(N)
Proxy matrix (A3) O(N2) O(N3) O(N) − O(N3)
Proximity space (A2) O(N) O(C) O(N)
Embeddings (like MDS) (A2) O(N) − O(N2) O(N2) − O(N3) O(N) − O(N2)
iKFD (B2) O(N) O(N3) O(N)
PCVM (B1) O(m) (sparse,m≪ N) O(N3) (fst steps) O(m)
(linear) similarity function (B1) O(m) (sparse,m≪ N) O(N2) - O(N3) O(m)

Out of sample extension to new test points: for PCVM and the median approaches

the weight vectorw is in general very sparse such that out of sample extensions are

easily calculated by just finding the few similarities{K(x,w1), . . . ,K(x,wd)}. As all

approaches in the former section can naturally deal with non-metric data additional

modifications of the similarities are avoided and the out of sample extension is consis-

tent.

7 Scaling up approaches of proximity learning for larger

datasets

A major issue with the application of the aforementioned approaches is the scalability to

largeN. While we already provided a brief complexity analysis for each major branch
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recent research has focused on improving the scalability ofthe approaches to reduce

memory or runtime costs, or both. Subsequently we briefly sketch some of the more

recent approaches which are used in this context and have been already proposed in the

line of non-metric proximity learning or can be easily transferred.

7.1 Nyström approximation

The Nystr̈om approximation technique has been proposed in the contextof kernel meth-

ods in (Williams & Seeger, 2000). Here, we give a short reviewof this technique be-

fore it is employed in PCVM. One well known way to approximate aN × N Gram

matrix, is to use a low-rank approximation. This can be done by computing the eigen-

decomposition of the kernel matrixK = UΛUT , whereU is a matrix, whose columns

are orthonormal eigenvectors, andΛ is a diagonal matrix consisting of eigenvalues

Λ11 ≥ Λ22 ≥ ... ≥ 0, and keeping only them eigenspaces which correspond to the

m largest eigenvalues of the matrix. The approximation isK̃ ≈ UN,mΛm,mUm,N, where

the indices refer to the size of the corresponding submatrixrestricted to the largesm

eigenvalues. The Nyström method approximates a kernel in a similar way, without

computing the eigendecomposition of the whole matrix, which is anO(N3) operation.

By the Mercer theorem kernelsk(x, y) can be expanded by orthonormal eigenfunc-

tionsϕi and non negative eigenvaluesλi in the form

k(x, y) =
∞∑

i=1

λiϕi(x)ϕi(y).

The eigenfunctions and eigenvalues of a kernel are defined asthe solution of the integral

equation
∫

k(y, x)ϕi(x)p(x)dx = λiϕi(y),

wherep(x) is the probability density ofx. This integral can be approximated based on
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the Nystr̈om technique by an i.i.d. sample{xk}mk=1 from p(x):

1
m

m∑

k=1

k(y, xk)ϕi(xk) ≈ λiϕi(y).

Using this approximation we denote withK(m) the correspondingm×mGram sub-matrix

and get the corresponding matrix eigenproblem equation as:

K(m)U (m)
= U (m)

Λ
(m)

with U (m) ∈ Rm×m is column orthonormal andΛ(m) is a diagonal matrix.

Now we can derive the approximations for the eigenfunctionsand eigenvalues of

the kernelk

λi ≈
λ

(m)
i · N

m
, ϕi(y) ≈

√
m/N

λ
(m)
i

k⊤y u(m)
i , (23)

whereu(m)
i is theith column ofU (m). Thus, we can approximateϕi at an arbitrary point

y as long as we know the vectorky = (k(x1, y), ..., k(xm, y)). For a givenN × N Gram

matrix K we randomly choosem rows and respective columns. The corresponding

indices are called landmarks, and should be chosen such thatthe, data distribution is

sufficiently covered. A specific analysis about selection strategies was recently given

in (K. Zhang et al., 2008). We denote these rows byKm,N. Using the formulas (23) we

obtain K̃ =
∑m

i=1 1/λ(m)
i · KT

m,N(u(m)
i )T(u(m)

i )Km,N, whereλ(m)
i andu(m)

i correspond to the

m×meigenproblem. Thus we get,K−1
m,m denoting the Moore-Penrose pseudoinverse,

K̃ = KN,mK−1
m,mKm,N. (24)

as an approximation ofK. This approximation is exact, ifKm,m has the same rank asK.
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7.2 Linear time eigenvalue decomposition using the Nyström ap-

proximation

For a matrix approximated by Eq. (24) it is possible to compute its exact eigenvalue

decomposition in linear time. To compute the eigenvectors and eigenvalues of anin-

definitematrix we first compute its squared form, since the eigenvectors in the squared

matrix stay the same and only the eigenvalues are squared. Let K be a psd similarity

matrix, for which we can write its decomposition as

K̃ = KN,mK−1
m,mKm,N

= KN,mUΛ−1U⊤K⊤N,m

= BB⊤,

where we definedB = KN,mUΛ−1/2 with U andΛ being the eigenvectors and eigenvalues

of Km,m, respectively. Further it follows for thesquaredK̃

K̃2
= BB⊤BB⊤

= BVAV⊤B⊤,

whereV andA are the eigenvectors and eigenvalues ofB⊤B, respectively. The corre-

sponding eigenequation can be written asB⊤Bv = av. Multiplying it with B from left

we get the eigenequation for̃K

BB⊤
︸︷︷︸

K̃

(Bv)
︸︷︷︸

u

= a (Bv)
︸︷︷︸

u

It is clear thatA must be the matrix with the eigenvalues ofK̃. The matrixBv is the

matrix of the corresponding eigenvectors, which are orthogonal but not necessary or-
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thonormal. The normalization can be computed from the decomposition:

K̃ = BVV⊤B⊤

= BVA−1/2AA−1/2V⊤B⊤

= CAC⊤,

where we definedC = BVA−1/2 as the matrix of orthonormal eigenvectors ofK. The

eigenvalues ofK̂ can be obtained usingA = C⊤K̂C. The above mentioned strategies

can now be used in a variety of the above discussed algorithm to safe computation and

memory costs, given the matrix is low rank. An example is the Nyström approximated

PCVM as proposed in (Schleif, 2015), which makes use of the above concept in a non-

trivial way. As shown in (Schleif, 2015) these concept can also be used to approximate a

singular value decomposition (SVD) for large (indefinite) matrices or other algorithms

which can be based on eigenvalue decompositions.

7.3 Approximation concepts for low dimensional embeddings

Recently various strategies have been proposed to reduce thein generalO(N3) run-

time complexity of various embedding approaches. Two general ideas have been sug-

gested. One is based on the Barnes-Hut concepts, widely knownin the analysis of

astro-physical data (Barnes & Hut, 1986) and the second one isbased on a representer

concept where latent projection of each point are constrained to be a local linear func-

tion of latent projections. of some landmarks(Vladymyrov &Carreira-Perpĩnán, 2013).

Both approaches assume that mapped data have an intrinsic group structure in the input

and the output space which can be effectively employed to reduce computation costs.

As a consequence they are in general only efficient if the target embeddings are really

in a low-dimensional space, such that an efficient data structure for low dimensions can

be employed.

In (Z. Yang et al., 2013) a Barnes-Hut approach was proposed asa general frame-
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work for a multitude of embedding approaches. A specific strategy for t-SNE was re-

cently presented in (van der Maaten, 2013). Here we briefly summarize the main ideas

suggested in (Z. Yang et al., 2013), we refer to the corresponding journal papers for

more details.

The computational complexity in neighbor embeddings (NE) is essentially due to

the coordinates and pairwise distances in the output space,which change at every step

of optimization. The idea is to summarize pairwise interaction costs, which are calcu-

lated for each data pointi with respect to its neighbors by grouping. The terms in the

respective sum of the NE cost function are partitioned into several groupsGi
t and each

group will be approximated as an interaction with a representative point of the group.

The authors in (Z. Yang et al., 2013) consider the following typical summation used in

NE objectives:

∑

j

f
(

‖yi − yj‖2
)

=

∑

t

∑

j∈Gi
t

f
(

‖yi − yj‖2
)

(25)

≈
∑

t

|Gi
t| f
(

‖yi − ŷt‖2
)

, (26)

where i is the starting data point,j are its neighbors,Gi
t are groups (subsets) of the

neighbors j, |Gi
t| is the size of the group, and ˆyi

t is the representative, e.g. mean, of

the points in groupGi
t. Similarly, we can approximate the gradient of the above sum.

Denotegi j = f ′
(

‖yi − yj‖2
)

. We have

∑

j

gi j

(

yi − yj

)

=

∑

t

∑

j∈Gi
t

gi j

(

yi − yj

)

≈
∑

t

|Gi
t| f ′
(

‖yi − ŷi
t‖2
) (

yi − ŷi
t

)

. (27)

The approximation within each groupGi
t is accurate when all points in the group are far

enough fromyi. Otherwise the group is divided into subgroups and the approximation

principle is used recursively to each subgroup, until the group contains a single pointj.

There one directly calculatesf
(

‖yi − yj‖2
)

or gi j . This grouping hierarchy forms a tree-

like structure. In general a quadtree is used for embedding into 2d or a octree for three

48



dimensional embeddings. First the root node is assigned to the smallest bounding box

that contains all data points, and a representative which isthe mean of all points. If the

bounding box contains more than one data point, it is dividedinto four smaller boxes of

equal size, and a child node is constructed at each smaller bounding box if it contains

at least one data point. The splitting is done recursively until all leaf nodes contain

exactly one data point. The tree (re-)construction costs are neglectable compared with

the standard embedding approaches. During the optimization of the point embedding

in 2 or 3 dimensions the tree is reconstructed and employed toidentify compact point

groups in the embedding which can be summarized also in the summations of the NE

cost function.

In (Gisbrecht & Schleif, 2014; Schleif & Gisbrecht, 2013) a generalization of Landmark-

MDS is proposed which is also very efficient for non-metric proximity data. Using

the same concepts it is also possible to obtain linear runtime complexity of Laplacian

Eigenmaps for (corrected) non-metric input matrices.

7.4 Random projection and sparse models

The proximity (dis-similarity) space - discussed in sub section 5.5 makes use of allN

similarities for a pointi. To reduce the computational costs for generating a model this

N dimensional space can be reduced in various ways. Various heuristics and multi-

objective criteria have been employ to select an appropriate set of similarities, which

are also sometimes called prototypes (Pekalska et al., 2006).

Random projection is another effective way and widely studied in recent publi-

cations also in the context of classification see e.g. (Durrant & Kaban, 2013, 2010;

Mylavarapu & Kaban, 2013). It is based on the Johnson-Lindenstrauss lemma which

states that a (random) mapping ofN points from a high-dimensional (D) to aO( 1
ǫ2

logN)

low-dimensional feature space distorts the length of the vector by at most 1± ǫ. More

recent work can be found in (Kane & Nelson, 2014). Another option is to derive the de-
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cision function directly only on a subset of the proximitieswhere theoretically work dis-

cussing this option is available in (Balcan et al., 2008; Wanget al., 2009; Guo & Ying,

2014).

8 Experiments

In Table 6 we compared multiple of the priorly discussed methods on various non-psd

datasets with different attributes. As a baseline we use thek-Nearest-Neighbor (kNN)

algorithm withk as the number of considered neighbors, optimized on an independent

hold out meta-parameter tuning set. We modifiedk in the range [1. . . ,10]. It should

be noted that kNN is known to be very efficient in general but requests the storage of

the full training set and is hence very unattractive in the test phase due to high memory

load and computation costs. In case of proximity data a new test sample has to com-

pared to all training points to get mapped in the kNN model. Wealso compare to a

SVM with different eigenvalue corrections, the SVM-Proxy approach as proposed by

(J. Chen & Ye, 2008) and two native methods namely the formerlydiscussed iKFD and

PCVM approach.

8.1 Dataset

We consider datasets as already used in (Y. Chen, Garcia, et al., 2009a; R. P. Duin, 2012)

and additional larger scale problems. All data are used as similarity matrices (dissimi-

larities have been converted to similarities by Double-Centering in advance) and shown

in Figure 9 and Figure 12. The datasets are from very different practical domains such

as sequence alignments, image processing or audio data analysis.

Aural Sonar: theAural Sonardata set is taken from (Philips et al., 2006), investigat-

ing the human ability to distinguish different types of sonar signals by ear. The signals

were returns from a broadband active sonar system, with 50 target-of-interest signals
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and 50 clutter signals. Every pair of signals was assigned a similarity score from 1 to

5 by two randomly chosen human subjects unaware of the true labels, and these scores

were added to produce a 100× 100 similarity matrix with integer values from 2 to 10

(Y. Chen, Garcia, et al., 2009a) with a signature of (62,38,0)

Chromosom: the Copenhagen Chromosomesdata constitute a benchmark from cy-

togenetics. 4,200 human chromosomes from 21 classes are represented by grey-valued

images. These are transferred to strings measuring the thickness of their silhouettes. An

example pattern representing a chromosome has the form

1133244422233332332222333223323332222666222331111.

The string indicates the thickness of the gray levels of the image. These strings can

be directly compared using the edit distance based on the differences of the numbers

and insertion/deletion costs 4.5 (Neuhaus & Bunke, 2006). The obtained proximity

matrix has a signature of (2258,1899,43). The classification problem is to label the

data according to the chromosome type.

Delft: the Delft gestures (DS5, 1500 points, 20 classes, balanced,signature: (963,536,1))

taken from (R. P. Duin, 2012) is a set of dissimilarities generated from a sign-language

interpretation problem. It consists of 1500 points with 20 classes and 75 points per class.

The gestures are measured by two video cameras observing thepositions of the two

hands in 75 repetitions of creating 20 different signs. The dissimilarities are computed

using a dynamic time warping procedure on the sequence of positions (Lichtenauer et al.,

2008).

Face Rec: the Face Rec data set consists of 945 sample faces of 139 peoplefrom the

NIST Face Recognition Grand Challenge data set. There are 139 classes, one for each

person. Similarities for pairs of the original three-dimensional face data were computed
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Figure 8: Embeddings of the similarity matrices of Aural sonar, Chromosom, Delft and

Prodom using t-SNE
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Figure 9: Visualization of the proxy kernel matrices of Aural sonar, Chromosom, Delft
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Figure 10: Eigenspectra of the proxy kernel matrices of Aural sonar, Chromosom, Delft

and Prodom.
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as the cosine similarity between integral invariant signatures based on surface curves of

the face (Feng et al., 2007) with a a signature of (794,150,1)

ProDom: the ProDomdataset with signature (1502,680,422) consists of 2604 pro-

tein sequences with 53 labels. It contains a comprehensive set of protein families and

appeared first in the work of (Roth et al., 2002). The pairwise structural alignments are

computed by (Roth et al., 2002). Each sequence belongs to a group labeled by experts,

here we use the data as provided in (R. P. Duin, 2012).

Protein: the Protein data set has sequence-alignment similarities for 213 proteins

from 4 classes, where class one through four contains 72,72,39, and 30 points, re-

spectively (T. Hofmann & Buhmann, 1997). The signature is (170,40,3).

Sonatas: theSonatasdata set contains complex symbolic data with a signature (1063,4,1)

taken from (Mokbel et al., 2009). It is comprised of pairwisedissimilarities between

1,068 sonatas from the classical period (by Beethoven, Mozart and Haydn) and the

baroque era (by Scarlatti and Bach). The musical pieces were given in the MIDI file for-

mat, taken from the online MIDI collectionKunst der Fuge9. Their mutual dissimilari-

ties were measured with the normalized compression distance (NCD), see (Cilibrasi & Vit́anyi,

2005). The musical pieces are classified according to their composer.

SwissProt: theSwissProtdata set with a signature (8487,2500,1), consists of 5,791

points of protein sequences in 10 classes taken as a subset from the popular Swis-

sProt database of protein sequences (Boeckmann et al., 2003). The considered subset

of the SwissProt database refers to the release 37. A typicalprotein sequence consists

of a string of amino acids, and the length of the full sequences varies between 30 to

more than 1000 amino acids depending on the sequence. The 10 most common classes

such as Globin, Cytochrome b, Protein kinase st, etc. provided by the Prosite labeling

9http://www.kunstderfuge.com
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(Gasteiger et al., 2003) where taken leading to 5,791 sequences. Due to this choice,

an associated classification problem maps the sequences to their corresponding Prosite

labels. These sequences are compared using Smith-Watermanwhich computes a lo-

cal alignment of sequences (Gusfield, 1997). This database is the standard source for

identifying and analyzing protein sequences such that an automated classification and

processing technique would be very desirable.

Voting: the Voting data set comes from the UCI Repository. It is a two- class clas-

sification problem with 435 points, where each sample is a categorical feature vector

with 16 components and three possibilities for each component. We compute the value

difference metric (Stanfill & Waltz, 1986) from the categorical data, which is a dissimi-

larity that uses the training class labels to weight different components differently so as

to achieve maximum probability of class separation. The signature is (178,163,94).

Zongker: the Zongker digit dissimilarity data (2000 points in 10 classes) from (R. P. Duin,

2012) is based on deformable template matching. The dissimilarity measure was com-

puted between 2000 handwritten NIST digits in 10 classes, with 200 entries each, as a

result of an iterative optimization of the non-linear deformation of the grid (Jain & Zongker,

1997). The signature is (1039,961,0).

We also show the eigenspectra of the datasets in Figure 10 andFigure 13 indicating

already how strong a dataset violates the metric properties. Additionally some summa-

rizing information about the datasets is provided in Table 5and t-SNE embeddings of

the data in Figure 8 and Figure 11 to get a rough estimate whether the data are classwise

multimodal. Further we can interpretlocal neighborhood relations and whether datasets

are more overlapping or well separated10.

We observe that there is no clear winning method but we find an advance for SVM-

square (4 times best) and kNN (3 times best). If we remove kNN from the ranking due

10T-SNE visualizations are not unique and we have adapted the perplexity parameter to get reasonable
visualization in general as⌊log(N)2⌋
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Figure 11: Embeddings of the similarity matrices of Protein, Swissprot, Voting and

Zongker using t-SNE
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Figure 13: Eigenspectra of the proxy kernel matrices of Protein, Swissprot, Voting and
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Table 5: Overview of the datasets. The last two columns referto the number of positive

and negative eigenvalues, respectively.

Data set Points Classes Balanced +EV -EV
Aural Sonar 100 2 yes 62 38
Chromosoms 4200 21 yes 2258 1899
Delft 1500 20 yes 963 536
FaceRec 945 139 no 794 150
Prodom 2604 53 no 1502 680
Protein 213 4 no 170 40
Sonatas 1068 5 no 1063 4
SwissProt 10988 30 no 8487 2500
Voting 435 2 no 178 163
Zongker 2000 10 yes. 1039 961

Table 6: Comparison of different priorly discussed methods for various non-psd data

sets.

Method PCVM (B1) IKFD (B2) kNN SVM SVM-Flip (A1) SVM-Clip SVM-Squared SVM-Shift SVM-Proxy (A3)
Aural Sonar 84.00± 11.74 87.00± 10.59 80.00± 11.48 85.00± 11.79 88.00± 11.35 91.00± 8.76 87.00± 9.49 91.00± 7.38 88.00± 4.85
Chromosoms 85.48± 3.65 97.36± 1.09 95.11± 0.88 97.10± 1.00 97.64± 0.79 97.48± 0.72 96.81± 0.68 97.10± 0.92 n.a.
Delft 71.20± 11.84 98.20± 1.48 95.93± 1.65 97.73± 0.76 98.40± 0.90 98.53± 0.75 97.47± 1.58 97.47± 0.91 n.a.
FaceRec 54.18± 6.62 67.73± 6.34 95.29± 1.84 21.59± 7.56 21.59± 7.56 21.59± 7.56 37.78± 9.11 21.59± 7.56 n.a.
Prodom 99.62± 0.60 99.46± 0.55 99.87± 0.21 not converged 99.65± 0.56 99.65± 0.56 99.92± 0.22 98.96± 0.99 n.a.
Protein 95.76± 4.17 99.05± 2.01 59.13± 12.44 61.50± 10.64 98.59± 2.30 89.67± 9.75 98.59± 3.21 61.97± 9.83 97.07± 2.73
Sonatas 90.45± 3.84 90.17± 2.00 89.07± 3.68 87.36± 3.88 90.07± 3.90 89.61± 3.78 92.60± 2.82 87.17± 3.64 n.a.
SwissProt 97.78± 0.48 96.81± 0.79 98.59± 0.35 97.38± 0.36 97.33± 0.42 97.38± 0.37 98.37± 0.33 97.37± 0.38 n.a.
Voting 95.39± 2.70 95.62± 4.01 93.62± 4.54 95.63± 3.13 95.63± 3.13 95.63± 3.13 95.86± 2.99 95.63± 3.13 95.28± 1.96
Zongker 94.45± 1.64 97.10± 1.13 73.17± 3.29 not converged 97.30± 1.21 96.40± 1.39 97.00± 1.53 92.00± 2.55 n.a.

to the high costs in the test phase the best two approaches would be SVM-squared and

iKFD.

If we analyze the prediction accuracy with respect to the negativity fraction (NF)

of the data:NF =
∑N

i=q |λi |/
∑N

i=1 |λi | as shown in Figure 14 one can see that with in-

creasing NF the performance variability of the methods increases. In a further exper-

iment we take the Protein data and actively vary the negativity of the eigenspectrum,

by varying the number of negative eigenvalues fixed to zero. We analyze the behavior

of an SVM classifier by using the different eigenvalue correction methods discussed

before. The results are shown in Figure 15 We see that for vanishing negativity the

accuracy is around 87%. With increasing negativity the differences between the eigen-

value correction methods become more pronounced. When the negativity reaches 0.2

larger negative eigenvalues are included in the data and we observe that flip and square

show a beneficial behavior. Without any corrections (blue dotted line), the accuracy

drops significantly with increasing negativity. The shift approach is the worst. With
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Figure 14: Analysis of eigenvalue correction approaches with respect to the negativity

of the considered datasets. For each dataset and each correction method we show the

prediction accuracy of the SVM with respect to the negativity of the data. The per-

formance variability of the methods increases with increasing negativity of the eigen

spectrum.
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Figure 15: Analysis of eigenvalue correction approaches using the Protein data with

varying negativity. The prediction accuracies have been obtained by using SVM. An

increase in the negativity, such that the dataset is less metric, leads to stronger errors

in the SVM model. This effect is severe for larger negativityand especially the shift

correction or if no correction is applied.
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respect to the discussion in section 5.4 this can now be easily explained. For the Pro-

tein data the largest negative eigenvalues are obviously encoding relevant information

and smaller negative eigenvalues appear to encode noise. The shift approach removes

the largest negative eigenvalue, suppress the second etc.,while increasing all originally

non-negative eigenvalue contributions, including those which were close to zero. Simi-

lar observations hold for the other datasets.

Discussion

This review shows that learning with indefinite proximitiesis a complex task which can

be addressed by a variety of methods. We discussed the sources of indefiniteness in

proximity data and have outlined a taxonomy of the differentalgorithmic approaches.

Thereby we identified two major methodological directions namely approaches modi-

fying the input proximities such that a metric representation is obtained and algorithmic

formulations of dedicated methods which are insensitive tometric violations. The ”met-

ric” direction is the most established field with a variety ofapproaches and algorithms.

From our experiments in Section 8 we found that for many datasets the differences

between algorithms of the ”metric” direction are only minorregarding the prediction

accuracy on the test data. Small advantages could be found for the square and flipping

approach. Especiallyshift is in general worse than the other approaches followed by

clip. From the experiments one can conclude that the correction of indefinite proxim-

ities to metric ones is in general effective. If the indefiniteness can be attributed to a

significant amount of noise a clipping operation is preferable, as it will reduce the noise

in the input. If the indefiniteness is due to relevant information it is obviously better

to keep this information in the data representation e.g. by using the square operation.

Beside of the effect on the model accuracy the methods also differ in the way how

out-of sample extensions are treated and with respect to theoverall complexity of the

approaches. We have addressed these topics in the respective sections and provided also
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efficient approximation schemes for some of the methods given the input data have low

rank. If the rank of the input data is rather high, approximations are inappropriate and

the methods haveO(N3) complexity.

The alternative direction is to preserve the input data in its given form and to gen-

erate models which are insensitive to indefinite proximities or can be directly derived

in the pseudo-Euclidean space. Comparing the results in Table 6 we observe that those

methods which avoid modifications of the input proximities are in general competitive

but at a complexity ofO(N)−O(N3). But for many of these methods low rank approxi-

mation schemes can be applied as well. As a very simple alternative we also considered

the nearest-neighbor classifier which worked reasonable well. However NN is known

to be very sensitive to outliers and requires the storage of all training points to calculate

out of sample extensions.

In conclusion, the machine learning expert has to know a bit about the underly-

ing data and especially the used proximity function to make an educated decision. In

particular:

• If the proximity function is derived from a mathematical distance or inner prod-

uct, the presence of negative eigenvalues is likely caused by numerical errors.

In this case, a very simple eigenvalue correction of the proximity matrix (e.g.

clipping) (A1) may be sufficient.

• If the given proximity function is domain specific and non-metric, more careful

modifications of the proximity matrix are in order (as discussed in Sections 5.1-

5.2 and shown in the experiments - in Section 8).

• For asymmetric proximity measures, we have provided links to the few exist-

ing methods capable of dealing with asymmetric proximity matrices (see A2,

B1). However, all of them are either costly in the model generation or in the

out-of-sample extension (application to new test points).Fortunately, some form

of symmetrization of the proximity matrix is often acceptable. For example, in
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the analysis of biological sequences, the proximity scoresare in general “almost

symmetric” and a symmetrization leads to no performance degradation.

• If rank of the proximity matrix is rather high (e.g. FaceRec data), low-rank ap-

proximations (Sec. 7) will lead to information loss.

There are many open research questions in the field of indefinite proximity learning.

As already seen in the former sections the handling of non-metric data is still not very

comfortable, although meanwhile a compact set of efficient methods is available. As

indefinite proximities can occur due to numerical errors or noise it would be desirable to

have a more systematic procedure isolating these components from those which carry

relevant information. It would be also very desirable to have a larger benchmark of

indefinite proximity data similar as within the UCI database for (most often) vectorial

datasets. Also in the pre-mentioned algorithms we can find various open topics: the set

of algorithms with explicit formulations in the Krein spacelike (Haasdonk & Pkalska,

2008; Pekalska & Haasdonk, 2009; Liwicki et al., 2013; Zafeiriou, 2012) is still very

limited. Further the runtime performance for the processing of large scale data is often

inappropriate. It would also be of interest whether some of the methods can be extended

to asymmetric input data or if concepts from the analysis of large asymmetric graph

networks can be transferred to the analysis of indefinite proximities.

Datasets and implementations

The datasets used in this paper have been made available at the following web page

http://promos-science.blogspot.de/p/blog-page.html . Parts of the

implementations of the algorithms discussed before can be accessed at

http://www.techfak.uni-bielefeld.de/ ˜ fschleif/review/ . An im-

plementation of the Probabilistic Classification Vector Machine is available at

https://mloss.org/software/view/610/ .
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Cilibrasi, R., & Vitányi, P. M. B. (2005). Clustering by compression.IEEE Transac-

tions on Information Theory, 51(4), 1523-1545.

Cox, T. F., & Cox, M. (2000). Multidimensional scaling, sec-

ond edition (2nd ed.). Chapman and Hall/CRC. Retrieved from

http://www.amazon.com/Multidimensional-Scaling-Second-Trevor-Cox/dp/1584880945

68

http://www.amazon.com/Multidimensional-Scaling-Second-Trevor-Cox/dp/1584880945


Davis, J. V., Kulis, B., Jain, P., Sra, S., & Dhillon, I. S. (2007). Information-

theoretic metric learning. In Z. Ghahramani (Ed.),Machine learning, pro-

ceedings of the twenty-fourth international conference (ICML 2007), corvallis,

oregon, usa, june 20-24, 2007(Vol. 227, pp. 209–216). ACM. Retrieved

from http://doi.acm.org/10.1145/1273496.1273523 doi: 10.1145/

1273496.1273523

de Silva, V., & Tenenbaum, J. B. (2002). Global versus local methods in nonlinear

dimensionality reduction. InAdvances in neural information processing systems 15

[neural information processing systems, nips 2002, december 9-14, 2002, vancouver,

british columbia, canada](p. 705-712).

Deza, M., & Deza, E. (2009).Encyclopedia of distances. Springer. Retrieved from

http://books.google.de/books?id=LXEezzccwcoC

Dubuisson, M.-P., & Jain, A. (1994, Oct). A modified hausdorff distance for object

matching. InPattern recognition, 1994. vol. 1 - conference a: Computer vision amp;

image processing., proceedings of the 12th iapr international conference on(Vol. 1,

p. 566-568 vol.1).

Duin, R. P. (2012, march).PRTools.Retrieved fromhttp://www.prtools.org

Duin, R. P. W. (2010). Non-euclidean problems in pattern recognition related to hu-

man expert knowledge. In J. Filipe & J. Cordeiro (Eds.),Iceis (Vol. 73, p. 15-28).

Springer.

Duin, R. P. W., Bicego, M., Orozco-Alzate, M., Kim, S., & Loog, M.

(2014). Metric learning in dissimilarity space for improved nearest neigh-
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F. Zelezńy (Eds.), Machine learning and knowledge discovery in databases - eu-

ropean conference, ECML PKDD 2013, prague, czech republic, september 23-27,

2013, proceedings, part III(Vol. 8190, pp. 256–271). Springer. Retrieved from

http://dx.doi.org/10.1007/978-3-642-40994-3 17 doi: 10.1007/

978-3-642-40994-317

Vojt, P., & Eckhardt, A. (2009). Using tuneable fuzzy similarity in non-metric search.

In (p. 163-164).

81

http://arxiv.org/abs/1301.3342
http://dl.acm.org/citation.cfm?id=1756006.1756019
http://dx.doi.org/10.1007/978-3-642-40994-3_17


Wang, L., Sugiyama, M., Yang, C., Hatano, K., & Feng, J. (2009). Theory and algo-

rithm for learning with dissimilarity functions.Neural Computation, 21(5), 1459-

1484.

Williams, C. K. I., & Seeger, M. (2000). Using the nyström method to speed up kernel

machines. InAdvances in neural information processing systems 13, papers from

neural information processing systems (nips) 2000, denver, co, usa(p. 682-688).

Wilson, R., & Hancock, E. (2010). Spherical embedding and classification. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics), 6218 LNCS, 589-599.

Xu, W., Wilson, R., & Hancock, E. (2011). Determining the cause of negative dis-

similarity eigenvalues. Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6854

LNCS(PART 1), 589-597.

Xue, H., & Chen, S. (2014). Discriminality-driven regularization framework for indef-

inite kernel machine.Neurocomputing.

Yang, J., & Fan, L. (2013). A novel indefinite kernel dimensionality reduction algo-

rithm: Weighted generalized indefinite kernel discriminant analysis.Neural Process-

ing Letters, 1-13.

Yang, Z., Peltonen, J., & Kaski, S. (2013). Scalable optimization of

neighbor embedding for visualization. InProceedings of the 30th inter-

national conference on machine learning, ICML 2013, atlanta, ga, usa,

16-21 june 2013 (Vol. 28, pp. 127–135). JMLR.org. Retrieved from

http://jmlr.org/proceedings/papers/v28/yang13b.html

Ying, Y., Campbell, C., & Girolami, M. (2009). Analysis of svm with indefinite kernels.

In (p. 2205-2213).

82

http://jmlr.org/proceedings/papers/v28/yang13b.html


Zafeiriou, S. (2012). Subspace learning in krein spaces: Complete kernel fisher discrim-

inant analysis with indefinite kernels. In A. W. Fitzgibbon,S. Lazebnik, P. Perona,

Y. Sato, & C. Schmid (Eds.),Eccv (4)(Vol. 7575, p. 488-501). Springer.

Zhang, K., Tsang, I. W., & Kwok, J. T. (2008). Improved Nystrom low-rank ap-

proximation and error analysis. InProceedings of the 25th international confer-

ence on machine learning(pp. 1232–1239). New York, NY, USA: ACM. Re-

trieved from http://doi.acm.org/10.1145/1390156.1390311 doi:

http://doi.acm.org/10.1145/1390156.1390311

Zhang, Z., Ooi, B., Parthasarathy, S., & Tung, A. (2009). Similarity search on bregman

divergence: Towards non-metric indexing. In (Vol. 2, p. 13-24).

Zhou, J.-C., & Wang, D. (2011). An improved indefinite kernel machine regression

algorithm with norm-r loss function. In (p. 142-145).

83

http://doi.acm.org/10.1145/1390156.1390311

	Introduction
	Notation and basic concepts
	Kernels and kernel functions
	Krein and Pseudo-Euclidean spaces

	Indefinite proximities
	Why is a non-metric proximity function a problem?

	A systematization of non-metric proximity learning
	Make the input space metric
	Eigenspectrum approaches (A1)
	Learning of alternative metric representations (A3)
	Experimental evaluation
	A geometric view of eigenspectrum and proxy approaches
	Embedding and mapping strategies (A2)

	Natural Non-metric learning approaches
	Approaches using the Indefinite krein or pseudo Euclidean space (B2)
	Learning of decision functions using indefinite proximities (B1)

	Scaling up approaches of proximity learning for larger datasets
	Nyström approximation
	Linear time eigenvalue decomposition using the Nyström approximation
	Approximation concepts for low dimensional embeddings
	Random projection and sparse models

	Experiments
	Dataset


