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Abstract

Efficient learning of a data analysis task strongly dependthe data representation.
Most methods rely on (symmetric) similarity or dissimitgniepresentations by means
of metricinner products or distances, providing easy access to poweathematical
formalisms like kernel or branch-and-bound approachesil&ities and dissimilarities
are however often naturally obtained by non-metric progimieasures which can not
easily be handled by classical learning algorithms. In #s¢ years major efforts have
been undertaken to provide approaches which can eitheatlgiee used for such data
or to make standard methods available for these type of Wgrovide a comprehen-
sive survey for the field of learning with non-metric proxiies. First we introduce the
formalism used in non-metric spaces and motivate specdatrirents for non-metric
proximity data. Secondly we provide a systematization efitirious approaches. For
each category of approaches we provide a comparative disousf the individual algo-

rithms and address complexity issues and generalizatmpepties. In a summarizing



chapter we provide a larger experimental study for the nitgjorf the algorithms on
standard datasets. We also address the problem of largesoaimity learning which
is often overlooked in this context and of major importanzeniake the method rele-
vant in practice.The algorithms discussed in this paper are in general applidale
for proximity based clustering, one-class classificatiorglassification, regression or

embedding approachesin the experimental part we focus on classification tasks.

1 Introduction

The notion of pairwise proximities plays a key role in mostcimae learning algo-
rithms. The comparison of objects bynaetric often Euclidean, distance measure is
a standard element in basically every data analysis afgoritThis is mainly due to
the easy access to powerful mathematical models in metaicesp Based on work of
(Schoelkopf & Smola, 2002) and others, the usage of sirtidarby means of metric
inner products or kernel matrices has lead to a great suoteswilarity based learn-
ing algorithms. Thereby the data are represented by medmavize similarities only.
We can distinguish similarities, indicating how close aniar two items are to each
other and dissimilarities as measures of the unrelatedsfetsgo items. Given a set
of N data items, their pairwise proximity (similarity or disslarity) measures can be
conveniently summarized inld x N proximity matrix. In the following we will refer
to similarity and dissimilarity type proximity matrices &andD, respectively. For
some methods symmetry of the proximity measures is notlgtrequired, while some
other methods add additional constraints, such as nortiviégaf the proximity ma-
trix. These notions enter into models by means of similasitgissimilarity functions
f(x,y) € R wherex andy are the compared objects. The objectg may exist in a
d-dimensional vector space, so that RY, but can also be given without an explicit
vectorial representation, e.g. biological sequencesKapee[l). However, as pointed

out in (Pekalska & Duirn, 2005), proximities often occur tortms-metric and their us-
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Figure 1: Left: lllustration of a proximity (in this case dimilarity) measure between
pairs of documents - the compression distance (Cilibrasit&nyi,[2005). It is based
on the difference between the total information theoratimplexity of two documents
considered in isolation and the complexity of the joint doemt obtained by concate-
nation of the two documents. In its standard form it violates triangle inequality.
Right: a simplified illustration of the blast sequence aligminproviding symmetric

but non-metric similarity scores in comparing pairs of bgital sequences.

age in standard algorithms leads to invalid model formoreti

The functionf(x,y) may violate the metric properties to different degreesmsSy
metry is in general assumed to be valid because a large nwhbhégorithms become
meaningless for asymmetric data. However, especially erfild of graph analysis,
asymmetric weightings have already been considered. Agtrionweightings have
also been used in the fields of clustering and data embed@&imngkert et al.| 2014;
Olszewski & Ster| 2014). Examples of algorithms capable rokcessing asymmet-
ric proximity data in supervised learning are exemplar dasethods | (Nebel et al.,
2014). A recent article focusing on this topic is availalol¢Calana et al., 2013). More
frequently, proximities are symmetric, but the trianglequoality is violated, proximi-
ties are negative, or self-dissimilarities are not zerochSuiolations can be attributed
to different sources. While some authors attribute it to @alsuss & d’Aspremont,
2009), for some proximities and proximity functiomsthis may be purposely caused
by the measure itself. If noise is the source, often a simgensalue correction

(Y. Chen, Garcia, et al., 2009a) can be used, although thibeaome costly for large



datasets. A recent analysis of the possible sources ofinegéjenvalues is provided in
(Xu et al., 2011). Such analysis can be potentially helpfufor example, selecting the
appropriate eigenvalue correction method applied to th&igity matrix. Prominent
examples for genuine non-metric proximity measures caoied in the field of bioin-
formatics where classical sequence alignment algoritrents (smith-waterman score
(Gusfield, 1997)) produce non-metric proximity values. Boch data some authors
argue that the non-metric part of the data contains valuafdemation and should not
be removed (Pekalska et al., 2004).

For non-metric inputs the support vector machine formaiatjVapnik, 2000) no
longer leads to a convex optimization problem. Prominehtess. such as sequential
minimization (SMO) will converge to a local optimum (J. C. #14999; tien Lin & Lin,
2003) and other kernel algorithms may not converge at allcofdingly, dedicated
strategies for non-metric data are very desirable.

A previous review on non-metric learning was given lin (Y. Ch@arcia, et al.,
2009b) with a strong focus on support vector classificatioh @genspectrum correc-
tions for similarity data evaluated on multiple small woddta sets. While we include
and update these topics, our focus is on a broader contegtajesupervised learning.
Most approaches can be transferred to the unsupervisedgsetta straightforward
manner.

Besides eigenspectrum corrections making the similarityirnpositive semi defi-
nite (psd), we also consider generic novel proxy approafliegEh learn a psd matrix
from a non-psd representation), different novel embeddijmgroaches and, crucially,
natural indefinite learning algorithms, which are not ries#d to psd matrices. We also
address the issue of out of sample extension and the widwtyegd topic of larger scale
data processing (given the quadratic complexity in sanipé.s

The paper is organized as follows. In Secfion 2 we outlinebidc notation and
some mathematical formalism, related to machine learnitfgrvon-metric proximities.

Sectior B discusses different views and sources of indefimdximities and addresses



the respective challenges in more detail. A taxonomy of #réous approaches is pro-
posed in Sectionl4, followed by Sectioi b-6, which detailtthe families of methods.
In Sectior ¥ we discuss some techniques to improve the sliglalh the methods for
larger datasets. Sectigh 8 provides experimental resaftgparing the different ap-

proaches for various classification tasks and Settidn &tlades this paper.

2 Notation and basic concepts

We now briefly review some concepts typically used in progrbiased learning.

2.1 Kernels and kernel functions

Let X be a collection oN objectsx, i = 1,2, ..., N, in some input space. Further, let

X — H be a mapping of patterns froXito a high-dimensional or infinite dimensional
Hilbert spaceH equipped with the inner produgt, -)4,. The transformatior is in
general a non-linear mapping to a high-dimensional spdcend may in general not
be given in an explicit form. Instead a kernel function X x X — R is given which
encodes the inner product iH. The kernelk is a positive (semi) definite function
such thatk(x, X') = ¢(X)"¢(X) for any x, X' € X. The matrixK := ®"® is anN x N
kernel matrix derived from the training data, wh&e [#(X1), ..., #(Xy)] IS @ matrix
of images (column vectors) of the training data The motivation for such an
embedding comes with the hope that the non-linear transftoom of input data into
higher dimensionadH allows for using linear techniques iH. Kernelized methods
process the embedded data points in a feature space fibnily the inner products
(-, Y (kernel trick) (Shawe-Taylor & Cristianini, 2004), withotlte need to explicitly
calculate¢. The specific kernel function can be very generic. Most prami are
the linear kernel withk(x, X’) = (¢(X), ¢(X")) where(p(x), #(x’)) is the Euclidean inner
product or the rbf kernet(x, x") = exp(—%), with o as a free parameter. Thereby

it is assumed that the kernel functikfx, x’) is positive semi definite (psd).
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2.2 Krein and Pseudo-Euclidean spaces

A Krein space is aimndefiniteinner product space endowed with a Hilbertian topology.
Let K be a real vector space. An inner product space with an inteefimer product
(-, )% on K is a bi-linear form where alf,g,h € K anda € R obey the following
conditions. Symmetry¢f, Q)x = (g, f)«; linearity: (af + g, hyg = a(f, h)g + (g, h)«;
and(f,g)x = O impliesf = 0. An inner product is positive definite #f € K,

(f, )5 = 0, negative definite i f € K, (f, f)x < 0, otherwise it is indefinite. A
vector spacé with inner product-, -)« is called an inner product space.

An inner product spaceX, (-, -)x) is a Krein space if we have two Hilbert spaces
H, andH_ spanningK such thatVf € K we havef = f, + f_ with f, € H, and
foeH andvf,ge %K, (f,Px = (f., 9o, — (F, 9 )a.

Indefinite kernels are typically observed by means of donsaecific non-metric
similarity functions (such as alignment functions usedioidgy (Smith & Waterman,
1981)), by specific kernel functions - e.qg. the Manhattamé&bBk(x,y) = —|IX — yl|1,
tangent distance kernel (Haasdonk & Keysers, 2002) or gitrere measures plugged
into standard kernel functions (Cichocki & Amari, 2010). Alner source of non-psd
kernels are noise artifacts on standard kernel functiorsagdonk, 2005). A finite-
dimensional Krein-space is a so called pseudo Euclidearespa

For such spaces vectors can have negative squared "norgativee squared "dis-
tances” and the concept of orthogonality is different frdma tisual Euclidean case.
Given a symmetridissimilarity matrix with zero diagonal, an embedding of the data
in a pseudo-Euclidean vector space determined by the egemvdecomposition of
the associated similarity matri® is always possible (Goldfarb, 198@) Given the

eigendecomposition 0, S = UAUT, we can compute the corresponding vectorial

1The associated similarity matrix can be obtained by doublgaring |(Pekalska & Duin, 2005) of
the dissimilarity matrixS = —-JDJ/2 with J = (I — 117 /N), identity matrixl and vector of ones.



representatio in the pseudo-Euclidean space by

|l/2

V=U p+q+z |Ap+q+z (1)

whereA 4., COnsists ofp positive,q negative non-zero eigenvalues anzero eigen-
values. Uy, 4., consists of the corresponding eigenvectors. The trigled, @) is also
referred to as the signature of the Pseudo-Euclidean spaagetailed presentation
of similarity and dissimilarity measures, and matheméatispects of metric and non-
metric spaces is provided in (Pekalska & Duin, 2005; Deza &d)2009| Ong et al.,
2004).

3 Indefinite proximities

Proximity functions can be very generic but are often retd to fulfill metric proper-
ties to simplify the mathematical modeling and especidlly parameter optimization.
In (Deza & Deza, 2009) a large variety of such measures waswed and basically
most nowadays public methods make use of metric propeWi@de this appears to be
a reliable strategy researchers in the field of e.g. psydyaldodgetts & Hahn, 2012;
Hodgetts et all, 2009), vision (Kinsman et al., 2012; Xu ¢128111| Van Der Maaten & Hinton,
2012; Scheirer et al., 2014) and machine learning (Pekais&h, 2004; R. P. W. Duin & Pekalska,
2010) have criticized this restriction as inappropriatemaltiple cases. In fact in
(R._P.W. Duin & Pekalska, 2010) multiple examples from reabtems show that many
real life problems are better addressed by proximity messwhich are not restricted
to be metric.

The triangle inequality is most often violated if we considbject comparisons in
daily life problems like the comparison of text document®ldgical sequence data,
spectral data or graphs (Y. Chen, Garcia, et al., 2009b; Kem&nSomervuo, 2002;

Neuhaus & Bunke, 2006). These data are inherently compoaltend a feature rep-
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Figure 2: Visualization of two non-metric distance measuwvbich are frequently used.
Left: Dynamic time warping (DTW) - a frequently used measuralign one dimen-
sional time series(Sakoe & Chiba, 1978); Right: Inner distareccommon measure in

shape retrieval (Ling & Jacals, 2005)

resentation leads to information loss. As an alternatigéored dissimilarity mea-
sures such as pairwise alignment functions, kernels farcttres or other domain
specific similarity and dissimilarity functions can be usedthe interface to the data
(Gartner et al., 2004; Poleksic, 2011). But also for vectora&hgnon-metric proxim-
ity measures are common in some disciplines. An exampleisftype is the use of
divergence measures (Cichocki & Amari, 2010; Z. Zhang eP&l09; Schnitzer et al.,
2012) which are very popular for spectral data analysis enubtry, geo- and medical
sciences/ (Mwebaze etlal., 201.0; Nguyven et al., 2013; Tiah,2@l3;/ van der Meer,
2006;/ Bunte, Haase, etlal., 2012), and are not metric in gen&lso the popular Dy-
namic Time Warping (DTW).(Sakoe & Chiba, 1978) algorithm pd®s a non-metric
alignment score which is often used as a proximity measuvedas two one-dimensional
functions of different length. In image processing and shagirieval indefinite prox-
imities are often obtained by means of the inner distancgpdtifies the dissimilarity
between two objects which are solely represented by thapeshThereby a number of
landmark points is used and the shorted pattikin the shape are calculated in con-
trast to the Euclidean distance between the landmarkshé&uekamples can be found
in physics where problems of the special relativity theoayunally lead to indefinite
spaces.

Examples of indefinite measures can be easily found in manyadws, some of

them are exemplary shown in Figlide 2. A list of non-metrioqoroty measures is given



Measure Application field

Dynamic Time Warping (DTW) (Sakoe & Chiba, 1978) Time seriesmectral alignment

Inner distance (Ling & Jacobs, 2005) Shape retrieval e.gpbotics
Compression distance (Cilibrasi & ¥ityi, 2005) Generic used also for text analysis
Smith Waterman Alignment (Gusfield, 1997) Bioinformatics

Divergence measures (Cichocki & Amari, 2010) Spectroscopyaaudio processing
Generalized Lp norm (Lee & Verleysen, 2005) Time seriesyaisl

Non-metric modified Hausdorff (Dubuisson & Jain, 1994) Téatgomatching
(Domain specific) alignment score (Maier et al., 2006) MaEcgometry

Table 1: List of commonly used non-metric proximity measurevarious domains

in Table[1. Most of these measures are very popular but oft#ate the symmetry or
triangle inequality condition or both. Hence many standanakimity based machine

learning methods like kernel methods are not easy accedsibihese data.

3.1 Why is a non-metric proximity function a problem?

A large number of algorithmic approaches assume that treeatatgiven in a metric
vector space, typically an Euclidean vector space, metil/ay the strong mathematical
framework which is available for metric Euclidean data. Buthwhe advent of new
measurement technologies and many non-standard datdrtinig £onstraint is often
violated in practical applications and non-metric proxtinmatrices are more and more
common.

This is often a severe problem for standard optimizatiomé&aorks as used e.g.
for the Support Vector Machines (SVM), where psd matricemore specific mercer
kernels, are expected (Vapnik, 2000). The naive usage cfpsdrmatrices in such a
context invalidates the guarantees of the original appr@ide ensured convergence to
a convex or stationary point or the expected generalizatomuracy to new points).

In (Haasdonk, 2005) it was shown that the SVM not any longéimopes a global
convex function but is minimizing the distance between oeduconvex hulls in a
pseudo-Euclidean space leading to a local optimum/_In (Li20B4) and|(Filippone,

2009) different cost functions for clustering where anatyand the authors point out
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that the spectrum shift operation (discussed in the folgyivas found to be very ro-
bust with respect to the used optimization function.

Currently, the vast majority of approaches encodes such aosgms by enforcing
metric properties into these measures or by using altemat general less expres-
sive measures, which do obey metric properties. With théimoous increase of non-
standard and non-vectorial data sets non-metric measncealgorithms in Krein or
pseudo-euclidean spaces are getting more popular anddwemtly raised wide interest
in the research community (Gnecco, 2013; J. Yang & Fan, 2Dids8cki et all, 12013;
Kanzawa, 2012; Gu & Guo, 2012; Zafeiriou, 2012; Miranda ¢24113| Epifanio, 2013;
Kar & Jain,|2012). In this article we review major researctediions in the field of

non-metric proximity learning where data are given by paeproximities only.
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Figure 3: Schematic view of different approaches to anahyrepsd data

4 A systematization of non-metric proximity learning

The problem of non-metric proximity learning has been asisizd before by some re-
search groups and multiple approaches were proposed withiast years. A schematic
view summarizing the major research directions is show gufe3 and in Tablel2 and

Table[3.

Basically, there exist two main directions:
(A) Transforming the non-metric proximities to become neetr

(B) Stay in the non-metric space by providing a method whidhsgnsitive to metric

violations or can naturally deal with non-metric data

The first direction can again be divided to the following sitategies:

A.1 Applying direct eigenvalue correction$he original data are decomposed by an

11



Turn non-metric proximities into metric ones (Sec[5)

(AI) Eigenvalue
rections (like clipping,
flipping, shifting) are
applied to the eigen
spectrum  of
(Muoz & De Diego,
2006; | Roth et al.,
Y. Chen, Garcia, et al.,
2009a;| Filippone/| 2009
This can also be ef
fectively done for
dissimilarities by
specific  pre-processin
(Schleif & Gisbrecht,
2013)

COr+

the dat:

2002

a

(A2) Embedding ap+t (A3) Learning of a proxy
proaches like (variants affunction is frequently
MDS (Cox & Cox,/2000; used to obtain an al-
-IChoo et al.; 2012), t-SNE ternative psd proximity
a (Van Der Maaten & Hintgnmatrix which has maxi-
2012), NeRV| mum alignment with the
; (Venna et al., 2010) original non-psd matrix.
can be used to obtain an(J. Chen & Ye, 2008;
. Euclidean embeddinglLuss & d’Aspremont,

-in a lower dimensional 2009;

space but also the (dis-Y. Chen, Gupta, & Recht,
)similarity  (proximity) | 2009; Gu & Guo,
gspace is a kind of em-2012; |Luetal.,, | 2005;
bedding leading to Brickell et al., 2008;
vectorial representa-Li et al,[2015)

tion (Pekalska & Duin,

2008a, |2002, | 2008
Pekalska et al., 200
2006; | Kar & Jain,| 2011
R. P.W. Duin et al.,

metric locality sensitiv

hashing (Mu & Yanh,
2010) and local em
bedding or triangl
correction technique

(L. Chen & Lian, 2008)

Table 2: Classification of the methods which have been redléw&ection§ 5J6. The

table provides a brief summary and the most relevant refeen
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Algorithms for learning on non-metric data (Sec[6)

B1) Algorithms with

(B2) Algorithms which

a decision function define their models in the

which can be basedpseudo-Euclidean space:

on non-metric  proxq (Haasdonk & Pkalska,

imities: (Kar & Jain, | 2008;

2012; M. Tipping, 2001a} Pekalska & Haasdonk,

H. Chen et al., 2014, 12009; Liwicki et al.,

2009a; Graepel et al},2013, 12012; | Zafeiriou

1998) 2012; Kowalski et al.,
2009;/ Xue & Chen, 2014;
J. Yang & Fan, 2013

Pekalska et al., 2001)

Theoretical work for indefinite data analysis and related oveviews

Focusing on SVM:|(Haasdonk, 2005; Mierswa & Morik, 2008:ntlen & Lin,
2003; lYing et al., | 2009), indefinite kernels and pseudoideah spaces
(Balcan et al., 2008; Wang et/al., 2009; Brickell et al., 200&hI&8if & Gisbrecht,

2013; [Schleif, | 2014; | Pekalska & Duin, 2005; Pekalska et ak004,
2001; Ongetal., | 2004; | Laubetal., 2006/ D.-G.Chenetal., 8200
R. P. W. Duin & Pekalska,l 2010! Gnecco, 2013; Xuetal., 2011ghHim,

1988;/ Goldfarb, 1984; Graepel & Obermayer, 1999; Zhou & W&di 1; Alpay,

1991;|Haasdonk & Keysers, 2002), indexing, retrieval andrimenodification

techniques.(Z. Zhang etlal., 2009; Skopal & Loko, 2008; Bu&t&kopal, 2011;

Voijt & Eckhardt,| 2009| Jensen etlal., 2010), overview paja@ic cross discipline
studies [(Y. Chen, Garcia, et al., 2009a; Muoz & De Diego, 2(R6P. W. Duin,

2010; Kinsman et al., 2012; Laub, 2004; Hodgetts & Hahn, 2Bdtgetts et al.,
2009; Kanzawa, 2012)

Table 3: Classification (continued) of the methods which Haaen reviewed in Sec-

tions[5+6. The table provides a brief summary and the mostaat references.
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Eigenvalue decomposition and the eigenspectrum is cedentdifferent ways

to obtain a corrected psd matrix.

A.2 Embedding of the data in a metric spat¢ere, the input data are embedded into
a (in general Euclidean) vector space. A very simple styaitego use Multi-
Dimensional Scaling (MDS) to get a two- dimensional repnéstgon of the dis-

tance relations encoded in the original input matrix.

A.3 Learning of a proxy function to the proximitie§hese approaches learn an alter-
native (proxy) psd representation with maximum alignmerthe non-psd input

data.

while the second branch is less diverse but one can identégast two sub-strategies:

B.1 Model definition based on the non-metric proximity functi®ecent theoretical
work on generic dissimilarity and similarity functions isad to define models
which can directly employ the given proximity function wibimly very moderate

assumptions.

B.2 Krein space model definitionThe Krein space is the natural representation for
non-psd data and some approaches have been formulated thithimuch less

restrictive, but hence more complicated, mathematicalespa

In the following we detail the different strategies and tredvantages and disad-
vantages. As a general comment the approaches covéréeday Bleser to the original
input data whereas for the stratdgy A the input data are its gabstantially modi-
fied which can lead to a reduced interpretability and alsdatdira valid out-of sample

extension in many cases.

5 Make the input space metric

14



5.1 Eigenspectrum approaches (A1)

The metric violations cause negative eigenvalues in thensigectrum oS8 leading to
non-psd proximity matrices. Many learning algorithms aasdal on kernels yielding
symmetric and psd similarity (kernel) matrices. The matagral meaning of a kernel
is the inner product in some Hilbert space (Shawe-Taylor &i@nini,l2004). How-
ever, it is often loosely considered simply as a pairwisenilsirity” measure between
data items. If a particular learning algorithm requiresule of Mercer kernels and the
similarity measure does not fulfill the kernel conditiongps must be taken to ensure
a valid model.

A natural way to address this problem and to obtain a psd aiityilmatrix is to
correct the eigenspectrum of the original similarity ma8i Popular strategies include

flipping, clipping, shift correctionThe non-psd similarity matri$ is decomposed as
S=UAUT, 2)
whereU contains the eigenvectors fandA contains the corresponding eigenvalues.

Clip eigenvalue correction: all negative eigenvalues ik are set to 0. Spectrum clip
leads to the nearest psd matfxn terms of the Frobenius norm (Higham, 1988). The

clip transformation can also be expressed as (Gu & Guo, 2012)

with Vgip = U|A|‘%diag(l,\l>o, ..., lay>0), Wherel. is an indicator functiﬂ.

2The validity of the transformation function can be easilyowh by: S =
UAUTU)A 2 diag(la,505 - - - » Tag=0)(UTU)AUT = UAIAI"Idiag(la,50, - - - Iays0)AUT =
UAdiag(la,>0,- .-, lay-0)UT.  Similar derivations can also be found for the other tramsfdgion
functions (flip, shift, square).
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Flip eigenvalue correction: all negative eigenvalues iN are set toA; = |Aj| Vi
which at least keeps the absolute values of the negativenegiyjees and can be rele-
vant if these eigenvalue contain important informationk@eka et al., 2004). The flip

transformation can be expressed.as (Gu &/Guo, |2012):
S = SViipVipS, (4)
with Vﬂip = Ul/\l_%

Shift eigenvalue correction: the shift operation was already discussed earlier by
different researchers (Laub, 2004; Filippone, 2009) andlifies A such thatA :=

A — min;; A. The shift transformation can also be expressed as (Gu & /P4F):

with Venine = UJAI"X(A — v1)? with v = min;; A. Spectrum shift enhances all the self-
similarities by the amount of and does not change the similarity between any two

different data points.

Square and bending eigenvalue correction: further strategies where recently dis-
cussed inl(Muoz & De Diego, 2006) and contain #tgiare transformationvhere A

is changed to\ := A2 (taking the square elementwise) which leads to the follgwin
transformation matrix

S = SVSqual’é/quuar§ =SS (6)

with Vsguare = U(AZ)‘% andbending where in an iterative process the matrix is up-
dated such that the influence of points (causing the mewiatwn) is down-weighted.
In the same work also a brief comparison to some transfoomapproaches can be
found. The prior transformations can be applied to symmsimilarity matrices. If

the input is a symmetric dissimilarity matrix one has firsafiply a double centering
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(Pekalska & Duin, 2005) step. The obtained potentially ped-similarity matrix can
be converted as shown above and subsequently converteddodidsimilarities using

Eq. (@), if needed.

Complexity: all of these approaches are applicable to similarity (ase@ to dis-
similarity) data and require eigenvalue decompositiorheffull matrix. The eigende-
composition (EVD) in Eq.[{2) has a complexity @{N®) using standard approaches. In
(Gisbrecht & Schleif, 2014) a linear EVD was proposed whghased on the Nystm
approximation and can also be used for indefinite low rankioess.

To apply these approaches to dissimilarity data one firsisie®apply double cen-

tering (Pekalska & Duin, 2005) to the dissimilarity matix

S = -JDJ/2

(&
Il

(I — 117/N)

with identity matrixl and vector of one%. To get fromSto D is obviously also possible

by calculating the dissimilarity between itefinand j as follows:

Dij = Sii +Sjj —28”. (7)

The same approach was used.in (Graepellet al., 1998) for mitdediissimilarity data
followed by a flipping transformation. A more efficient segy combining double
centering and eigenvalue correction for symmetric didsirty matrices was provided
in (Schleif & Gisbrecht, 2013) and uses the Ngstrapproximation to get efficient non-

psd to psd conversions for low-rank matrices with lineatsos

Out of sample extension to new test points: in general, one would like to modify the
trainingandtest similarities in a consistent way, that is, to modify timelerlying sim-

ilarity functionand not only modifying the training matri® Using the transformation

17



strategies mentioned above, one can see that the spectrdificaitton are in general
based on a transformation matrix appliedSoUsing this transformation matrix one
can obtain corrected and consistent test samples in alsfi@igard way. We calculate
the similarities of the new test point to &l training sample and obtain a row-vector

s € RN which replaces in the above equations. For clip we would get:

§ = SthIipV(—;rnpst (8)

with V¢, as defined before on the training mat8x

5.2 Learning of alternative metric representations [(A3)

As mentioned before many algorithmic optimization apphsscbecome invalid for
non-metric data. An early approach to address this probksd an optimization frame-
work to address the violation of assumptions in the inpua.dat prominent way is to
optimize not on the original proximity matrix but on a proxyatrix which is ensured

to be psd and is aligned to the original non-psd proximityrirat

Proxy matrix for noisy kernels: the proxy matrix learning problem for indefinite
kernel matrices is addressed lin (Luss & d’Aspremont, 2000¥@ipport vector classi-
fication (SVC), regression (SVR) and 1-class classificatione duthors attribute the
indefiniteness to noise effecting the original kernel anappse to learn a psd proxy
matrix. The SVC or SVR problem is reformulated to be basederptoxy kernel with
additional constraints to keep the proxy kernel psd andatigo the original non-psd
kernel. A similar conceptually related proxy learning algon for indefinite kernel
regression was recently proposed.in (Li etial., 2015). Tkeifip modification is done
as an update on the cone of psd matrices which effectivelpvemthe negative eigen-
values of the input kernel matrix.

A similar but more generic approach was proposed for disaiities in (Lu et al.,
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2005). Thereby the input can be a noisy, incomplete and sistant dissimilarity
matrix. A convex optimization problem is established,rasting a regularized psd ker-
nel from the given dissimilarity information. Also in (BrieK et al., 2008) potentially
asymmetric but non-negative dissimilarity data are cargid. Thereby a proxy ma-
trix is searched for such that the triangle violations fgulé points sets of the data are
minimized or removed. This is achieved by specifying a cary@timization problem
on the cone of metric dissimilarity matrices constrainealbey all triangle inequal-
ity relations for the data. Various triangle inequality figialgorithms are proposed to
solve the optimization problem at reasonable costs for matealata sets. The bene-
fit of (Brickell et al.,|2003) is that as few distances as pdssivte modified to obtain
a metric solution. Another approach is to learn a metricespntation based only on

given conditions on the data point relations, such as lirdtatchlinked. In|(Davis et al.,

2007) a Mahalanobis type metric is learned such dat x;) = +/(xi — x;)TG(x; — ;)

where the user given constraints are optimized with theim@ir

Proxy matrix guided by eigenspectrum correction: in (J. Chen & Ye, 2008) the
work of (Luss & d’Aspremont, 2009) was adapted to a semi-itdilguadratic con-
straint linear program with an extra pruning strategy todtarthe large number of
constraints. Further approaches following this line okersh were recently reviewed
in (Muoz & De Diego, 2006).

In (Luss & d’Aspremont, 2009) the indefinite kerr€} is considered to be a noise
disturbed realization of a psd kern€l They propose a joint optimization of a proxy
kernel aligned td<y and the (dual) SVM classification probl

1
m mina™1 - ZTr(K(Ya)(Ya)T K — K2
(aTy=0,0as)((st) (KzIO)a 2 KYa)(Ya)") + 7l ollg

wherea are the Lagrange variablds,is the proxy kernelY is a diagonal label matrix

3Later extended to regression and one-class SVM
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andC, y are control parameters. For the Frobenius norm the closeskgrnel tokKg
is the corresponding clipped kernel, accordinglylin (Lusd’&spremont, 2009) the

proxy kernel can be calculated explicit (for givehas:

K= (Ko + (Y&)(Ya)")/(47)), (9)

where, indicates the clipping operation as discussed before. waegly, fory — oo
the optimal kernel is obtained by zeroing out negative aigkres. We can also see in
Eq (9) that similarities for points with different labelseashifted to zero (and finally
clipped) and similarities for points in the same class dtedi

Another work based on (Luss & d’Aspremont, 2009) was intaatlin (Y. Chen, Gupta, & Recht,
2009), where the proxy or surrogate kernel is restrictedsalt from few specific trans-
formations. such as eigenvalue flipping, clipping or shgtileading to a second-order
cone program. In (Y. Chen, Gupta, & Recht, 2009) the optinoregiroblem is similar
to the one proposed in (Luss & d’Aspremont, 2009) but the leggation is handled
differently. Instead a computationally simpler methodniegng K* to be a spectrum
modification ofK, is suggested, based on indicator varialdesThis approach also
leads to an easier out of sample extension. The suggestelépro the primal domain

was given as:

minimize  £17¢ + ncTKac + yh(a)
c,béa
st.  diagf)(Kiac+bl) >1-¢, (10)

¢£>0,Aa>0

whereK, = Udiag@AU™ with K = UAUT as the eigenvalue decomposition of the
kernel matrix andh(a) is a convex regularizer @t e.qg.||a — agipll2 Or [|a — asipll2, Which

is chosen by cross-validation. The regularizer is cordgtbbly a balancing parameter
having the same role as in Hg (9). The other parameters dne@gpect to a standard
SVM problem (for details see (Y. Chen, Gupta, & Recht, 2009)).

A similar strategy coupling the SVM optimization with a mbed kernel PCA was
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proposed recently in (Gu & Guo, 2012). Here the basic ideansddify the eigenspec-
trum of the non-psd input matrix as discussed. in (Y. Chen, &uRecht, 2009), but
based on a kernel PCA for indefinite kernels. The whole promems formalized in a
multi-class SVM learning scheme.

For all those methods the common idea is to convert the ndrppsximity matrix
into a psd similarity matrix by using a numerical optiminatiframework. The ap-
proach of (Lu et all, 2005) learns the psd matrix indepengefthe algorithm which
subsequently uses the matrix. The other approaches saitky jine matrix conversion

and the model-specific optimization problem.

Complexity: while the approaches of (Luss & d’Aspremont, 2009) and (JnGh&e,
2008) appear to be quite resource demanding, the approatc{@&s & Guo, 2012) and
(Y. Chen, Gupta, & Recht, 2009) are more tractable by constigithe matrix con-
version to few possible strategies and providing a simpleofisample strategy for
mapping new data points. The approaches of (Luss & d’Asprena®09) uses a full
eigenvalue decomposition in the first step({3)). Further the full kernel matrix is
approximated by a psd proxy matrix with(N?)) memory complexity. The approach
by (J. Chen & Ye, 2008) has similar conditions. The approadBiitkell et al., 2008)
showsO(N3) runtime complexity. All these approaches have a rathen bigmputa-

tional complexity and do not scale to larger datasets Witk 1€5.

Out of sample extension to new test points: the work in (Luss & d’Aspremont,
2009;/J. Chen & Ye, 2008) and (Lu et al., 2005) extends to newptasts by employ-
ing an extra optimization problem. (J. Chen & Ye, 2008) preugb® find aligned test
similarities using a quadratically constrained quadrptizsgram (QCQP). Given new

the test similaritiess and an optimized kerné{* aligned toS an optimizedk is found
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by solving

_ K- k| |[S s
mlnk’r - -
k™ r s As
F
K* k
s.t. . >0
i kK" r

The optimized kernel values are givenkinvith self similarities inr, As = S(x, X) and
Il - |Ir is the Frobenius norm. As pointed out in more detail in (J. Chéfe, 2008) one

finally obtains the following rather simple optimizatioroptem:

mine, 2|k — S| + (r — As)?
st. k'(K)k-r<o0

(I —-K*(K9HHk=0

which can be derived from (Boyd & Vandenberghe, 2004) (AppeAd.5).
In (Gu & Guo,2012) the extension is directly available by aka projection func-

tion within a multiclass optimization framework.

5.3 Experimental evaluation

The formerly mentioned approaches are all similar to eablerabut from the pub-
lished experiments it is not clear how they compare. Sules#tuwe give a brief study
comparing the approach of (Luss & d’Aspremont, 2009) an@h&n & Ye, 2008). We
consider different non-psd standard datasets processtmt liyvo methods, systemati-
cally varying the penalization parametere [le — 4,...,1000] at a logarithmic scale
with 200 steps. The various kernel matrices form a manifolthe cone of the psd
matrices. We compared these kernel matrices pairwise tsngrobenius norm. The

obtained distance matrix is embedded into two dimensiomgyubke t-SNE algorithm
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Figure 5: Eigenspectra of the proxy kernel matrices (amaaoral sonar, protein).

van der Maaten & Hinton, 2008) and an manually adapted petaim. As anchor

points we also included the clip, flip, shift, square and thgioal kernel solution.

The considered data are the Amazon47 data (204pts, twaeshasise Aural Sonar
data (100pts, two classes) and the Protein data (213ptsclagees). The similarity
matrices are shown in Figuré 4 with indices sorted accortbriipe class labels. For
all datasets the labeling has been changed to a two classiedhyecombining odd or
even class labels, respectively. All datasets are ther guntple classification problems
leading to an empirical error of close to 0 in the SVM modeinea on the obtained
proxy kernels. However they are also strongly non-psd adeaseen from the eigen-
spectra plots in Figuré 5.

An exemplary embedding is shown in Figlte 7 with arbitraritsi(so we omit the
axis labeling). There are basically two trajectories ohleématrices (each represented
by a circle) where the penalty parameter value is indicated bed or blue shading.
We also see some separate clusters which are caused by teddingpprocedure. We

see the kernel matrices for the protein data set. In the lefiave the trajectory of the
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approach provided by Chen and in the right the one as obtayndtebmethod of Luss.
We see that the clip solution is close to the crossing poitiheftwo trajectories. The
square, shift and flip solutions are near to the original &kmmatrix (light green circle).
We can find the squared solution quite close to the originadedenatrix but also some
points of the Luss trajectory are close to this matrix. Samdbservations can be made
for the other dataset§l. We would also like to mention again that both algorithms are
not only optimizing with respect to the Frobenius norm bgbah the line of the SVM
optimization.

From the plots we can conclude that both method calculatekpetel matrices
along a smooth trajectory with respect to the penalty patanfmally leading to the
clip solution. The square, shift and original kernel saotappear to be very similar
and are close but in general not crossing the trajectory s$ lou Chen. The flip solution

is typically less similar to the other kernel matrices.

5.4 A geometric view of eigenspectrum and proxy approaches

As seen in the previous section the surrogate or proxy kesmeit learned from scratch
but is often restricted to be in a set of valid psd kernelsioatjng from some standard
spectrum modification approaches (such as flip or clip) eppglbK. The approach in

(Luss & d’Aspremont, 2009) is formulated primary with respto an increase of the
class separation by the proxy kernel and, as the secondtiobjeto ensure that the
obtained kernel matrix is still psd. This can be easily sedBquation Eq[(9). If a pair

(i, j) of data items are form the same class, y;e= y;, the corresponding similarities in
the kernel matrix are emphasized (increased), otherweseate decreased. If by doing

this the kernel becomes indefinite, it is clipped back to tbergary of the space of

4It should be noted that the two dimensional embedding ihaeitinique nor perfect because the
intrinsic dimensionality of the observed matrix space igéa and t-SNE is a stochastic embedding
technique. But also with different parameter settings aunttiple runs at different random start points
we consistently observe similar results. As only localtietes are valid within the t-SNE embedding the
Chen solutions can also be close to e.g. the squared matitieihigh dimensional manifold and may
have been potentially teared apart in the plot
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Zero

Figure 6: Schematic visualization of the eigenspectrumm@ody matrix approaches
with respect to the cone of psd matrices. The cone interieersahe full rank psd ma-
trices and the cone boundary contains the psd matricesdhavieast one zero eigen-
value. In the origin we have the matrix with all eigenvaluesoz Out of the cone are
the non-psd matrices. Both strategies project the matrecdsetcone of psd-matrices.
The y parameter controls how strong the matrices are regulat@gdrds a clipping
solution with a matrix updaté. Depending on the penalizer and the ranisdhe ma-
trices follow various trajectories (an exemplary one isvemdy the curved line in the

cone). Ify = o the path reaches the clipping solution at the boundary ofoine.

psd kernel matric@ This approach can also be considered as a type of kernakmatr
learning (Lanckriet et al., 2004).

In (Y.Chen, Gupta, & Recht, 2009) the proxy matrix is restdcte be a combina-
tion of clip or flip operations on the eigenspectrum of thenma{. We denote the cone
of N x N positive semi-definite matrices Iy (see figuré 6). Further, we define the
kernel matrix obtained by the approach of Egl (9Kasand at Eq. [(10) a&®. The
approaches of Eql](9) and Ed._{10) can be interpreted as atlsmpath inC. Given,
the balancing parameter € (0, ), the optimization problems in Eq.L1(9) and Eq.

(I0) have unique solutions'(y) andK®(y), respectively. In the interior af, a small

5In general a matrix with negative entries can still be psd

25



perturbation ofy will lead to small perturbations iK- andK®, meaning that the opti-
mization problems in Eq.[19) and Ed._{10) defines continuategK"(0, ) — Cso
andK®(0, ) — Csg, respectively. It has been shown thayagows,K"(y) approaches
KcP (Y. Chen, Gupta, & Recht, 2009). Note that for the approach ohGhe vectora
(see Eq.[10) defines the limiting behavior of the pkfi{y). This can be easily seen
by definingd = (14,...,4y) anda = (ag,...,ay) as follows: If4; = 0, theng = 0.

Otherwise,
e Clip: a =1if 4 > 0 anda = 0 otherwise
o flip:a =1l
e squaresd; = 4;

Depending on the setting of the vectyrK©(y) converges to eithef P, KMip K sauare
Following the idea of eigendecomposition by Chénh,= UAUT, we suggest a
unified intuitive interpretation of proximity matrix psd ections. Applying an eigen-
decomposition to the kern&l, = , Aiuu’, we can viewK is a weighted mixture o
rank-1 "expert proximity suggestions’K;: Ko = Zi’il/li Ki, whereK; = uu/.
Different proximity matrix psd corrections result in difest weights of the experts

Ki, K= 3N, wiK;:

no correctionw; = A;

clip: w = [4]+

ﬂlp D wp = A

squarew; = A2

e shift wi = Aj — minj /lj

6)¢ can effectively be less thed experts if rankK) < N.
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Each expert provides an opinioki] , about the similarity for an object paia,(b),
weighted byw;. Note that in some cases the similariti&s][,,, and the weightg); can
be negative. Ibothterms are positive or negative, the contribution of itlie expert
increases the overall similarit{.y,, otherwise it is decreased. If we consider a clas-
sification task, we can now analyze the misclassificatiomadne detail by inspecting
the similarities of misclassified entries for individualpexts. Depending on the used
eigenvalue correction one gets information whether siitigg are increased or de-
creased. In the experiments given in Sedfioh 8.1 and Sétizmsee that clipping is in
general worse than flipping or square. Clipping removes sdrtieecexperts opinions.
Consider a negative similarity valu&| 1, from thei-th expert. Negative eigenvalue
A; of Ko causes the contribution from experto increase the overall similaritf
between items andb. Flipping corrects this by enforcing the contribution frexpert
| to decreasd(p). Square in addition enhances and suppresses weightingpalite
with |4i] > 1 and|4;| < 1, respectively. On the other hand, Shift consistently sauni
unimportant experts (weights iy close to 0), explaining the (in general) bad results
for shift in Table[6.

An exemplary visualization of the proximity matrix trajedes for the approaches
of (Y. Chen, Gupta, & Recht, 2009) and (Luss & d’Aspremont, 206%hown in Fig-
ure[7. Basic eigenspectrum approaches project the inpubari&ron the boundary
of the coneC if the matrix has low rank, or project it in the interior ¢f when the
transformed matrix has still full rank. Hence, the clip ahdtsapproaches give always
a matrix on the boundary and are quite restricted. The otperoaches can lead to
projections in the cone and may still permit additional nficdtions of the matrix e.g.
to enhance inner-class similarities. However the addiiomodifications may lead to
low rank matrices such that they are projected back to thedeny of the cone.

Having a look at the protein data (see Figure 5) we see thatiglemspectrum df,
shows strong negative components. We know that the praesnif the protein data

are generated by a non-metric alignment algorithm, errmothe triangle inequalities
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clip solution %.,“
®

< S

flip solution "/ square solution
shift aoliition original kernel

Figure 7: Embedding of adapted proxy kernel matrices forgiwein data as ob-
tained by Luss (blue shaded) and Chen (red shaded). One g@eal tgroxim-
ity matrix trajectories for the approaches of (Y. Chen, Gugt&echt, 2009) and
(Luss & d’Aspremont, 2009), both using the clip strategye Embedding was obtained
by t-distributed stochastic neighbor embedding (t-SNEn(ger Maaten & Hinton,
2008), where the Frobenius norm was used as a similarityuneégtween two matri-
ces. Although the algorithms start from different initetion points of the proximity

matrices, the trajectories roughly end in the clip solufmmincreasingy.
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are therefore most likely caused by the algorithm and notwyerical errors (noise).
For simplicity we reduce the protein data to a two class @wbby focusing on the
two largest classes. We obtain a proximity matrix with 4844 entries and an eigen-
spectrum which is very similar to the one of the original pmotdata. The smallest
eigenvalue is-12.41 and the largest 687. Now we identify those points which show a
stronger alignment to the eigenvector of the domimeegativeeigenvalue - i.e. points
with high absolute values in the corresponding co-ordmatehe eigenvector. We col-
lected the top 61 of such points in a &t Training SVM on the two-class problem
without eigenvalue correction lead to 57% training erroe &dserved that 52% of data
items from&B were misclassified. By applying an eigenvalue correction tehaive
misclassifications (flip - 5%, clip - 14%), but for flip none dfet misclassified items
and for clip 15% of them are i8. This shows again that the negative eigenvalues can

contain relevant information for the decision process.

5.5 Embedding and mapping strategied (A2)

Global proximity embeddings: an alternative approach is to consider different types
of embeddings or local representation models to effegtidehl with non-psd matrices.
After the embedding into an (in general low dimensional)lEEigan space standard data
analysis algorithms e.g. to define classification functicarsbe used. While many em-
bedding approaches are applicable to non-metric matrxtti@tembedding can lead to
a substantial information loss (Wilson & Hancock, 2010)nm&embedding algorithms
like laplacian eigenmaps (Belkin & Niyogi, 2003) can not bé&uakated based on non-
metric input data and pre-processings as mentioned beferseaded to make the data
psd.

Data embedding methods follow a general principle (BuntehB& Hammer, 2012):

for a given finite set oN data items some characteristics ghare derived and the aim
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is to match them as well as possible with corresponding cheniatics chay in the low

dimensional embedding space:

N
tensionkK,Y) = Z m(chak (X, x;), chak (Y,V;)) . (11)

i=1

Herem(-) denotes a measure of mismatch between the charactermtidghe index
i refers to thei™™ data objectx; and its low-dimensional counterpayt The source
matrix contains pairwise similarity information about ttigta items. Optimization of
usually low-dimensional point coordinatég}, or of parameters of a functional

point placement modef = F,4(X) allows for minimization of the overall tension.

Using the above formalism with Multi-Dimensional-ScaliMDS) (Kruskal; 1964)

m = myps being the sum of squares and chaj(picking pairwise distance@ij, clas-
sical MDS can be expressed as
N N
tensiomps(X, Y) = (D} - Dy})? . (12)
i=1 j=1

In practice, eigen-decomposition is used for solving thassical scaling problem effi-
ciently. However, a large variety of modification exists feodeling embedding stress
in customized, e.g. scale sensitive, ways by iterativenupation of suitably designed
tension functionsn (France & Carroll, 2011).

In a comparison of distance distributions of high-dimenaldzuclidean data points
and low-dimensional points it turns out that the former anghifted to higher average
distances with relatively low standard deviation. This midm@enon is referred to as
concentration of the norm (Lee & Verleysen, 2007).

In order to embed such distances with their specific progegiroperly in a low-
dimensional space, versions of stochastic neighbor enihbg(8NE) (van der Maaten & Hinton,
2008) and the neighbor retrieval visualizer NeRV (Vennd.e2810) apply different

input and output distributions. Gaussian distributi®{X) are used in in the high-
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dimensional input space and Student t-distributi@{¥’) in the low-dimensional out-
put space aiming at minimizing the Kullback-Leibler divenge KL) between them
by adapting low-dimensional pointé. Mismatch between per-object neighborhood

probabilities is thus modeled by, _sne = KL(P[|Q(Y)):

N
tension sxe(X, Y) = >~ KL(PI(X)IIQ(Y)) - (13)
i=1

Neighborhoods are expressed in termg-pfocalized Gaussian transformations of

squared Euclidean distances:

_ exp|Ixi — X;l?/207)
ke EXPEIIX — X2/ 20m)

ij (14)
The neighborhood probability is modeled indirectly by isgtthe bell shape widthr;

for each point to capture to which degree nearby points arsidered as neighbors for a
fixed radius of 'effective’ neighbors. This number is reéetto as perplexity parameter
and is usually setto § p < 50. Naturally, variations in data densities lead to diffeére
o and, consequently, to asymmetric matri€esGaussian distributions could be used
in the embedding space too, but in order to embed large inptarstes with relatively

low variability in a low-dimensional space, the heavy4dilStudent t-distribution

L +lyi —y;l»)™
S+ llyk — yil2)

Qi (Y) = (15)

turned out to be a more suitable characteristics (van detéag Hinton, 2008).

The priorly mentioned multidimensional scaling technigM®S) takes a symmet-
ric dissimilarity matrixD as input and calculatesda- dimensional vector space repre-
sentation such that for tHé x N dissimilarities the newN pointsX = {Xy, ..., Xy}, with
X € R are close to those of the original dissimilarity measuragisiome stress func-
tion. In classical MDS (cMDS) this stress function is the Eiegan distance. During

this procedure, details see (Kruskal, 1964), negativengajaes are clipped and a psd
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kernel can be obtained & = XX, whereX = UAzZ. The approach is exact if the
input data can be embedded into a Euclidean space withowbarayloss, which is not

always possible (Wilson & Hancack, 2010).

Local embeddings: in (L. Chen & Lian, 2008) an unsupervised retrieval problem is
considered where the used distance function is non-me#rimodel is defined, such
that the data can be divided into disjoint groups and thagtainequality holds within
each group by constant shiftHg Similar approaches where recently discussed in
(Bustos & Skopal, 2011) and the same authors proposed a spdisitince modifica-
tion approach in (Skopal & Loko, 2008). Local concepts inlthe of non-metric prox-
imities where also recently analyzed for the visualizagamon-metric proximity data
by (Van Der Maaten & Hinton, 2012) where different (local) psaare defined to get
different views on the data. Another interesting approael mroposed in (Goldfarb,

1984) where the non-metric proximities are mapped in a pséitlidean space.

Proximity feature space: finally also the so called similarity or dissimilarity space
representation (Graepel et al., 1998; Pekalska & Duin, 202805) has found wide us-
age. In|(Graepel et al., 1998) a SVM in pseudo-Euclideanesjggaroposed and a gen-
eralized nearest mean classifier and Fisher linear distaimiclassifier was proposed
in (Pekalska & Duin, 2008a, 2005) also using the featureespagresentation.

Thereby the proximity matrix is considered to be a featuré&rimaith rows as the
data points (cases) and columns as the features. Accoydiagh pointis represented in
anN dimensional feature space where the features are the pt@srof the considered
point to all other points. This few on proximity learning is@conceptually related to
a more advanced theory proposed in (Balcan et al.,|2008).

The former mentioned approaches are either transformangitien proximities by a

local strategy or completely change the data space refet®emas in the last case. The

7Unrelated to the eigenspectrum shift approach mentionkmtdae
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approach by (Pekalska & Duin, 2005) is cheap but a featuezseh problem is raised
because in general it is not acceptable to us&ld#atures to represent a point during
training but also for out of sample extensions in the tesspt{®ekalska et al., 2006).
Further this type of representation radically changes tlggnal data representation.

The embedding, suggestedlin (Goldfarb, 1984) is rathelydestause it involves an
eigenvalue decomposition (EVD) of the proximity matrix wiican be done effectively
only by using some novel strategies fow rankapproximations which also provide an
out of sample approach (Schleif & Gisbrecht, 2013).

In (Balcan et al., 2008) a theoretical analysis for using lsirities as features was
provided with similar findings for dissimilarities in_(Wareg al.,| 2009). The authors
in (Balcan et al., 2008) provide criteria for a good simikaritinction to be used in
a discrimination function. Roughly they call a similarity @sod if the expected intra-
class similarity is sufficiently large compared to the extpdanterclass similarity (more
specific in Theorem 4 of (Balcan et al., 2008)). Gi\etraining points and a good sim-
ilarity function, there exists a linear separator on theilsinties as features that has a
specifiable maximum error at a margin that dependsl¢Balcan et al., 2008).

Wang et al. (2007) show that under slightly less restricigsumptions on the
similarity function there exists with high probability ameex combination of simple

classifiers on the similarities as features which has a maxirspecifiable error.

Complexity: the classical MDS has a complexity@(N?®) but using Landmark MDS
(de Silva & Tenenbaum, 2002; J. Platt, 2005) (L-MDS) the claxipy can be reduced
to O(Nn?) with mas the number of landmarks. L-MDS is however double cernjehia

input data on the small landmark matrix only and applies@patig of the eigenvalues
obtained on then x m similarity matrix. It has therefore two sources of inacayra
namely in the double centering and the eigenvalue estimatiep (the eigenfunction
of S are only estimated on tha x m Landmark matrixD,,.,). Further the clipping

may remove relevant information as pointed out before. lisl§t@cht & Schleif, 2014)
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a generalization of L-MDS was proposed which is more aceusat flexible in these
two points.

The before mentioned local approaches can not directly ée inse.g. a classifica-
tion or standard clustering context but are method spedfiafretrieval or inspection
task. The proximity feature space approaches has basiwalgxtra costs (given the
proximity matrix is fully available) but defines a finite dim&onal space of sizg¢with
d determined by the number of (in this context) called prgtestyor reference points.
So oftend is simple chosen ad = N which can lead to a high dimensional vectorial

data representation and costly distance calculations.

Out of sample extension to new test points: To obtain the corrected similarities
for MDS one can calculatg’ = s[UA_TlA%UT = sUUT. If this operation is to
costly also approximative approaches as suggested inrgsish L ueks, et all, 2012;
Gisbrecht et all, 2015; Vladymyrov & Carreira-Pdia, 2013) can be used. The local
embedding approaches typically generate a model whichdhbhe tegenerated from
scratch to be completely valid or specific insertion coneeain be used as shown in
(Skopal & Loko, 2008). The proximity space representatsodiiectly extended to new
samples by providing the proximity scores to the correspanprototypes, which how-

ever can be costly for a large number of prototypes.

6 Natural Non-metric learning approaches

An alternative to correct the non-psd matrix is to use theitamtchl information in
the negative eigenspectrum in the optimization framewadtis is in agreement with
research done by (Pekalska etlal., 2004). The most simplegiris to use a nearest
neighbor classifier (NNC) as discussed.in (R. P. W. Duin et @lL42 The NNC is op-
timal if N — oo but is also very costly because for a new item all potentigdhizors

have to be evaluated in the worst case. The organizatiomitrae structure can resolve
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this issue for the average case using e.g. the NM-Tree asgedpn (Skopal & Loko,
2008) but is complicated to maintain for life long learningdasuffers from the short-
comings of NN for a finaN.

There are models that functionally resemble kernel mashisech as SVM, but
do not require Mercer kernels for their model formulatiorl ditting, e.g. the Rele-
vance Vector Machine (RVM)_(M. Tipping, 2001a), Radial-BaBimction networks
(RBF) (Buhmann, 2003) (with kernels positioned on top of eaealnitng point) or
the Probabilistic Classification Vector Machine (PCVM) (H. @let al., 2009a). In
such approaches kernels expressing "similarity” betwesta dairs are treated as non-
linear basis functiong;(X) = K(:, ) transforming inputx into its non-linear image
d(X) = (¢1(X), ..., &n(X)) T, making the out-of-sample extension straightforward,levhi
not requiring any additional conditions ¢ The main part of the models is formed
by the projection of the data imagé€x) onto the parameter weight vectar w¢(X).

Subsequently we detail some of these methods.

6.1 Approaches using the Indefinite krein or pseudo Euclidean space

B2)

Some approaches are formulated using the Krein space arl @a&ily transforma-
tions of the given indefinite similarity matrices. Pionegriwork about learning with
indefinite or non-positive kernels can be foundlin (Ong ¢12804; Haasdonk, 2005).
In (Ong et al.; 2004) the authors noticed that if the kernedsiadefinite one can not
any longer minimize the loss of standard kernel algorithotsristead stabilize the loss
in average. In(Ong et al., 2004) it is shown that for everynkéthere is an associated
Krein space, and for every reproducing kernel krein spacé&K®KAlpay, 1991), there
is a unique kernel. In the same work a list of indefinite kesriéle the linear combi-
nation of Gaussians with negative combination coefficienpgovided and initial work

for learning algorithms in RKKS combined by Rademacher Bounas proposed. In
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(Haasdonk, 2005) a geometric interpretation of SVMs witteiimite kernel functions
is provided. It was shown that indefinite SVMs are optimaldngtane classifiers not
by margin maximization, but by minimization of distancegvieen convex hulls in
pseudo-Euclidean spaces. The approach is solely defineidtancks and convex hulls
which can be fully defined in the pseudo-Euclidean spaces dpyproach is very appeal-
ing as it shows that SVMs can be learned for indefinite keral@®ugh not as a convex
problem. However it is also mentioned that the approachaigpropriate for proximity
data with a large number of negative eigenvalues. Based oprithdy address theory

multiple kernel approaches have been extended to be aplgliftx indefinite kernels.

Indefinite fisher and kernel quadratic discriminant:.  in (Haasdonk & Pkalska, 2008;
Pekalska & Haasdonk, 2009) indefinite kernel fisher diseramt analysis (iKFDA) and
indefinite kernel quadratic discriminant analysis (IKQDAas proposed focusing on
classification problems, recently extended by a weightoigeme inl(J. Yang & Fan,
2013).

The initial idea is to embed the training data into a Kreincgpand apply a modified
kernel fisher discriminant analysis (KFDA) or kernel quaidraliscriminant analysis
(KQDA) for indefinite kernels.

Given the indefinite kernel matriX and the embedded data in a pseudo-Euclidean
space (pE), the linear Fisher Discriminant functii(x) = (w, ®(x))e + b is based on
a weight vectow such that the between-class scatter is maximized while ttrena
class scatter is minimized alomg This direction is obtained by maximizing the Fisher

criterion:
Iw) (W, ZpW)
(W, ZyW) e
whereX, is the between andl,, the within scatter matrix. In (Haasdonk & Pkalska,
2008) it is shown that the Fisher Discriminant in the pE spadeP%? is identical
to the Fisher Discriminant in the associated Euclideanespatt?. To avoid the ex-

plicit embedding into the pE space a kernelization is cargid such that the weight
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vectorw € RP%% is expressed as a linear combination of the training détg, which
transferred to the Fisher criterion allows to use the ketmeK. A similar strategy can
be used for KQDA. Different variations of these algorithme discussed and also the
indefinite kernel PCA is briefly addressed.

In (Zafeiriou,|2012] Liwicki et al., 2012) an indefinite kelnPCA was proposed
and integrated in the Fisher discriminant framework to gketadimensional feature
extraction for indefinite kernels. The basic idea is to defineoptimization problem
similar to the psd kernel PCA but using the squared indefiretedd which has no ef-
fect on the eigenvectors but only on the eigenvalues. Indhesponding derivation of
the principal components the eigenvalues are only coreilegA| such that those prin-
cipal components are found corresponding to the lagesbluteeigenvalues. Later on
this approach was applied in the context of slow-featurdyarsafor indefinite kernels
(Liwicki et al.,12013). Amultipleindefinite kernel learning approach was recently pro-
posed in|(Kowalski et al., 2009) another recent work abodfimite kernel machines
was proposed in (Xue & Chen, 2014). Recently also the kerrttlizesion of localized
sensitive hashing was extended to indefinite kernels (Mu &, Z®10) by combining
kernelized hash functions on the associated Hilbert spaict® decomposed pseudo

Euclidean space.

Complexity: all these methods have a runtime complexityQgiN?) — O(N?) and
do not directly scale to large data sets. The test phase eaitpis linear in the
number of used points to represemt Accordingly sparsity concepts as suggested in

(M._E. Tipping, 2000) can be employed to further reduce themexity for test cases.

Out of sample extension to new test points: the models of iKFD, iKPCA and iKQDA
allow a direct and easy out of sample extension by calcgdtie (indefinite) similari-
ties of a new test point to the corresponding training paiisesd in the linear combina-

tion ofw = 3N aigp(x)).
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6.2 Learning of decision functions using indefinite proximities[(BI1)

In (Balcan et al., 2008) a theory for learning with similarfilyction was proposed with
extensions for dissimilarity data in (Wang et al., 2009).e Buthors inl(Balcan et al.,
2008) discussed necessary properties of proximity funstio ensure good generaliza-
tion capabilities for learning tasks. This theory motigaggneric learning approaches
purely based on in general symmetric, potentially non-im@toximity functions min-
imizing the hinge loss, relative to the margin. They showt gwch a similarity func-
tion can be used in a two-stage algorithm. First the dataegeesented by creating
a empirical similarity mapby selecting a subset of data points as landmarks and then
representing each data point using the similarities togHasdmarks. Subsequently
standard methods can be employed to find a large-margirr Isggrator in this new
space. Indeed in recent years multiple approaches havepbeposed which could be
covered by these theoretical frameworks although mosh afte explicitly considered

in this way.

Probabilistic classification vector machine: in (H. Chen et al/, 2009a) and (H. Chen et al.,
2014) the authors propose tiReobabilistic Classification Vector Machind®CVM)
which can deal also with asymmetric indefinite proximity mm@ Within a Bayesian
approach a linear classifier function is learned such thet paint can be represented
by a sparse weighted linear combination of the originallginties. Similar former ap-
proaches like the Relevance Vector Machine (RVM) (M. Tipp/B@01b) were found
to be unstable without early stopping during learning. ldeorto tackle this problem,
a signed and truncated Gaussian prior is adopted over evaghtin PCVMs, where
the sign of prior is determined by the class label, +&.or—1. The truncated Gaussian
prior not only restricts the sign of weights but also leads sparse estimation of weight
vectors, and thus controls the complexity of the model. @bhgthe empirical feature

map is automatically generated by a sparse adaptation sch&ing the EM algorithm.

8In general the input is a symmetric kernel matrix, but thehmdtis not restricted in this way.
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As other kernel methods PCVM uses a kernel regression njoleivi¢; ¢(x) + b
to which a link function is applied, withv; being the weights of the basis functions
#is(X) andb as a bias term. The basis functions will correspond to kereehluated
at data items. Consider binary classification and a data $epof-target training pairs
D = {xi,yi}iN:l, wherey; € {-1,+1}. The implementation of PCVM_(H. Chen et al.,

2014) uses the probit link function, i.e.

P(x) = f " N(HO. 1)t

where¥(Xx) is the cumulative distribution of the normal distributisf(0, 1). Parameters
are optimized by an Expectation Maximization (EM) scheme.

After incorporating the probit link function, the PCVM modstcomes:

N
I(x; W, b) = ‘P(Z Wi o(X) + b) = P (O, (X)W + b) (16)
i=1

Wheredy(x) is a vector of basis function evaluations for data item

In the PCVM formulation [(H. Chen et al., 2009b), a truncated $3&n priorN;
with mode at 0 is introduced for each weight Its support is restricted to [60) for
entries of the positive class anddp, 0] for entries of the negative class as shown in Eq.
(@7). A zero-mean Gaussian prior is adopted for the biakhe priors are assumed to

be mutually independent.

N

N
[ [pMilas) = ] Newil0, a7,
i=1

i=1

N(bl0,87Y),

p(wla)

p(blg)
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whereq; andg are inverse variances:

2N(Wil0,a; 1) if yiw > 0

p(Wi|a;)
0 otherwise

2N (Wi[0, ;") - 5(yiw). (17)

whered(:) is the indicator functiori,.o(X).

We follow the standard probabilistic formulation and assuhatz,(x) = ®,(X)w+b
is corrupted by an additive random noisgwheree ~ N(0, 1). According to the probit
link model, ifhy(X) = ®g(X)w+b+e > 0,y = 1 and ifhy(X) = ®y(X)W+b+e < 0,y = —1.
We obtain:

p(y = 1x,w, b) = p(®g(X)W + b + € > 0) = ¥(Dy(X)W + b). (18)

hy(x) is a latent variable becaugas an unobservable variable. We collect evaluations
of hy(x) at training points in a vectdty(x) = (hs(X1),...,hs(Xn))T. In the expectation
step the expected valug, of H, with respect to the posterior distribution over the
latent variables is calculated (given old valwed’, b°'9). In the maximization step the

parameters are updated through

W = M(MO) (X)De()M + Iy) " (19)
M(@; ()Hy — bd7 (x)1) (20)
bW = (1 +tNH) (I THy — 1T Dy(X)W) (21)

wherely is a N-dimensional identity matrix arida all-ones vector, the diagonal ele-
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ments in the diagonal matrid are:

12 \/_2Wi if Yiw; > 0
0 else

and the scalar= V2|b|. For further details see (H. Chen et al., 2009b).

Supervised Learning with Similarity Functions: the theoretical foundations for
classifier construction based on geneég B)-good similarity functions was proposed
in (Balcan et al., 2008). The theory in this paper suggestsataactive approach to
derive a classifier. After a mapping, like the one describezhdy before, the similarity
functions are normalized and this representation is usadimear SVM to find a large
margin classifier.

Another approach directly relating to the work of (Balcanlgt2008) was pro-
posed by (Kar & Jain, 2012) and showed a practical realimadiothe ideas outlined
in (Balcan et al., 2008) and how to generate a classifier fondbased on symmet-
ric (non-)psd similarity functions. The procedure takdselavectorsy € {-1, 1}, with
Y = {y1,...,Yn} @ (&, B)-good similarity functiorK see|(Balcan et al., 2008), and a loss
functionls : R x Y — R* as input, providing a classifier function: x — (w, ¥(x)).
First ad-dimensional landmarks set (column§)= {x; — Xq4} is selected from the
similarity mapK and a mapping functiol ;x — %(K(x, X1), ..., K(X,Xq)) € RYis
defined. Subsequently a weight-vectors optimized such that the following mini-

mization problem is solved:

N
W=arg min ZIS«W,‘P(X)),M)
i-1

weRd:||w||,<B

Reasonable loss functions for classification and regregsioblems are provided in
(Kar & Jain, | 2012). In contrast to the work given in (H. Chenlet2009a), the identi-

fication of the empirical feature-map or landmark selecisgust realized by a random
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selection procedure instead of a systematic approach. Arraitation is the random
selection of the landmarks which leads to large standaviitien in the obtained mod-
els. Although the used theory guarantees to get a large melagsifier from a good
similarity measure the random procedure used in (Kar & 2fid2) may not necessar-
ily find such a model. In general the solution gets betterdoger landmarks sets but
due to the usetl— 2 norm in the optimizationv is in general not sparse, such that a
complex model is obtained and the out of sample extensioorbes costly.

In (Wang et al., 2009) a similar approach was proposed fairditarity functions
whereby the landmarks set is optimized by a boosting praeedu

Some other related approaches are given by so called mddmauittams. Thereby
the model parameters are specific data points of the origiaaling, identified during
the optimization and considered as cluster centers or fyyes, which can be used to
assign new points. One may consider this also as a sparservefd.-nearest neighbor
and it can also be related to the nearest mean classifierdsindlarities proposed in
(Wilson & Hancock, 2010). An example for such median apphheacan e.g. be found
in (Nebel et al., 2014) and (Hammer & Hasenfuss, 2010). Apgines in the same line
but with a weighted linear combination where proposed inHBfmann et al., 2014;
Hammer et al., 2014; Gisbrecht, Mokbel, et al., 2012) fosidnslarity data. Similar as
discussed in_(Haasdaonk, 2005) these approaches may cervelsgto a saddle point

for indefinite proximities.

Complexity: algorithms which derive decision functions in the formeryvaae in
general very costly involving)(N?) to O(N®) operations or make use of random se-
lection strategies which can lead to models of very diffeg@meralization accuracy
if the selection procedure is included in the evaluatione @pproaches directly fol-
lowing (Balcan et al., 2008) are however very efficient if thmikarity measure already

separates the classes very well, regardless of the specifimlark set.
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Table 4: Overview of the complexity (worst case) and appiliceaspects of the former
methods. Most often the approaches are in average lessicatepl For MDS like
approaches the complexity depends very much on the useddatid whether the
data are given as vectors or as proximities. The proximiace@pproach may generate
further costs if e.g. a classification model has to be caledléor the representation.
Proxy matrix approaches are very costly due to the raisedh@ation problem and
the classical solver used. Some proxy approaches solvalarstmmplex optimization
problem also for out of sample extensions. For low rank pmityi matrices the above

mentioned costs can often be reduced by a magnitude or meeesestionl7.

Method memory complexity  runtime complexity out of sample
Eigenvalue correction (A1) O(N?) O(N3) O(N)

Proxy matrix [A3) O(N?) O(N®) O(N) — O(N?®)
Proximity spacel(AR) O(N) o(C) O(N)
Embeddings (like MDSY(A2) O(N) — O(N?) O(N?) — O(N?®) O(N) — O(N?)
iIKFD (B2) O(N) O(N?®) O(N)

PCVM (BI1) O(m) (sparsem < N)  O(N°3) (fst steps) o(m)

(linear) similarity function[(B1L) O(m) (sparsem < N) O(N?) - O(N?) o(m)

Out of sample extension to new test points: for PCVM and the median approaches
the weight vectow is in general very sparse such that out of sample extensiens a
easily calculated by just finding the few similariti@s(x, w,), ..., K(x,wg)}. As all
approaches in the former section can naturally deal withmetric data additional
modifications of the similarities are avoided and the outawhple extension is consis-

tent.

7 Scaling up approaches of proximity learning for larger
datasets

A major issue with the application of the aforementionedrapphes is the scalability to

largeN. While we already provided a brief complexity analysis focleaajor branch
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recent research has focused on improving the scalabilithefipproaches to reduce
memory or runtime costs, or both. Subsequently we brieflyckksome of the more
recent approaches which are used in this context and haveabeady proposed in the

line of non-metric proximity learning or can be easily trimsed.

7.1 Nystrom approximation

The Nystbm approximation technique has been proposed in the caoftk&tnel meth-
ods in (Williams & Seeger, 2000). Here, we give a short revidwthis technique be-
fore it is employed in PCVM. One well known way to approximat&lax N Gram
matrix, is to use a low-rank approximation. This can be donedmputing the eigen-
decomposition of the kernel matrik = UAUT, whereU is a matrix, whose columns
are orthonormal eigenvectors, andis a diagonal matrix consisting of eigenvalues
A1 > Ay > ... > 0, and keeping only then eigenspaces which correspond to the
m largest eigenvalues of the matrix. The approximatioK is UnmAmmUmn, Where
the indices refer to the size of the corresponding submatsiricted to the larges
eigenvalues. The Nysim method approximates a kernel in a similar way, without
computing the eigendecomposition of the whole matrix, WhécanO(N?®) operation.

By the Mercer theorem kernel$x, y) can be expanded by orthonormal eigenfunc-

tionsy; and non negative eigenvalugsn the form

K, Y) = ) A (i),
i=1

The eigenfunctions and eigenvalues of a kernel are defin@®lution of the integral

equation

‘fumm@amumx=mwwx

wherep(x) is the probability density ok. This integral can be approximated based on
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the Nystom technique by an i.i.d. samppe}, from p(x):
1 < k k
p k(y, X%)i(X) ~ Aigpi(y).

k=1

Using this approximation we denote wiki™ the correspondingixm Gram sub-matrix

and get the corresponding matrix eigenproblem equation as:
Kmym — ymam

with U™ ¢ R™M js column orthonormal and(™ is a diagonal matrix.

Now we can derive the approximations for the eigenfunctiang eigenvalues of

the kernek
A" N VN
Ai ~ m Sol(y) ~ /l(m) k;—ui(m)a (23)

whereui(m) is theith column ofU™. Thus, we can approximaig at an arbitrary point

y as long as we know the vectly = (k(x',y), ..., k(x™,y)). For a givenN x N Gram
matrix K we randomly choosen rows and respective columns. The corresponding
indices are called landmarks, and should be chosen suclhthatlata distribution is
sufficiently covered. A specific analysis about selectioatsgies was recently given
in (K. Zhang et al., 2008). We denote these rowy. Using the formulad (23) we
obtainK = ¥, 1/4™ - KT, (u™)T(U™)Kmn. wherea™ andu™ correspond to the

mx meigenproblem. Thus we gé{;}, denoting the Moore-Penrose pseudoinverse,
K = KnmKihKmn- (24)

as an approximation d€. This approximation is exact, K, has the same rank &s
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7.2 Linear time eigenvalue decomposition using the Nystm ap-

proximation

For a matrix approximated by Eq._(24) it is possible to coreptg exact eigenvalue
decomposition in linear time. To compute the eigenvectads eigenvalues of aim-

definitematrix we first compute its squared form, since the eigemvsdh the squared
matrix stay the same and only the eigenvalues are squareé& he a psd similarity

matrix, for which we can write its decomposition as

K = KnmKntKmn
= KnmUATTUTKY

= BB,

where we define® = Ky »,UA~Y2with U andA being the eigenvectors and eigenvalues

of Kmm, respectively. Further it follows for thequaredK

K? = BB'BB"

= BVAV'B’,

whereV andA are the eigenvectors and eigenvalue80B, respectively. The corre-
sponding eigenequation can be writtenBABv = av. Multiplying it with B from left

we get the eigenequation f&r

BB (Bv) = a (Bv)
\K’-/\/—’ S~——
u u

It is clear thatA must be the matrix with the eigenvaluestof The matrixBv is the

matrix of the corresponding eigenvectors, which are orbimad) but not necessary or-
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thonormal. The normalization can be computed from the dgosition:

K =BVV'B"
= BVAY2AAY2yTRT

= CAC,

where we define€ = BVA/? as the matrix of orthonormal eigenvectorskof The
eigenvalues oK can be obtained using = CTKC. The above mentioned strategies
can now be used in a variety of the above discussed algorahsafe computation and
memory costs, given the matrix is low rank. An example is tlystbm approximated
PCVM as proposed in (Schleif, 2015), which makes use of theeaboncept in a non-
trivial way. As shown inl(Schleif, 2015) these concept cao dle used to approximate a
singular value decomposition (SVD) for large (indefinitegtnices or other algorithms

which can be based on eigenvalue decompositions.

7.3 Approximation concepts for low dimensional embeddings

Recently various strategies have been proposed to reduda tieneralO(N3) run-
time complexity of various embedding approaches. Two genéeas have been sug-
gested. One is based on the Barnes-Hut concepts, widely kimowre analysis of
astro-physical data (Barnes & Hut, 1986) and the second dpesisd on a representer
concept where latent projection of each point are consdaio be a local linear func-
tion of latent projections. of some landmarks(Vladymyro&rreira-Pergian, 2013).
Both approaches assume that mapped data have an intring gfracture in the input
and the output space which can be effectively employed tocedomputation costs.
As a consequence they are in general only efficient if theeteembeddings are really
in a low-dimensional space, such that an efficient datatsires¢or low dimensions can
be employed.

In (Z.Yang et al., 2013) a Barnes-Hut approach was proposedgaseral frame-
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work for a multitude of embedding approaches. A specifidagafor t-SNE was re-
cently presented in (van der Magaten, 2013). Here we brieftynsarize the main ideas
suggested in (Z. Yang etjal., 2013), we refer to the corredipgnjournal papers for
more details.

The computational complexity in neighbor embeddings (NEgssentially due to
the coordinates and pairwise distances in the output spateh change at every step
of optimization. The idea is to summarize pairwise intagactosts, which are calcu-
lated for each data poimtwith respect to its neighbors by grouping. The terms in the
respective sum of the NE cost function are partitioned ietesal groupss; and each
group will be approximated as an interaction with a represgem point of the group.
The authors in(Z. Yang et al., 2013) consider the followiyygidal summation used in

NE objectives:

DUE(v=wilE) = >0 1 (i - vilP) (25)

] t jeGi

~ Z IGHT (Ity: - $4I7). (26)

wherei is the starting data point, are its neighborsG, are groups (subsets) of the
neighborsj, |G}l is the size of the group, and 5 the representative, e.g. mean, of
the points in grougs,. Similarly, we can approximate the gradient of the above.sum

Denoteg;; = f/ (||yi - y,-||2). We have

Zgij (vi-y)= Z Zgij (vi-v) ~ Z GUE (Iyi - 547) (v - %) (27)
i t jeGl t

The approximation within each gro@j is accurate when all points in the group are far

enough fromy;. Otherwise the group is divided into subgroups and the aqumition

principle is used recursively to each subgroup, until thrugrcontains a single point

There one directly calculatefs(llyi - y,-||2) or gi;. This grouping hierarchy forms a tree-

like structure. In general a quadtree is used for embedditogXl or a octree for three
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dimensional embeddings. First the root node is assigndukternallest bounding box
that contains all data points, and a representative whittieisnean of all points. If the
bounding box contains more than one data point, it is dividemifour smaller boxes of
equal size, and a child node is constructed at each smallerding box if it contains
at least one data point. The splitting is done recursivelyl afl leaf nodes contain
exactly one data point. The tree (re-)construction cogshaglectable compared with
the standard embedding approaches. During the optimizafithe point embedding
in 2 or 3 dimensions the tree is reconstructed and employétetdify compact point
groups in the embedding which can be summarized also in tnenstions of the NE
cost function.
In (Gisbrecht & Schleif, 2014; Schleif & Gisbrecht, 2013)engralization of Landmark-

MDS is proposed which is also very efficient for non-metrioypmity data. Using
the same concepts it is also possible to obtain linear rentomplexity of Laplacian

Eigenmaps for (corrected) non-metric input matrices.

7.4 Random projection and sparse models

The proximity (dis-similarity) space - discussed in subtiged5.5 makes use of aNl
similarities for a point. To reduce the computational costs for generating a modgel th
N dimensional space can be reduced in various ways. Varioussties and multi-
objective criteria have been employ to select an apprapsat of similarities, which
are also sometimes called prototypes (Pekalska et al.)2006

Random projection is another effective way and widely stidierecent publi-
cations also in the context of classification see e.g. (Di&Kaban, 2013} 2010;
Mylavarapu & Kaban, 2013). It is based on the Johnson-Listtanss lemma which
states that a (random) mappinghpoints from a high-dimensionaD() to aO(E—l2 logN)
low-dimensional feature space distorts the length of tlwordby at most 1= €. More

recent work can be found in (Kane & Nelson, 2014). Anotheraopis to derive the de-
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cision function directly only on a subset of the proximitweisere theoretically work dis-
cussing this option is available in (Balcan et al., 2008; Weinai.,| 2009; Guo & Ying,
2014).

8 Experiments

In Table[6 we compared multiple of the priorly discussed méthon various non-psd
datasets with different attributes. As a baseline we usé&-Rearest-Neighbor (KNN)
algorithm withk as the number of considered neighbors, optimized on an @mntkgmnt
hold out meta-parameter tuning set. We modiked the range [1..,10]. It should
be noted that kNN is known to be very efficient in general bguests the storage of
the full training set and is hence very unattractive in tist phase due to high memory
load and computation costs. In case of proximity data a netsi@mple has to com-
pared to all training points to get mapped in the kNN model. a® compare to a
SVM with different eigenvalue corrections, the SVM-Proxypaoach as proposed by
(J. Chen & Ye, 2008) and two native methods namely the forntsigussed iIKFD and
PCVM approach.

8.1 Dataset

We consider datasets as already used in (Y. Chen, Garcia,20@9a; R. P. Duin, 2012)
and additional larger scale problems. All data are usednaasity matrices (dissimi-

larities have been converted to similarities by Double-€eng in advance) and shown
in Figure[9 and Figure 12. The datasets are from very diftgueactical domains such

as sequence alignments, image processing or audio datesianal

Aural Sonar: theAural Sonardata set is taken from (Philips et al., 2006), investigat-
ing the human ability to distinguish different types of sos@nals by ear. The signals

were returns from a broadband active sonar system, with rg@ttaf-interest signals
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and 50 clutter signals. Every pair of signals was assignenhidasity score from 1 to
5 by two randomly chosen human subjects unaware of the thaédslaand these scores
were added to produce a 1&Q100 similarity matrix with integer values from 2 to 10

(Y. Chen, Garcia, et al., 2009a) with a signature of, @&20)

Chromosom: the Copenhagen Chromosomeata constitute a benchmark from cy-
togenetics. 4,200 human chromosomes from 21 classes aeseeped by grey-valued
images. These are transferred to strings measuring tHentss of their silhouettes. An

example pattern representing a chromosome has the form

1133244422233332332222333223323332222666222331111

The string indicates the thickness of the gray levels of thage. These strings can
be directly compared using the edit distance based on tferetices of the numbers
and insertion/deletion costs 4.5 (Neuhaus & Bunke, 2006)e dlbtained proximity

matrix has a signature of (2258399 43). The classification problem is to label the

data according to the chromosome type.

Delft: the Delft gestures (DS5, 1500 points, 20 classes, balasigthture: (96,3536 1))
taken from|(R. P. Duin, 2012) is a set of dissimilarities getest from a sign-language
interpretation problem. It consists of 1500 points with Bsses and 75 points per class.
The gestures are measured by two video cameras observimpsiteons of the two
hands in 75 repetitions of creating 20 different signs. Tissidhilarities are computed
using a dynamic time warping procedure on the sequence tiigres(Lichtenauer et al.,

2008).

Face Rec: the Face Rec data set consists of 945 sample faces of 139 [hewplthe
NIST Face Recognition Grand Challenge data set. There areld88es, one for each

person. Similarities for pairs of the original three-diraemal face data were computed
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as the cosine similarity between integral invariant sigred based on surface curves of

the facel(Feng et al., 2007) with a a signature of (194, 1)

ProDom: the ProDomdataset with signature (150&28Q 422) consists of 2604 pro-
tein sequences with 53 labels. It contains a comprehensivef rotein families and
appeared first in the work of (Roth et al., 2002). The pairwisgctural alignments are
computed by (Roth et al., 2002). Each sequence belongs taia tabeled by experts,

here we use the data as provided in (R. P. Duin, 2012).

Protein: the Protein data set has sequence-alignment similariie@X3 proteins
from 4 classes, where class one through four containg2Z’39, and 30 points, re-

spectively (T. Hofmann & Buhmann, 1997). The signature i©(40, 3).

Sonatas: theSonataslata set contains complex symbolic data with a signatu@x#01)
taken from (Mokbel et al., 2009). It is comprised of pairwdissimilarities between
1,068 sonatas from the classical period (by Beethoven, Ma@zat Haydn) and the
baroque era (by Scarlattiand Bach). The musical pieces vikee i the MIDI file for-

mat, taken from the online MIDI collectiokunst der Fugg. Their mutual dissimilari-

ties were measured with the normalized compression dis{dNI€D), see (Cilibrasi & Vianyi,

2005). The musical pieces are classified according to temposer.

SwissProt: the SwissProdata set with a signature (84&50Q 1), consists of 5,791
points of protein sequences in 10 classes taken as a subsetttie popular Swis-
sProt database of protein sequences (Boeckmann et al!,. ZDB8)considered subset
of the SwissProt database refers to the release 37. A tymiot#in sequence consists
of a string of amino acids, and the length of the full sequenaies between 30 to
more than 1000 amino acids depending on the sequence. Thest@ommon classes

such as Globin, Cytochrome b, Protein kinase st, etc. prdvigethe Prosite labeling

9http://www.kunstderfuge.com
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(Gasteiger et all, 2003) where taken leading to 5,791 segsenDue to this choice,
an associated classification problem maps the sequendsstearresponding Prosite
labels. These sequences are compared using Smith-Watevhielm computes a lo-

cal alignment of sequences (Gusfield, 1997). This datalsatbe istandard source for
identifying and analyzing protein sequences such that gomeated classification and

processing technique would be very desirable.

\Voting: the Voting data set comes from the UCI Repository. It is a twasglclas-

sification problem with 435 points, where each sample is eguaical feature vector
with 16 components and three possibilities for each compioM#e compute the value
difference metric.(Stanfill & Waliz, 1986) from the categailidata, which is a dissimi-
larity that uses the training class labels to weight diiféi@mponents differently so as

to achieve maximum probability of class separation. Theatigre is (178163 94).

Zongker: the Zongker digit dissimilarity data (2000 points in 10 sles) from|(R. P. Duin,
2012) is based on deformable template matching. The dissitpimeasure was com-
puted between 2000 handwritten NIST digits in 10 classeth 200 entries each, as a
result of an iterative optimization of the non-linear defation of the grid/(Jain & Zongker,
1997). The signature is (103361, 0).

We also show the eigenspectra of the datasets in Higlire 1Bigne 13 indicating
already how strong a dataset violates the metric properidditionally some summa-
rizing information about the datasets is provided in Tabdn8 t-SNE embeddings of
the data in Figurgl8 and Figurel11 to get a rough estimate whtth data are classwise
multimodal. Further we can interprieical neighborhood relations and whether datasets
are more overlapping or well separated

We observe that there is no clear winning method but we finddaarece for SVM-

square (4 times best) and kNN (3 times best). If we remove kidiz fthe ranking due

1OT—SNE visualizations are not unique and we have adaptedaitpdgxity parameter to get reasonable
visualization in general dsog(N)?|
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Table 5: Overview of the datasets. The last two columns tefére number of positive

and negative eigenvalues, respectively.

Data set Points Classes Balanced +EV -EV
Aural Sonar 100 2 yes 62 38
Chromosoms 4200 21 yes 2258 1899
Delft 1500 20 yes 963 536
FaceRec 945 139 no 794 150
Prodom 2604 53 no 1502 680
Protein 213 4 170 40
Sonatas 1068 5 no 1063 4
SwissProt 10988 30 no 8487 2500
Voting 435 2 no 178 163
Zongker 2000 10 yes. 1039 961

Table 6: Comparison of different priorly discussed methadsvarious non-psd data

sets.

Method PCVM[EB1) IKFD[B2) kNN SVM SVM-Flip[Al)  SVM-Clip SVM-Sqared  SVM-Shift SVM-Proxy[(AB)
Aural Sonar 8400+ 1174 8700+ 1059 8000+ 1148 8500+ 1179 8800+ 1135 9100+ 8.76 8700+ 9.49 9100+ 7.38 8800+ 4.85
Chromosoms 888+ 3.65 9736+ 1.09 9511+ 0.88 9710+ 1.00 9764+ 0.79 97.48+0.72 9681+ 0.68 9710+ 0.92 n.a.

Delft 7120+ 1184 9820+ 1.48 9593+ 1.65 9773+ 0.76 9840+ 0.90 9853+ 0.75 9747+ 1.58 9747+ 0.91 n.a.
FaceRec 548+ 6.62 6773+ 6.34 9529+ 1.84 2159+ 7.56 2159+ 7.56 2159+ 7.56 3778+9.11 2159+ 7.56 n.a.
Prodom 9%2 + 0.60 9946 + 0.55 9987+ 0.21 not converged 965+ 0.56 9965 + 0.56 99.92 + 0.22 9896+ 0.99 n.a.

Protein 9576+ 4.17 99,05+ 2.01 5913+ 1244 6150+ 10.64 9859+ 2.30 8967+ 9.75 9859+ 3.21 6197+ 9.83 9707+ 2.73
Sonatas 9@5+ 3.84 9017+ 2.00 8907 + 3.68 8736+ 3.88 9007 + 3.90 8961+ 3.78 9260+ 2.82 87.17+ 3.64 n.a.
SwissProt 9778+ 0.48 9681+ 0.79 9859+ 0.35 97.38+ 0.36 9733+ 0.42 9738+ 0.37 9837+ 0.33 9737+ 0.38 n.a.

Voting 9539+ 2.70 9562 + 4.01 9362+ 4.54 9563+ 3.13 9563+ 3.13 9563+ 3.13 95.86 + 2.99 95.63+3.13 9528+ 1.96
Zongker 9445+ 1.64 9710+ 1.13 7317+ 329 not converged 97.30+ 1.21 96.40+ 1.39 9700+ 1.53 9200+ 2.55 n.a.

to the high costs in the test phase the best two approachdd e$VM-squared and

IKFD.

If we analyze the prediction accuracy with respect to theahedy fraction (NF)

of the data:NF = Y141/ XL, 14| as shown in Figure_14 one can see that with in-

creasing NF the performance variability of the methodsaases. In a further exper-

iment we take the Protein data and actively vary the nedggatofithe eigenspectrum,

by varying the number of negative eigenvalues fixed to zere.avalyze the behavior

of an SVM classifier by using the different eigenvalue careermethods discussed

before. The results are shown in Figlire 15 We see that foskang negativity the

accuracy is around 87%. With increasing negativity theedéhces between the eigen-

value correction methods become more pronounced. When gaiviey reaches @

larger negative eigenvalues are included in the data andogeree that flip and square

show a beneficial behavior. Without any corrections (bluttedbline), the accuracy

drops significantly with increasing negativity. The shiffpaoach is the worst. With
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respect to the discussion in section|5.4 this can now beyeasgillained. For the Pro-
tein data the largest negative eigenvalues are obviouslgdamg relevant information
and smaller negative eigenvalues appear to encode noigeshiith approach removes
the largest negative eigenvalue, suppress the seconabiie increasing all originally
non-negative eigenvalue contributions, including thoke&tvwere close to zero. Simi-

lar observations hold for the other datasets.

Discussion

This review shows that learning with indefinite proximitis® complex task which can
be addressed by a variety of methods. We discussed the safraedefiniteness in
proximity data and have outlined a taxonomy of the differ@gorithmic approaches.
Thereby we identified two major methodological directioasnely approaches modi-
fying the input proximities such that a metric representats obtained and algorithmic
formulations of dedicated methods which are insensitivaetric violations. The "met-
ric” direction is the most established field with a varietyapproaches and algorithms.
From our experiments in Sectiéh 8 we found that for many ddsathe differences
between algorithms of the "metric” direction are only mimegarding the prediction
accuracy on the test data. Small advantages could be foutldefequare and flipping
approach. Especiallghiftis in general worse than the other approaches followed by
clip. From the experiments one can conclude that the caoreof indefinite proxim-
ities to metric ones is in general effective. If the indeBniéss can be attributed to a
significant amount of noise a clipping operation is prefexaas it will reduce the noise
in the input. If the indefiniteness is due to relevant infotiomait is obviously better
to keep this information in the data representation e.g. diyguthe square operation.
Beside of the effect on the model accuracy the methods alger dif the way how
out-of sample extensions are treated and with respect tovi@ll complexity of the

approaches. We have addressed these topics in the resaattions and provided also
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efficient approximation schemes for some of the methodsgive input data have low
rank. If the rank of the input data is rather high, approxiora are inappropriate and
the methods hav@(N?®) complexity.

The alternative direction is to preserve the input datasrgiven form and to gen-
erate models which are insensitive to indefinite proximsite can be directly derived
in the pseudo-Euclidean space. Comparing the results ire[Galvie observe that those
methods which avoid modifications of the input proximities an general competitive
but at a complexity oO(N) — O(N2). But for many of these methods low rank approxi-
mation schemes can be applied as well. As a very simple atieenwe also considered
the nearest-neighbor classifier which worked reasonablle Wewever NN is known
to be very sensitive to outliers and requires the storag# tvaaing points to calculate
out of sample extensions.

In conclusion, the machine learning expert has to know alimuathe underly-
ing data and especially the used proximity function to makeducated decision. In

particular:

e If the proximity function is derived from a mathematical tdisce or inner prod-
uct, the presence of negative eigenvalues is likely caugeaulmerical errors.
In this case, a very simple eigenvalue correction of the ipmy matrix (e.g.

clipping) (A1) may be sufficient.

e If the given proximity function is domain specific and nonine more careful
modifications of the proximity matrix are in order (as disseb in Sectionis 5.1-

and shown in the experiments - in Secfion 8).

e For asymmetric proximity measures, we have provided liktghe few exist-
ing methods capable of dealing with asymmetric proximitytnmas (see¢_AR,
BI)). However, all of them are either costly in the model geti@naor in the
out-of-sample extension (application to new test poirfisytunately, some form

of symmetrization of the proximity matrix is often acceg&abFor example, in
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the analysis of biological sequences, the proximity scaresn general “almost

symmetric” and a symmetrization leads to no performanceadizgion.

e If rank of the proximity matrix is rather high (e.g. FaceRetajalow-rank ap-

proximations (Sed.]7) will lead to information loss.

There are many open research questions in the field of inteefiroximity learning.
As already seen in the former sections the handling of notmicrgata is still not very
comfortable, although meanwhile a compact set of efficieethwds is available. As
indefinite proximities can occur due to numerical errorsmse it would be desirable to
have a more systematic procedure isolating these compofrent those which carry
relevant information. It would be also very desirable todavlarger benchmark of
indefinite proximity data similar as within the UCI database (imost often) vectorial
datasets. Also in the pre-mentioned algorithms we can findws open topics: the set
of algorithms with explicit formulations in the Krein spaliiee (Haasdonk & Pkalska,
2008; Pekalska & Haasdaonk, 2009; Liwicki et al., 2013; Zadbei, 2012) is still very
limited. Further the runtime performance for the procegsihlarge scale data is often
inappropriate. It would also be of interest whether soméefhethods can be extended
to asymmetric input data or if concepts from the analysisaajé asymmetric graph

networks can be transferred to the analysis of indefinit&ipnies.

Datasets and implementations

The datasets used in this paper have been made available faltwing web page
http://promos-science.blogspot.de/p/blog-page.htmi . Parts of the
implementations of the algorithms discussed before carttesaed at
http://www.techfak.uni-bielefeld.de/ ~ fschleitf/review/ . Anim-
plementation of the Probabilistic Classification Vector Miae is available at

https://mloss.org/software/view/610/
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