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a b s t r a c t 

Supervised learning employing positive semi definite kernels has gained wide attraction and lead to a 

variety of successful machine learning approaches. The restriction to positive semi definite kernels and 

a hilbert space is common to simplify the mathematical derivations of the respective learning methods, 

but is also limiting because more recent research indicates that non-metric, and therefore non positive 

semi definite, data representations are often more effective. This challenge is addressed by multiple ap- 

proaches and recently dedicated algorithms for so called indefinite learning have been proposed. Along 

this line, the Kr ̆ein space Support Vector Machine (KSVM) and variants are very efficient classifiers for 

indefinite learning problems, but with a non-sparse decision function. This very dense decision function 

prevents practical applications due to a costly out of sample extension. We focus on this problem and 

provide two post processing techniques to sparsify models as obtained by a Kr ̆ein space SVM approach. 

In particular we consider the indefinite Core Vector Machine and indefinite Core Vector Regression Ma- 

chine which are both efficient for psd kernels, but suffer from the same dense decision function, if the 

Kr ̆ein space approach is used. We evaluate the influence of different levels of sparsity and employ a Nys- 

tröm approach to address large scale problems. Experiments show that our algorithm is similar efficient 

as the non-sparse Kr ̆ein space Support Vector Machine but with substantially lower costs, such that also 

problems of larger scale can be processed. 

© 2019 Elsevier B.V. All rights reserved. 
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Learning of classification models for indefinite kernels received

ubstantial interest with the advent of domain specific similar-

ty measures. Indefinite kernels are a severe problem for most

ernel based learning algorithms because classical mathematical

ssumptions such as positive definiteness, used in the underlying

ptimization frameworks are violated. As a consequence e.g. the

lassical Support Vector Machine (SVM) [38] has no longer a

onvex solution - in fact, most standard solvers will not even

onverge for this problem [16] . Researchers in the field of e.g.

sychology [13] , vision [28,40] and machine learning [4] have

riticized the typical restriction to metric similarity measures. In

4] it is shown that many real life problems are better addressed

y e.g. kernel functions which are not restricted to be based on

 metric. Non-metric measures (leading to kernels which are not

ositive semi-definite (non-psd)) are common in many disciplines.

he use of divergence measures [32,41] is very popular for spec-

ral data analysis in chemistry, geo- and medical sciences [19,21] ,

nd are in general not metric. Also the popular Dynamic Time

arping (DTW) [27] algorithm provides a non-metric alignment
∗ Corresponding author. 
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core which is often used as a proximity measure between two

ne-dimensional functions of different length. In image processing

nd shape retrieval indefinite proximities are often obtained by

eans of the inner distance [15] - another non-metric measure.

urther prominent examples for genuine non-metric proximity

easures can be found in the field of bioinformatics where classi-

al sequence alignment algorithms (e.g. smith-waterman score [9] )

roduce non-metric proximity values. Multiple authors argue that

he non-metric part of the data contains valuable information and

hould not be removed [25,28] . Furthermore, it has been shown

16,29] that work-arounds such as eigenspectrum modifications 

re often inappropriate or undesirable, due to a loss of information

nd problems with the out-of sample extension. Nevertheless they

re still often used and can serve as a baseline approach. Due to

ts strong theoretical foundations, Support Vector Machine (SVM)

as been extended for indefinite kernels in a number of ways

8,10,17] . A recent survey on indefinite learning is given in [29] .

n [16] a stabilization approach was proposed to calculate a valid

VM model in the Kr ̆ein space which can be directly applied on

ndefinite kernel matrices. This approach has shown great promise

n a number of learning problems, but has intrinsically quadratic

o cubic complexity and provides a dense decision model. The ap-

roach can also be used for the recently proposed indefinite Core

https://doi.org/10.1016/j.patrec.2019.10.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2019.10.024&domain=pdf
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Vector Machine (iCVM) [30] which has better scalability but still

suffers from the dense model. The initial sparsification approach

of the iCVM proposed in [30] is not always applicable and we will

provide an alternative in this paper. 

Another indefinite SVM formulation was provided in [1] , but it

is based on an empirical feature space technique, which changes

the feature space representation. Additionally, the imposed input

dimensionality scales with the number of input samples, which is

unattractive in out of sample extensions. 

The present paper improves the work of [30] by providing a

sparsification approach such that the otherwise very dense deci-

sion model becomes sparse again. The new decision function ap-

proximates the original one with high accuracy and makes the ap-

plication of the model practical. 

We now review the main parts of the Kr ̆ein space SVM pro-

vided in [16] showing why the obtained α-vector is dense. The ef-

fect is the same for to the Core Vector Machine as shown in [30] .

For details on the iCVM derivation we refer the reader to [30] . 

1. Learning with non-psd kernels 

Learning with non-psd kernels can be a challenging problem

and may occur very quickly as discussed before, if domain specific

measure are used or simply due to noise. The metric violations

cause negative eigenvalues in the eigenspectrum of the kernel ma-

trix K , leading to non-psd similarity matrices or indefinite kernels.

Many learning algorithms are based on kernel formulations which

have to be symmetric and psd. The mathematical meaning of a

kernel is the inner product in some Hilbert space [33] . However, it

is often loosely considered simply as a pairwise “similarity” mea-

sure between data items, leading to a similarity matrix S . 

If a particular learning algorithm requires the use of Mercer ker-

nels and the similarity measure does not fulfill the kernel condi-

tions, steps must be taken to ensure a valid model. 

1.1. Eigenspectrum approaches 

A natural way to address the indefiniteness problem and to ob-

tain a psd similarity matrix is to correct the eigenspectrum of the

original similarity matrix S . Popular strategies include flipping, clip-

ping and shift correction . The non-psd similarity matrix S is decom-

posed by an eigen decomposition: S = U �U 

� , where U contains

the eigenvectors of S and � contains the corresponding eigenval-

ues. One can now adapt the eigenvalues to get rid of the negative

eigenvalues and to end up with a psd kernel. 

Clip eigenvalue correction: All negative eigenvalues in � are set

to 0. Spectrum clip leads to the nearest psd matrix S in terms of

the Frobenius norm [12] . 

Flip eigenvalue correction: All negative eigenvalues in � are set

to λi := | λi | ∀ i which at least keeps the absolute values of the neg-

ative eigenvalues and can be relevant if these eigenvalue contain

important information [25] . 

Shift eigenvalue correction: The shift operation was already

discussed earlier by different researchers [5] and modifies �

such that � := � − min i j �. Spectrum shift enhances all the self-

similarities by the amount of ν and does not change the similarity

between any two different data points, but it may also increase the

intrinsic dimensionality of the data space and amplify noise contri-

butions. 

In the experiments we will only compare with the clip and flip

approach. The latter one is also an algorithmic part of the Kr ̆ein

space SVM model. If one of the former corrections is applied to the

input kernel any standard kernel based learning method like SVM

can be used. One major drawback of these approaches is the rather

complicated out of sample extension to new test points but also
hat the data representation may have changed completely, leading

o inferior results. 

.2. Kr ̆ein space SVM 

The Kr ̆ein Space SVM (KSVM) [16] , replaced the classical SVM

inimization problem by a stabilization problem in the Kr ̆ein

pace. The respective equivalence between the stabilization prob-

em and a standard convex optimization problem was shown in

16] . Let x i ∈ X, i ∈ { 1 , . . . , N} be training points in the input space

 , with labels y i ∈ {−1 , 1 } , representing the class of each point. The

nput space X is often considered to be R 

d , but can be any suitable

pace due to the kernel trick. For a given positive C , SVM is the

inimum of the following regularized empirical risk functional 

J C ( f, b) = min 

f∈H,b∈ R 
1 

2 

‖ f‖ 

2 
H 

+ C · H( f, b) 

( f, b) = 

N ∑ 

i =1 

max (0 , 1 − y i ( f (x i ) + b)) (1)

sing the solution of Eq. (1) as ( f ∗C , b 
∗
c ) := arg min J C ( f, b) one can

ntroduce τ = H( f ∗C , b 
∗
C ) and the respective convex quadratic pro-

ram (QP) 

min 

f∈H,b∈ R 
1 

2 

‖ f‖ 

2 
H 

s.t. 

N ∑ 

i =1 

max (0 , 1 − y i ( f (x i ) + b)) ≤ τ (2)

here we detail the notation in the following. This QP can be also

een as the problem of retrieving the orthogonal projection of the

ull function in a Hilbert space H onto the convex feasible set. The

iew as a projection will help to link the original SVM formulation

n the Hilbert space to a KSVM formulation in the Krein space. First

e need a few definitions, widely following [16] . A Kr ̆ein space is

n indefinite inner product space endowed with a Hilbertian topol-

gy. 

efinition 1 (Inner products and inner product space) . Let K be a

eal vector space. An inner product space with an indefinite inner

roduct 〈·, ·〉 K on K is a bi-linear form where all f, g, h ∈ K and

∈ R obey the following conditions: 

• Symmetry: 〈 f, g〉 K = 〈 g, f 〉 K , 
• linearity: 〈 α f + g, h 〉 K = α〈 f, h 〉 K + 〈 g, h 〉 K 
• and 〈 f, g〉 K = 0 ∀ g ∈ K implies f = 0 . 

An inner product is positive definite if ∀ f ∈ K, 〈 f, f 〉 K ≥ 0 , neg-

tive definite if ∀ f ∈ K, 〈 f, f 〉 K ≤ 0 , otherwise it is indefinite. A

ector space K with inner product 〈·, ·〉 K is called inner product

pace. 

efinition 2 (Kr ̆ein space and pseudo Euclidean space) . An inner

roduct space (K, 〈·, ·〉 K ) is a Kr ̆ein space if there exist two Hilbert

paces H + and H − spanning K such that ∀ f ∈ K, f = f + + f − with

f + ∈ H + , f − ∈ H − and ∀ f , g ∈ K, 〈 f , g〉 K = 〈 f + , g + 〉 H + − 〈 f −, g −〉 H − .

 finite-dimensional Kr ̆ein-space is a so called pseudo Euclidean

pace (pE). 

If H + and H − are reproducing kernel hilbert spaces (RKHS), K
s a reproducing kernel Kr ̆ein space (RKKS). For details on RKHS

nd RKKS see e.g. [25] . In this case the uniqueness of the func-

ional decomposition (the nature of the RKHSs H + and H −) is

ot guaranteed. In [23] the reproducing property is shown for a

KKS K. There is a unique symmetric kernel k ( x, x ) with k (x, ·) ∈ K
uch that the reproducing property holds (for all f ∈ K, f (x ) =
 f, k (x, ·) 〉 K ) and k = k + − k − where k + and k − are the reproduc-

ng kernels of the RKHSs H + and H −. 

As shown in [23] for any symmetric non-positive kernel k that

an be decomposed as the difference of two positive kernels k + 
nd k −, a RKKS can be associated to it. In [16] it was shown how
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he classical SVM problem can be reformulated by means of a sta-

ilization problem. This is necessary because a classical norm as

sed in Eq. (2) does not exist in the RKKS but instead the norm

s reinterpreted as a projection which still holds in RKKS and is

sed as a regularization technique [16] . This allows to define SVM

n RKKS (viewed as Hilbert space) as the orthogonal projection of

he null element onto the set [16] : 

 = { f ∈ K, b ∈ R | H( f, b) ≤ τ } and 0 ∈ ∂ b H( f, b) 

here ∂ b denotes the sub differential with respect to b . The set S

eads to a unique solution for SVM in a Kr ̆ein space [16] . As de-

ailed in [16] one finally obtains a stabilization problem which al-

ows one to formulate a SVM in a Kr ̆ein space. 

tab f∈K,b∈ R 
1 

2 

〈 f, f 〉 K s.t. 

l ∑ 

i =1 

max (0 , 1 − y i ( f (x i ) + b)) ≤ τ (3)

here stab means stabilize as detailed in the following: In a clas-

ical SVM in RKHS the solution is regularized by minimizing the

orm of the function f . In Kr ̆ein spaces however minimizing such a

orm is meaningless since the dot-product contains both the posi-

ive and negative components. That’s why the regularization in the

riginal SVM through minimizing the norm f has to be transformed

n the case of Kr ̆ein spaces into a min-max formulation, where we

ointly minimize the positive part and maximize the negative part

f the norm. The authors of [23] termed this operation the sta-

ilization projection, or stabilization. Further mathematical details

an also be found in [11] . An example illustrating the relations be-

ween minimum, maximum and the projection/stabilization prob-

em in the Kr ̆ein space is illustrated in [16] . 

In [16] it is further shown that the stabilization problem Eq.

3) can be written as a minimization problem using a semi-definite

ernel matrix. By defining a projection operator with transition

atrices it is also shown how the dual RKKS problem for the SVM

an be related to the dual in the RKHS. We refer the interested

eader to [16] . One - finally - ends up with a flipping operator ap-

lied to the eigenvalues of the indefinite kernel matrix 1 K as well

s to the α parameters obtained from the stabilization problem in

he Kr ̆ein space, which can be solved using classical optimization

ools on the flipped kernel matrix. This permits to apply the ob-

ained model from the Kr ̆ein space directly on the non-positive

nput kernel without any further modifications. The algorithm is

hown in Algorithm 1 . There are four major steps: 1) an eigen-

ecomposition of the full kernel matrix, with cubic costs (which

an be potentially restricted to a few dominating eigenvalues - re-

erred to as KSVM-L); 2) a flipping operation; 3) the solution of an

VM solver on the modified input matrix; 4) the application of the

rojection operator obtained from the eigen-decomposition on the

vector of the SVM model. U in Algorithm 1 contains the eigen-

ectors, D is a diagonal matrix of the eigenvalues and S is a matrix

ontaining only { 1 , −1 } on the diagonal as obtained from the re-

pective function sign. 

lgorithm 1 Kr ̆ein Space SVM (KSVM) - adapted from [16] . 

Kr ĕin SVM: 

[ U, D ] := EigenDecomposition( K) 
ˆ K := U SDU 

� with S := sign (D ) 

[ α, b] := SVMSolver( ̂  K , Y, C) 

˜ α := U SU 

� α (now ˜ α is dense ) 

return ˜ α, b;

As pointed out in [16] , this solver produces an exact solution

or the stabilization problem. The main weakness of this Algo-

ithm is, that it requires the user to pre-compute the whole kernel
1 Obtained by evaluating k ( x, y ) for training points x, y . 

n  

fi  

s

atrix and to decompose it into eigenvectors/eigenvalues. Further

oday’s SVM solvers have a theoretical, worst case complexity of

O(N 

2 ) . The other point to mention is that the final solution ˜ α is

ot sparse. The iCVM from [30] has a similar derivation and leads

o a related decision function, again with a dense ˜ α, but the model

tting costs are ≈ O(N) . 

. Sparsification of iCVM 

.1. Sparsification of iCVM by OMP 

We can formalize the objective to approximate the decision

unction, which is defined by the ˜ α vector, obtained by KSVM or

CVM (both are structural identical), by a sparse alternative with

he following mathematical problem: 

in | ̃  α| 0 s.t. 
∑ 

m 

˜ αm 

�(x m 

) � �(x ) ≈ f (x ) 

t is well-known that this problem is NP hard in general, and a va-

iety of approximate solution strategies exist in the literature. Here,

e rely on a popular and very efficient approximation offered by

rthogonal matching pursuit (OMP) [6,24] . Given an acceptable

rror ε > 0 or a maximum number n of non-vanishing components

f the approximation, a greedy approach is taken: the algorithm it-

ratively determines the most relevant direction and the optimum

oefficient for this axes to minimize the remaining residual error. 

In line 2 of Algorithm 2 we define the initial residuum to be the

ector K ̃  α as part of the decision function. In line 4 we identify the

ost contributing dimension (assuming an empirical feature space

epresentation of our kernel - it becomes the dictionary). Then in

ine 6 we find the current approximation of the sparse ˜ α-vector -

alled ˜ γ to avoid confusion, where + indicates the pseudo inverse.

n line 7 we update the residuum by removing the approximated

 ̃  α from the original unapproximated one. A Nyström based ap-

roximation of the Algorithm 2 is straight forward using the con-

epts provided in [7,31] . There it is also shown that the Nyström

pproximation holds for non-psd kernels, with a simplified proof

iven in [22] . With the Nyström technique a symmetric matrix psd

39] or non-pdf [7,31] is approximated by a low-rank approach us-

ng a subset of the original datapoints, called landmarks. As shown

n [7,39] this approximation is exact if the rank of original data is

maller or equal to the number of landmarks. The landmarks are

ften chosen randomly, with more advanced strategies proposed

.g. in [20] . 

lgorithm 2 OMP to approximate the α vector. 

1: OMP: 

2: I := ∅; r := y := K ̃  α; % initial residuum 

3: while | I| < n do 

4: l 0 := argmax l | [ Kr] l |; % find relevant direction + index 

5: I := I ∪ { l 0 } % track relevant indices 

6: ˜ γ := (K ·I ) + · y % restricted (inverse) projection 

7: r := y − (K ·I ) · ˜ γ % residuum of the approximated deci-

sion function 

8: end while 

9: return ˜ γ (as the new sparse ˜ α) 

.2. Sparsification of iCVM by late subsampling 

The parameters ˜ α are dense as already noticed in [16] . A naive

parsification by using only ˜ αi with large absolute magnitude is not

ossible as can be easily checked by counter examples. One may

ow approximate ˜ α by using the (for this scenario slightly modi-

ed) OMP algorithm from the former section or by the following

trategy, both compared in the experiments. 
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As a second sparsification strategy we can use the approach

suggested by Schleif and Tiño [30] , to restrict the projection op-

erator and hence the transformation matrix of iCVM to a subset

of the original training data. We refer to this approach as iCVM-

sparse-sub. 

To get a consistent solution we have to recalculate parts of the

eigen-decomposition as shown in Algorithm 3 . To obtain the re-

spective subset of the training data we use the samples which are

core vectors. 2 The number of core vectors is guaranteed to be very

small [36] and hence even for a larger number of classes the so-

lution remains widely sparse. The suggested approach is given in

Algorithm 3 . We assume that the original projection function (line

6 of Algorithm 3 , detailed in [16] ), is smooth and can be potentially

restricted to a small number of construction points with low error.

We observed that in general few construction points are sufficient

to keep high accuracy, as seen in the experiments. 

Algorithm 3 Sparsification of iCVM by late subsampling. 

1: Sparse iCVM: 

2: Apply iCVM - see (Schleif and Ti ́no, 2017) 

3: ζ - vector of projection points by using the core set points 

4: construct a reduced K 

′ using indices ζ as K̄ 

5: [U,D] := EigenDecomposition( ̄K ); S := sign (D ) 

6: ᾱ := U SU 

� α % U restricted to core set indices 

7: ˜ α := 0 ˜ αζ := ᾱ % assign ᾱ to ˜ α using indices of ζ
8: b := Y ˜ α� % recalculate bias using the sparse ˜ α
9: return ˜ α, b;

3. Indefinite Core-Vector-Regression - iCVR 

As already indicated in [30] the Kr ̆ein space approach consid-

ered before can also be used in similar minimum enclosing ball

(MEB) based optimization problems. In particular we will consider

the sparsification in the context of core vector regression for indef-

inite kernels, subsequently referred to as iCVR. 

Assume points x i ∈ R 

d , i ∈ { 1 , . . . , N} and real-valued outputs

y i ∈ R are given. Further, we assume a kernel function k (for the

moment it is assumed this kernel is a psd kernel) is given with

a feature map �. A kernel regression trains a function of the fol-

lowing form: x �→ w 

� �(x ) + b, where w is a normal vector of a

decision plane and b a bias term. The training objective is to get

as many points as possible approximately right while preserving a

large margin. In the classical core vector regression (CVR) [36] an

ε-tube formalization is used to achieve this objective. For an ε-

tube a data point is correctly predicted iff its image is within ε of

the desired value. The corresponding dual core vector regression is

described by (for details see [36] ): 

max 
αi ,α

∗
i 
≥0 , 

∑ 

αi + α∗
i 
=1 

−1 

2 

·
∑ 

i, j 

(αi − α∗
i )(α j − α∗

j )(k i j + 1) 

−1 

2 

N ∑ 

i =1 

α2 
i /C − 1 

2 

·
m ∑ 

i =1 

(α∗
i ) 

2 /C + 

N ∑ 

i =1 

(αi − α∗
i ) y i 

This problem is of the form: 

max 
αi ,α

∗
i 
≥0 , 

∑ 

αi + α∗
i 
=1 

−1 

2 

(
α
α∗

)� 
˜ K 

(
α
α∗

)
+ 

(
α
α∗

)� (
y 

−y 

)
(4)

where 

˜ K = 

(
K + 11 

� + 1 /C · I −(K + 11 

� ) 
−(K + 11 

� ) K + 11 

� + 1 /C · I 

)

2 A similar strategy for KSVM may be possible but is much more complicated 

because typically quite many points are support vectors and special sparse SVM 

solvers would be necessary. 

 

a  

m  

c  
˜ 
 is a valid kernel and as shown in [36] a core / MEB algorithm can

e used to solve Eq. (4) . If the underlying kernel function k is in-

efinite also ˜ K becomes indefinite. We can now use the same argu-

entation as for iCVM [30] and following the work in [16] to mod-

fy the kernel ˜ K by a flipping operation, to calculate a valid CVR

odel. Using the projection approach of [16] the obtained solution

ector can again be mapped into the Kr ̆ein space to obtain a model

or iCVR. This final solution does not need any kernel modification

or new test points to be applied. The whole algorithmic workflow

o derive a iCVR model is described in Algorithm 4 . Once more a

yström approximation can be employed in Algorithm 4 line 2, for

n indefinite kernel using the concepts proposed in [7,31] and also

n line 4 following [39] for psd kernel matrices. 

lgorithm 4 Calculating a iCVR model. 

1: Indefinite CVR (iCVR): 

2: [ U, D ] = EigenDecomposition( K) 

3: ˆ K = U SDU 

� with S = sign (D ) 

4: [ α] = CoreVectorRegressionSolver( ̂  K , Y, C) 

5: ˜ α = U SU 

� α b = Y ˜ α� 

6: return ˜ α, b;

One can easily see that the solution vector obtained in

lgorithm 4 is non-sparse. We will therefore apply again the two

ost-processing approaches suggested before to sparsify the iCVR

odel. This can be done in the same way as for iCVM with results

iven in the experimental section. 

. Experiments - iCVM 

This part contains a series of experiments that show that our

pproach leads to a substantially lower complexity, while keep-

ng similar prediction accuracy compared to the non-sparse ap-

roach. To allow for large datasets with two much hassle we pro-

ide sparse results only for the MEB approaches, namely iCVM and

CVR. The modified OMP approach will work also for sparse KSVM

r KSVR but the late sampling sparsification is not well suited if

any support vectors are given in the original model, asking for

 sparse SVM implementation. We follow the experimental design

iven in [16] . Methods that require to modify test data are ex-

luded as also done in [16] . Finally we compare the experimental

omplexity of the different solvers. The used data are explained in

able 1 . Additional larger data sets have been added to motivate

ur approach in the line of learning with large scale indefinite ker-

els. 

.1. Experimental setting 

For each dataset, we have run 20 times the following proce-

ure: A random split to produce a training and a testing set, a 5-

old cross validation to tune each parameter (the number of pa-

ameters depending on the method) on the training set, and the

valuation on the testing set. If N > 10 0 0 we use m = 200 randomly

hosen landmarks from the given classes to approximate the ker-

el matrix using the Nyström technique. If the input data are vec-

orial data we used a tanh kernel with parameters [ a = 1 , r = 1]

o obtain an indefinite kernel. Where tanh is given as: k (x, y ) =
anh (a < x, y > + r) . 

.2. Results 

In Table 2 we show the results for large scale data (having

t least 10 0 0 points) using iCVM with sparsification. We observe

uch smaller models, especially for larger datasets with often

omparable prediction accuracy with respect to the non-sparse
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Table 1 

Overview of the different datasets. We provide the dataset size (N) and the origin of the 

indefiniteness. For vectorial data the indefiniteness is caused artificial by using the tanh 

kernel. 

Dataset #samples Proximity measure and data source 

Sonatas 1068 normalized compression distance on midi files [29] 

Delft 1500 dynamic time warping [29] 

a1a 1605 tanh kernel [17] 

zongker 2000 template matching on handwritten digits [26] 

prodom 2604 pairwise structural alignment on proteins [26] 

PolydistH57 4000 Hausdorff distance [26] 

chromo 4200 edit distance on chromosomes [26] 

Mushrooms 8124 tanh kernel [35] 

swiss-10k ≈ 10 k smith waterman alignment on protein sequences [29] 

checker-100k 100.000 tanh kernel (indefinite) 

skin 245.057 tanh kernel (indefinite) [37] 

checker 1 Mill tanh kernel (indefinite) 

Table 2 

Prediction errors (mean ± std.-dev.) on the test sets. The percentage of projection points (pts) is calculated using the unique 

set over core vectors over all classes in comparison to all training points. All sparse-OMP models use only 10 points in the final 

models. Best results are shown in bold. Best sparse results are underlined. Datasets with substantially reduced prediction accuracy 

are marked by � (anova p < 5%). 

Dataset #samples iCVM (sparse-sub) pts iCVM (sparse-OMP) iCVM (non-sparse) Others 

Sonatas 1068 12.64 ± 1.71 76.84% 22.56 ± 4.16 � 13.01 ± 3.82 11.52 ± 0.20 [29] 

Delft 1500 16.53 ± 2.79 � 52.48% 3.27 ± 0.6 3 . 20 ± 0 . 84 1.80 ± 1.48 [29] 

a1a 1605 39.50 ± 2.88 � 1.25% 27.85 ± 2.8 20 . 56 ± 1 . 34 17.08% [17] 

zongker 2000 29.20 ± 2.48 � 52.81% 7.50 ± 1.7 6 . 40 ± 2 . 11 4.4 ± 0.6 [26] 

prodom 2604 2.89 ± 1.17 26.31% 3.12 ± 0.11 0 . 87 ± 0 . 64 1.3 ± 0.5 [26] 

PolydistH57 4000 6.12 ± 1.38 12.92% 29.35 ± 8 � 0 . 70 ± 0 . 19 5.4 ± 1.3 [26] 

chromo 4200 11.50 ± 1.17 33.76% 3 . 74 ± 0 . 58 6.10 ± 0.63 7.7 ± 0.4 [26] 

Mushrooms 8124 7.84 ± 2.21 6.46% 18.39 ± 5.7 � 2 . 54 ± 0 . 56 −
swiss-10k ≈ 10 k 35.90 ± 2.52 � 17.03% 6.73 ± 0.72 12.08 ± 3.47 n.a. 

checker-100k 100.000 8 . 54 ± 2 . 35 2.26% 19.54 ± 2.1 � 9.66 ± 2.32 n.a. 

skin 245.057 9.38 ± 3.30 0.06% 9, 43 ± 2.41 4 . 22 ± 1 . 11 n.a. 

checker 1 Mill 8.94 ± 0.84 0.24% 1.44 ± 0.3 9.38 ± 2.73 n.a. 

Fig. 1. Prediction results for the protein dataset using a varying level of sparsity 

and the OMP sparsity methods. For comparison the prediction accuracy of the non- 

sparse model is shown by a straight line. 
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3 Available at: http://www3.dsi.uminho.pt/pcortez/wine/ . 
odel. The runtimes are similar to the non-sparse case but in gen-

ral slightly higher due to the extra eigen-decompositions on a re-

uce set of the data as shown in Algorithm 3 . But the focus is not

n a faster runtime (which is linear for iCVM and iCVR), but on a

imple, sparse model and hence an easy out of sample extension. A

ypical result for the protein data set using the OMP-sparsity tech-

ique and various values for sparsity is shown in Fig. 1 . 

. Experiments - iCVR 

We show the effectiveness of iCVR on a number of simulated

nd real life benchmark regression problems and compare with so-

utions as obtained by using standard CVR but for flipped (all signs

f the eigenspectrum become positive) and clipped eigenspectra

negative einvalues are set to 0) of the respective kernel matrices.
ata are given as X ∈ R 

D . Target function values y i ∈ R 

1 . The fol-

owing one-dimensional simulated datasets have been used: 

• (SIM1) basic sinc sample, with 200 samples, f (x ) = sinc(x/π ) +
0 . 05 · σ where σ is gaussian noise and x is linearly spread in

[ −30 , 30] 
• (SIM2) Friedman function, with 200 samples, f (x ) = 10 ·

sin (π · σ1 · σ2 ) + 20 · (σ3 − 0 . 5) 2 + 10 · σ4 + 5 · σ5 + σ ; and uni-

form noise σ1 , . . . , σ5 , σ is gaussian noise 
• (SIM3) The Mackey glass data,with 120 0 0 samples, in 1 dimen-

sion as detailed in [18] 

Further we used the following real life regression datasets. 

• (DS1) Abalone - age prediction, with 4177 samples, D = 8 taken

from [14] 
• (DS2) Forest fires, with 517 samples, D = 13 , dimension 13 was

used as output variable, taken from [3] 
• (DS3) Breast cancer (radius) prediction, with 569 samples, D =

32 , dimension 3 was used as output variable, taken from

[14] (wdbc) 
• (DS4) White wine quality (scored 0–10), with 4898 samples,

D = 12 , dimension 12 was used as output variable, taken from

[2] 3 

The indefiniteness was caused using a Manhattan kernel

 m 

= −|| X − X � || . The regression profiles for SIM1-SIM3 are de-

icted in Fig. 2 . In the experiments we apply the iCVR approach

n the given datasets and compare it with the standard CVR algo-

ithm were the indefinite input kernel was corrected by applying a

ip or clip eigenspectrum transformation. 

http://www3.dsi.uminho.pt/pcortez/wine/
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Fig. 2. Plots of the simulated data. 

Table 3 

Mean square error (mean ± std-dev.) in the 10-fold crossvalidation. The percentage of projection points (pts) is calculated using the unique set over 

core vectors over all classes in comparison to all training points. All sparse-OMP models use only 50 points in the final models. Best results are shown 

in bold. 

Dataset iCVR (non-sparse) iCVR-flip iCVR-clip iCVR (sparse-sub) pts iCVR (sparse-OMP) SVR-flip SVR-clip 

SIM1 0.25 ± 0.12 0.44 ± 0.43 0.46 ± 0.50 0.33 ± 0.13 17.25% 0.25 ± 0.12 0.11 ± 0.01 0.11 ± 0.03 

SIM2 0.14 ± 0.16 0.15 ± 0.18 0.15 ± 0.16 0.15 ± 0.16 50% 0.15 ± 0.18 0.17 ± 0.04 0.18 ± 0.05 

SIM3 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 18.68% 0.06 ± 0.01 ≈ 0 ± ≈ 0 0.01 ± ≈ 0 

DS1 0.83 ± 0.09 0.81 ± 0.07 2.46 ± 4.64 0.85 ± 0.06 7.83% 0 . 77 ± 0 . 08 0.49 ± 0.04 0.70 ± 0.34 ∗

DS2 1.34 ± 0.57 1.19 ± 0.38 2.15 ± 0.61 1.57 ± 1.08 5.03% 1.12 ± 0.15 1.47 ± 0.23 1.85 ± 1.00 ∗

DS3 0.0 ± 0.0 0.01 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 23.04% 0.05 ± 0.00 0.01 ± ≈ 0 0.50 ± 0.31 ∗

DS4 1.17 ± 0.28 1.24 ± 0.23 1.20 ± 0.16 1.29 ± 0.19 5.22% 0.75 ± 0.05 0.67 ± 0.03 0.70 ± 0.03 

Fig. 3. Zoom in a plot of the Friedman output function (green, line). We also 

show the predicted output using CVR on a clipped mahalanobis kernel (black 

dashed+dotted) and a prediction of the output function using iCVR on the indefinite 

mahalanobis kernel (red, dashed). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

d  

i  

a  

K  

m  

a  

a  

a  

c  

a  

i  

o  

i

 

r  

p  

I  

e

 

a  

s  

h  

u  

O  

A  

c  

a  

7

 

p  

o  
In Fig. 3 a plot of the output function for SIM2 and its predic-

tion using iCVR and CVR on a clipped kernel is shown. The plot

shows substantial prediction errors on the clipped kernel in con-

trast to the prediction of iCVR with the indefinite mahalanobis ker-

nel. Considering the results shown in Table 3 we observe that the

clipping is in general worse than flipping or the iCVR. The sparse

models of iCVR are in general only slightly worse than the non-

sparse model. In parts we can even see a better performance of

the sparse iCVR model (see last column) compared to the iCVR.

This may be due to a denoising effect, caused by the implicit low

rank approach used in OMP. 

It should be noted that an application of the standard CVR on

the indefinite kernels is not possible, which was also experimen-

tally verified, because the obtained problem becomes non-convex

and the solver is unable to provide a solution to the optimization

problem. 
. Complexity analysis 

The original KSVM has runtime costs (with full eigen-

ecomposition) of O(N 

3 ) and memory storage O(N 

2 ) , where N

s the number of points. The iCVM or respectively iCVR involves

n extra Nyström approximation of the kernel matrix to obtain

 ( N,m ) and K 

−1 
(m,m ) 

, if not already given. If we have m landmarks,

 � N , this gives memory costs of O(mN) for the first matrix

nd O(m 

3 ) for the second, due to the matrix inversion. Further

 Nyström approximated eigendecomposition has to be done to

pply the eigenspectrum flipping operator. This leads to runtime

osts of O(N × m 

2 ) . The runtime costs for the sparse iCVM/iCVR

re O(N × m 

2 ) and the memory complexity is the same as for

CVM/iCVR. Due to the used Nyström approximation the prior costs

nly hold if m � N , which is the case for many datasets as shown

n the experiments. 

The application of a new point to a KSVM, iCVM or iCVR model

equires the calculation of kernel similarities to all N training

oints, for the sparse iCVM/iCVR this holds only in the worst case.

n general the sparse iCVM/iCVR provides a simpler out of sample

xtension as shown in Table 2 , but is data dependent. 

The (i)CVM/(i)CVR model generation has not more than N iter-

tions or even a constant number of 59 points, if the probabilistic

ampling trick is used [34,36] . As show in [36] the classical CVM

as runtime costs of O(1 /ε2 ) . The evaluation of a kernel function

sing the Nyström approximated kernel can be done with cost of

 ( m 

2 ) in contrast to constant costs if the full kernel is available.

ccordingly, If we assume m � N the overall runtime and memory

omplexity of iCVM/iCVR is linear in N , this is two magnitudes less

s for KSVM for reasonable large N and for low rank input kernels.

. Discussions and conclusions 

As discussed in [16] , there is no good reason to enforce

ositive-definiteness in kernel methods. A very detailed discussion

n reasons for using KSVM or iCVM is given in [16] , explaining why
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 number of alternatives or pre-processing techniques are in gen-

ral inappropriate. Our experimental results show that an appro-

riate Kr ̆ein space model provides very good prediction results and

sing one of the proposed sparsification strategies this can also be

chieved for a sparse model in most cases. The proposed iCVM-

parse-OMP is only slightly better than the former iCVM-sparse-

ub model with respect to the prediction accuracy but has very

ew final modeling vectors, with an at least competitive prediction

ccuracy in the vast majority of data sets. Similar observations are

ound for the iCVR in comparison to CVR with flipping or clipping.

s is the case for KSVM, the presented approach can be applied

ithout the need for transformation of test points, which is a de-

irable property for practical applications. 
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