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Abstract. Domain specific (dis-)similarity or proximity measures, employed
e.g. in alignment algorithms in bio-informatics, are often used to compare com-
plex data objects and to cover domain specific data properties. Lacking an under-
lying vector space, data are given as pairwise (dis-)similarities. The few available
methods for such data do not scale well to very large data sets. Kernel methods
easily deal with metric similarity matrices, also at large scale, but costly trans-
formations are necessary starting with non-metric (dis-) similarities. We propose
an integrative combination of Nyström approximation, potential double centering
and eigenvalue correction to obtain valid kernel matrices at linear costs. Accord-
ingly effective kernel approaches, become accessible for these data. Evaluation at
several larger (dis-)similarity data sets shows that the proposed method achieves
much better runtime performance than the standard strategy while keeping com-
petitive model accuracy. Our main contribution is an efficient linear technique, to
convert (potentially non-metric) large scale dissimilarity matrices into approxi-
mated positive semi-definite kernel matrices.

1 Introduction

In many application areas such as bioinformatics, different technical systems, or the
web, electronic data is getting larger and more complex in size and representation, us-
ing domain specific (dis-)similarity measures as a replacement or complement to Eu-
clidean measures. Many classical machine learning techniques, have been proposed for
Euclidean vectorial data. However, modern data are often associated to dedicated struc-
tures which make a representation in terms of Euclidean vectors difficult: biological
sequence data, text files, XML data, trees, graphs, or time series [14, 10, 1] are of this
type. These data are inherently compositional and a feature representation leads to in-
formation loss. As an alternative, a dedicated dissimilarity measure such as pairwise
alignment, or kernels for structures can be used as the interface to the data. In such
cases, machine learning techniques which can deal with pairwise similarities or dissim-
ilarities have to be used [15]. Native methods for the analysis of dissimilarity data have
been proposed in [15, 8, 7], but are widely based on non-convex optimization schemes
and with quadratic to linear memory and runtime complexity, the later employing some
of the approximation techniques discussed subsequently and additional heuristics.

Especially kernel methods, based on metric similarity matrices, revolutionized the
possibility to deal with large electronic data, offering powerful tools to automatically
extract regularities [19] in a convex optimization framework. But complex preprocess-
ing steps are necessary, as discussed in the following, to apply them on non-metric
(dis-) similarities. Large (dis-)similarity data are common in biology like the famous
UniProt/SwissProt-DB with ≈ 500.000 entries or GenBank with ≈ 135.000 entries,
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but there are many more (dis-)similarity data as discussed in the work based on [15,
16]. These growing data sets request effective modeling approaches. For protein and
gene data recent work, proposed widely heuristically, strategies to improve the situa-
tion for large applications in unsupervised peptide retrieval [21].

Here we will show how potentially non-metric (dis-)similarities can be effectively
processed by standard kernel methods with linear costs, also in the transformation step,
which, to the authors best knowledge has not been reported before1. The proposed
strategies permit the effective application of many kernel methods for these type of data
under very mild conditions. Especially for metric dissimilarities the approach keeps
the known guarantees like generalization bounds (see e.g. [3]) while for non-psd data
corresponding proofs are still open, but our experiments are promising. The paper is
organized as follows. First we give a short review about transformation techniques for
dissimilarity data and discuss the influence of non-euclidean measures, by eigenvalue
corrections. Subsequently, we discuss alternative methods for processing small dissim-
ilarity data. We extend this discussion to approximation strategies, recalling the deriva-
tion of the low rank Nyström approximation for similarities and transfer this principle
to dissimilarities. Then we link both strategies effectively to use kernel methods for
the analysis of (non-)metric dissimilarity data and show the effectiveness by different
exemplary supervised experiments. We also discuss differences and commons to some
known approaches supported by experiments on simulated data.

2 Transformation techniques for dissimilarity data

Let vj ∈ V be a set of objects defined in some data space, with |V| = N . We assume,
there exists a dissimilarity measure such that D ∈ RN×N is a dissimilarity matrix
measuring the pairwise dissimilarities Dij = d(vi,vj) between all pairs (vi,vj) ∈ V.
Any reasonable (possibly non-metric) distance measure is sufficient. We assume zero
diagonal d(vi,vi) = 0 for all i and symmetry d(vi,vj) = d(vj ,vi) for all i, j.

2.1 Analyzing dissimilarities by means of similarities for smallN

For every dissimilarity matrix D, an associated similarity matrix S is induced by a
process referred to as double centering with costs of O(N2)[15]:

S = −JDJ/2

J = (I− 11>/N)

with identity matrix I and vector of ones 1. D is Euclidean if and only if S is pos-
itive semi-definite (psd). This means, we do not observe negative eigenvalues in the
eigenspectrum of the matrix S associated to D.

Many classification techniques have been proposed to deal with such psd kernel
matrices S implicitly such as the support vector machine (SVM). In this case, prepro-
cessing is required to guarantee psd. In [1] different strategies were analyzed to obtain

1 Matlab code of the described transformations and test routines are available at: kept blank for
review.
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valid kernel matrices for a given similarity matrix S, most popular are: clipping, flip-
ping, shift correction, vector-representation. The underlying idea is to remove negative
eigenvalues in the eigenspectrum of the matrix S .

Assuming we have a symmetric similarity matrix S, it has an eigenvalue decom-
position S = UΛU>, with orthonormal matrix U and diagonal matrix Λ collecting
the eigenvalues. In general, p eigenvectors of S have positive eigenvalues and q have
negative eigenvalues, (p, q,N − p− q) is referred to as the signature.

The clip-operation sets all negative eigenvalues to zero, the flip-operation takes the
absolute values, the shift-operation increases all eigenvalues by the absolute value of
the minimal eigenvalue.

The corrected matrix S∗ is obtained as S∗ = UΛ∗U>, with Λ∗ as the modified
eigenvalue matrix using one of the above operations. The obtained matrix S∗ can now
be considered as a valid kernel matrix K.

As an alternative, data points can be treated as vectors which coefficients or vari-
ables are given by the pairwise (dis-)similarity. These vectors can be processed using
standard kernels. However, this view is changing the original data representation and
leads to a finite data space, limited by the number of samples.

Interestingly, some operations such as shift do not affect the location of global op-
tima of important cost functions such as the quantization error [12], albeit the transfor-
mation can severely affect the performance of optimization algorithms [9]. The analysis
in [17] indicates that for non-Euclidean dissimilarities some corrections like above may
change the data representation such that information loss occurs.

A schematic view of the relations between S and D and its transformations2 is
shown in Figure 1. Here we also report the complexity of the transformations using
current typical approaches. Some of the steps can be done more efficiently by known
methods, but with additional constraints or in under atypical settings as discussed in the
following.

2.2 Analyzing dissimilarities by dedicated methods for smallN

Alternatively, techniques have been introduced which directly deal with possibly non-
metric dissimilarities. Given a symmetric dissimilarity with zero diagonal, an embed-
ding of the data in a pseudo-Euclidean vector space determined by the eigenvector de-
composition of the associated matrix S is always possible. A symmetric bilinear form
in this space is given by 〈x,y〉p,q = x>Ip,qy where Ip,q is a diagonal matrix with p
entries 1 and q entries−1. Taking the eigenvectors of S together with the square root of
the absolute value of the eigenvalues, we obtain vectors vi in a pseudo-Euclidean space
such that Dij = 〈vi−vj ,vi−vj〉p,q holds for every pair of data points. If the number
of data is not limited, a generalization of this concept to Krein spaces with according
decomposition is possible [15].

Vector operations can be directly transferred to the pseudo-Euclidean space, i.e. we
can deal with center points (similar to k-means) as linear combinations of data in this
space. Hence we can use multiple machine learning algorithms explicitly in pseudo-
Euclidean space, relying on vector operations only. One problem of this explicit trans-

2 Transformation equations are given also in the following sections.
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Fig. 1: Schema to illustrate the relation between similarities and dissimilarities.

fer is given by the computational complexity of the embedding which is O(N3), and,
further, the fact that out-of-sample extensions to new data points characterized by pair-
wise dissimilarities are not immediate. An improved strategy for learning a valid rela-
tional kernel from a matrix S was recently proposed in [13], employing latent wishart
processes, but this approach does not scale for larger datasets. A further strategy is to
employ so called relational or proximity learning methods as discussed e.g. in [7] The
underlying models consist of prototypes, which are implicitly defined as a weighted lin-
ear combination of training points: wj =

∑
i αjivi with

∑
i αji = 1 . But this explicit

representation is not necessary because the algorithms are solely based on a specific
form of distance calculations using only the matrix D, the potentially unknown vector
space V is not needed. The basic idea is an implicit computation of distances d(·, ·)
during the model calculation based on the dissimilarity matrix D using weights α:

d(vi,wj) = [D · αj ]i −
1

2
· α>j Dαj (1)

details can be found in the aforementioned paper. As shown e.g. in [9] the mentioned
methods do not rely on a metric dissimilarity matrix D, but it is sufficient to have a
symmetric D in a pseudo-euclidean space, with constant self-dissimilarities.

The methods discussed before are suitable for data analysis based on similarity or
dissimilarity data where the number of samples N is rather small, e.g. scales by some
thousand samples. For larger N only for metric, similarity data (valid kernels) efficient
approaches have been proposed before, e.g. low-rank linearized SVM [25] or the Core-
Vector Machine (CVM) [22].
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In the following we discuss techniques to deal with larger sample sets for, poten-
tially non-metric similarity and especially dissimilarity data. Especially we show how
standard kernel methods can be used, assuming that for non-metric data, the necessary
transformations have no severe negative influence on the data accuracy. Basically also
core-set techniques become accessible for large potentially non-metric (dis-)similarity
data in this way, but at the cost of multiple additional intermediate steps.

3 Nyström approximation

The aforementioned methods depend on the similarity matrix S or dissimilarity matrix
D, respectively. For kernel methods and more recently for prototype based learning
the usage of the Nystöm approximation is a well known technique to obtain effective
learning algorithms [23, 7].

3.1 Nyström approximation for similarities

The Nyström approximation technique has been proposed in the context of kernel meth-
ods in [23] with related proofs and bounds given in [3]. Here, we give a short review of
this technique. One well known way to approximate a N × N Gram matrix, is to use
a low-rank approximation. This can be done by computing the eigendecomposition of
the kernel K = UΛU>, where U is a matrix, whose columns are orthonormal eigen-
vectors, and Λ is a diagonal matrix consisting of eigenvalues Λ11 ≥ Λ22 ≥ ... ≥ 0,
and keeping only the m eigenspaces which correspond to the m largest eigenvalues of
the matrix. The approximation is K ≈ UN,mΛm,mUm,N , where the indices refer to
the size of the corresponding submatrix. The Nyström method approximates a kernel in
a similar way, without computing the eigendecomposition of the whole matrix, which
otherwise is an O(N3) operation.

By the Mercer theorem kernels k(x,y) can be expanded by orthonormal eigenfunc-
tions ψi and non negative eigenvalues λi in the form

k(x,y) =

∞∑
i=1

λiψi(x)ψi(y).

The eigenfunctions and eigenvalues of a kernel are defined as the solution of the integral
equation ∫

k(y,x)ψi(x)p(x)dx = λiψi(y),

where p(x) is the probability density of x. This integral can be approximated based on
the Nyström technique by sampling xk i.i.d. according to p(x):

1

m

m∑
k=1

k(y,xk)ψi(x
k) ≈ λiψi(y).

Using this approximation and the matrix eigenproblem equation

K(m)U(m) = U(m)Λ(m)
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of the corresponding m×m Gram sub-matrix K(m) we can derive the approximations
for the eigenfunctions and eigenvalues of the kernel k

λi ≈
λ
(m)
i

m
, ψi(y) ≈

√
m

λ
(m)
i

kyu
(m)
i , (2)

where u
(m)
i is the ith column of U(m). Thus, we can approximate ψi at an arbitrary

point y as long as we know the vector ky = (k(x1,y), ..., k(xm,y))>.
For a given N × N Gram matrix K we randomly choose m rows and respective

columns. The corresponding indices’s are also called landmarks, and should be chosen
such that the data distribution is sufficiently covered. A specific analysis about selection
strategies was recently discussed in [24]. We denote these rows by Km,N . Using the
formulas (2) we obtain K̃ =

∑m
i=1 1/λ

(m)
i · K>m,Nu

(m)
i (u

(m)
i )>Km,N , where λ(m)

i

and u
(m)
i correspond to the m × m eigenproblem. Thus we get, K−1m,m denoting the

Moore-Penrose pseudoinverse, an approximation of K as

K̃ = K>m,NK−1m,mKm,N .

This approximation is exact, if Km,m has the same rank as K.

3.2 Nyström approximation for dissimilarity data

For dissimilarity data, a direct transfer is possible, see [7] for earlier work on this topic.
Earlier work in this line, but not equivalent, also appeared in the work around Land-
mark Multi-Dimensional-Scaling (LMDS) [20] which we address in the next section.
According to the spectral theorem, a symmetric dissimilarity matrix D can be diago-
nalized D = UΛU> with U being a unitary matrix whose column vectors are the
orthonormal eigenvectors of D and Λ a diagonal matrix with the corresponding eigen-
values of D, Therefore the dissimilarity matrix can be seen as an operator

d(x,y) =

N∑
i=1

λiψi(x)ψi(y)

where λi ∈ R correspond to the diagonal elements of Λ and ψi denote the eigenfunc-
tions. The only difference to an expansion of a kernel is that the eigenvalues can be
negative. All further mathematical manipulations can be applied in the same way and
we can write in an analogy to the equation 3.1

D̂ = DN,mD−1m,mD>N,m.

It allows to approximate dissimilarities between a point wk represented by a coef-
ficient vector αk and a data point xi, as discussed within Eq (1), in the way

d(xi,wk) ≈
[
D>m,N

(
D−1m,m (Dm,Nαk)

)]
i

−1

2
·
(
α>k D>m,N

)
·(

D−1m,m (Dm,Nαk)
)
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with a linear submatrix of m rows and a low rank matrix Dm,m. Performing these ma-
trix multiplications from right to left, this computation is O(m2N) instead of O(N2),
i.e. it is linear in the number of data points N , assuming fixed approximation m.

A benefit of the Nyström technique is that it can be decided priorly which linear
parts of the dissimilarity matrix will be used in training. Therefore, it is sufficient to
compute only a linear part of the full dissimilarity matrix D to use these methods.
A drawback of the Nyström approximation is that a good approximation can only be
achieved if the rank of D is kept as much as possible, i.e. the chosen subset should
be representative. The specific selection of the m landmark points has been recently
analyzed in [24]. It was found that best results can be obtained by choosing the potential
cluster centers of the data distribution as landmarks, rather a random subset, to be able
to keep m smallest at lowest representation error. However the determination of these
centers can become complicated for large data sets, since it can be obviously not be
based on a Nyström approximated set. However the effect is not such severe as long as
m is not too small.

4 Transformations of (dis-)similarities with linear costs

For metric similarity data, kernel methods can be applied directly, or in case of large
N , the Nyström approximation can be used. We will discuss non-metric data later and
focus now on metric or almost metric dissimilarity data D.

4.1 Transformation of dissimilarities to similarities

As pointed out before current methods for large dissimilarity matrix D are non-convex
approaches. On the other hand multiple effective convex kernel methods are available
for metric similarity data using a matrix S = K which we will now make accessible for
matrices D in an effective manner. This requests for a transformation of the matrix D to
S using double-centering as discussed above. This transformation contains a summation
over the whole matrix and thus has quadratic complexity, which would be prohibitive
for larger data sets.

One way to achieve this transformation in linear time, is to use landmark multidi-
mensional scaling (LMDS) [20] which was shown to be a Nyström technique as well
[18]. The idea is to sample a small amount m of points, called landmarks, compute
the corresponding dissimilarity matrix, apply double centering on this matrix and fi-
nally project the data to a low dimensional space using eigenvalue decomposition. The
remaining points can then be projected into the same space, taking into account the dis-
tances to the landmarks, and applying triangulation. Having vectorial representation of
the data, it is then easy to retrieve the similarity matrix as a scalar product between the
points.

Another possibility arises if we take into account our key observation, that we can
combine both transformations, double centering and Nyström approximation, and make
use of their linearity. Instead of applying double centering, followed by the Nyström
approximation we first approximate the matrix D and then transform it by double cen-
tering, which yields the approximated similarity matrix Ŝ.
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Both approaches have the costs of O(m2N) and produce the same results, up to
shift and rotation. This is because LMDS, in contrast to our approach, makes double
centering only on a small part of D, and thus is unable to detect the mean and the pri-
mary components of the whole data set. This can result in an unreliable impact, since
similarities which are not centered might lead to an inferior performance of the algo-
rithms and, thus, our approach should be used instead3. Additionally LMDS implicitly
assumes that the dissimilarities are metric, respectively the negative eigenvalues of the
corresponding similarity matrix are automatically clipped. This can have a negative im-
pact on the data analysis as we show in a synthetic example in the following. Further
LMDS is proposed as a projection technique leading to a low-dimensional, typically
2 − 3 dimensional embedding of the data. Higher dimensional embeddings by LMDS
are possible (limited by the number of positive eigenvalues), but to our best knowledge
neither used nor discussed so far. A Nyström approximated kernel, avoiding the calcu-
lations of all dissimilarities, as shown in the following is not directly obtained but only
after embedding of the corresponding dissimilarities and subsequent calculation of the
inner products. But for this kernel the negative eigenvalues are always clipped which
can have a negative impact on the analysis. Accordingly, the connection of LMDS to
our approach is rather weak4, which will get more obvious in the following derivations.

As mentioned before double centering of a matrix D is defined as:

S = −JDJ/2

where J = (I − 11>/N) with identity matrix I and vector of ones 1. S is positive
semi-definite (psd) if and only if D is Euclidean.

Lets start with a dissimilarity matrix D where we apply double centering, subse-
quently we approximate the obtained S by integrating the Nyström approximation to
the matrix D.

S = −1

2
JDJ

= −1

2

((
I− 1

N
11>

)
D

(
I− 1

N
11>

))
= −1

2

(
IDI− 1

N
11>DI− ID

1

N
11> +

1

N
11>D

1

N
11>

)
= −1

2

(
D− 1

N
D11> − 1

N
11>D +

1

N2
11>D11>

)

3 For domain specific dissimilarity measures and non-vectorial data as discussed here, it is, under
practical conditions, hard to ensure that the underlying, implicit space is normalized to N(0,1),
this is getting even more complicated if the measure is non-metric.

4 Although LMDS can be adapted to provide similar results, with the exception that the small
inner matrix is calculated differently with the pre-discussed influence on unnormalized data.
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S
Ny
≈ Ŝ = −1

2

[
DN,m ·D−1m,m ·Dm,N −

1

N
DN,m (3)

·(D−1m,m · (Dm,N1))1> − 1

N
1((1>DN,m) ·D−1m,m)

·Dm,N +
1

N2
1((1>DN,m) ·D−1m,m · (Dm,N1))1>

]
This equation can be rewritten for each entry of the matrix Ŝ

Ŝij = −
1

2

[
Di,m ·D−1m,m ·Dm,j −

1

N

∑
k

Dk,m ·D−1m,m ·Dm,j

− 1

N

∑
k

Di,m ·D−1m,m ·Dm,k

+
1

N2

∑
kl

Dk,m ·D−1m,m ·Dm,l

]
,

as well as for the sub-matrices Ŝm,m and ŜN,m, in which we are interested for the
Nyström approximation

Ŝm,m = −1

2

[
Dm,m −

1

N
1 ·
∑
k

Dk,m

− 1

N

∑
k

Dm,k · 1>

+
1

N2
1 ·
∑
kl

Dk,m ·D−1m,m ·Dm,l · 1>
]

ŜN,m = −1

2

[
DN,m −

1

N
1 ·
∑
k

Dk,m

− 1

N

∑
k

DN,m ·D−1m,m ·Dm,k · 1>

+
1

N2
1 ·
∑
kl

Dk,m ·D−1m,m ·Dm,l · 1>
]
.

It should be noted that Ŝ is only a valid kernel if D̂ is metric. The information loss
obtained by the approximation is 0 if m corresponds to the rank of S and increases for
smaller m.
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4.2 Non-metric (dis-)similarities

In case of a non-metric D the transformation shown in equation 3 can still be used, but
the obtained matrix Ŝ is not a valid kernel. A strategy to obtain a valid kernel matrix Ŝ is
to apply an eigenvalue correction as discussed above. This however can be prohibitive
for large matrices, since to correct the whole eigenvalue spectrum, the whole eigenvalue
decomposition is needed, which has O(N3) complexity. The Nyström approximation
can again decrease computational costs dramatically. Since we now can apply the ap-
proximation on an arbitrary symmetric matrix, we can make the correction afterward.
To correct an already approximated similarity matrix Ŝ it is sufficient to correct the
eigenvalues of Sm,m. Altogether we get O(m2N) complexity.

We can write for the approximated matrix Ŝ its eigenvalue decomposition as

Ŝ = SN,mS−1m,mS>N,m = SN,mUΛ−1U>S>N,m,

where we can correct the eigenvalues Λ by some technique as discussed in section 2.1
to Λ∗. The corrected approximated matrix Ŝ∗ is then simply

Ŝ∗ = SN,mU (Λ∗)
−1

U>S>N,m. (4)

This approach can also be used to correct dissimilarity matrices D by first approx-
imating them, converting to similarities Ŝ using equation 3 and then correcting the
similarities. If it is desirable to work with the corrected dissimilarities, then we should
note, that it is possible to transform the similarity matrix S to a dissimilarity matrix
D: D2

ij = Sii + Sjj − 2Sij . This obviously applies as well to the approximated and
corrected matrices Ŝ∗ and D̂∗ and we get by substitution:

D̂∗ = D∗N,m

(
D∗m,m

)−1
D∗>N,m. (5)

Usually the algorithms are learned on a so called training set and we expect them to
perform well on the new unseen data, or the test set. In such cases we need to provide
an out of sample extension, i.e. a way to compute the algorithm on the new data. This
might be a problem for the techniques dealing with (dis)similarities. If the matrices are
corrected, we need to correct the new (dis)similarities as well to get consistent results.
Fortunately, it is quite easy in the Nyström framework. By examining the equations 4
and 5 we see, that we simply need to extend the matrices DN,m or SN,m, respectively,
by uncorrected (dis)similarities between the new points and the landmarks to obtain the
full approximated and corrected (dis)similarity matrices, which then can be used by the
algorithms to compute the out of sample extension.

In [1] a similar approach is taken. First, the whole similarity matrix is corrected
by means of a projection matrix. Then this projection matrix is applied to the new
data, so that the corrected similarity between old and new data can be computed. This
technique is in fact the Nyström approximation, where the whole similarity matrix S is
treated as the approximation matrix Sm,m and the old data, together with the new data
build the matrix SN,m. Rewriting this in the Nyström framework makes it clear and
more obvious, without the need to compute the projection matrix and with an additional
possibility to compute the similarities between the new points. In Figure 2 we depict
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Fig. 2: Left: Updated schema from Figure 1 using the discussed approximation. The costs are now
substantially smaller m� N . Right: Runtime in seconds at log-scale for the SwissProt-Runtime
experiment. The standard approach is two magnitudes slower than the proposed technique.

schematically the new situation for similarity and dissimilarity data incorporating the
proposed approach.

As a last point it should be mentioned that corrections like flipping, clipping or
others are still under discussion and not always optimal [15]. Additionally the selection
of landmark points can be complicated as discussed in [24]. Further for very large data
sets (e.g. some 100 million points) the Nyström approximation may still be too costly
and some other strategies have to be found.

We close this section by a small experiment on the ball dataset as proposed in [5]. It
is an artificial dataset based on the surface distances of randomly positioned balls of two
classes having a slightly different radius. The dataset is non-euclidean with substantial
information encoded in the negative part of the eigenspectrum. We generated the data
with 100 samples per class leading to a dissimilarity matrixD = N×N , withN = 200.
Now the data have been processed in four different ways to obtain a valid kernel matrix
S. First we converted D into a valid kernel matrix by a full eigenvalue decomposition,
followed by flipping of the negative eigenvalues and a reconstruction of the similarity
matrix K = S, denoted as SIM1. This approach has a complexity of O(N3). Further
we generated an approximated similarity matrix Ŝ by using the proposed approach,
flipping in the eigenvalue correction and 10 landmarks for the Nyström approximation.
This dataset is denoted as SIM2 and was obtained with a complexity ofO(m2N). The
third dataset SIM3 was obtained in the same way but the eigenvalues were clipped.
The dataset SIM4 was obtained using landmark MDS with the same landmarks as for
SIM2 and SIM3. The data are processed by a Support Vector Machine in a 10-fold
crossvalidation results on the test sets are shown in Table 1. As mentioned the data con-

Table 1: Test set results of a 10-fold SVM run on the ball dataset using the different encodings.

SIM1 SIM2 SIM3 SIM4

Test-Accuracy 100± 0 87.00± 7.53 68.00± 6.32 52.00± 11.83
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tain substantial information in the negative fraction of the eigenspectrum, accordingly
one may expect that this eigenvalues should not be removed. This is also reflected in
the results. LMDS removed the negative eigenvalues and the classification model based
on this data shows random prediction accuracy. The SIM3 encoding is slightly better.
Also in this case the negative eigenvalues are removed but the limited amount of class
separation information, encoded in the positive fraction was better preserved, probably
due to the different calculation of the matrix Ŝmm. The SIM2 data used the flipping
strategy and shows already quite good prediction accuracy, taking into account that the
kernel matrix is only approximated by 10 landmarks and the relevant (original negative)
eigenvalues are of small magnitude.

5 Experiments

We now apply the priorly derived approach to three non-metric dissimilarity and sim-
ilarity data and show the effectiveness for a classification task. The considered data
are (1) the SwissProt similarity data as described in [10] (DS1, 10988 samples, 30
classes, imbalanced, signature: [8488, 2500, 0]) (2) the chromosome dissimilarity data
taken from [14] (DS2, 4200 samples, 21 classes, balanced, signature: [2258, 1899, 43])
and the proteom dissimilarity data set [4] (DS3, 2604 samples, 53 classes, imbalanced,
signature: [1502, 682, 420]). All datasets are non-metric, multiclass and contain mul-
tiple thousand objects, such that a regular eigenvalue correction with a prior double-
centering for dissimilarity data, as discussed before, is already very costly. The data
are analyzed in two ways, employing either the flipping strategy as an eigenvalue cor-
rection, or by not-correcting the eigenvalues5. To be effective for the large number of
object we also apply the Nyström approximation as discussed before using a sample
rate of 1%, 10%, 30%6, by selecting random landmarks from the data. Other sampling
strategies have been discussed in [24, 6], also the impact of the Nyström approximation
with respect to kernel methods has been discussed recently in [2], but this is out of the
focus of this paper.

To get comparable experiments, the same randomly drawn landmarks are used in
each of the corresponding sub-experiments (along a column in the table). New land-
marks are only drawn for different Nyström approximations and sample sizes like in
Figure 3. Classification rates are calculated in a 10-fold crossvalidation using the Core-
Vector-Machine (CVM) and the Support-Vector-Machine (SVM) (see [22, 19]). The
crossvalidation does not include a new draw of the landmarks, to cancel out the se-
lection bias of the Nyström approximation, accordingly SVM and CVM use the same
kernel matrices. However, our objective is not maximum classification performance
(which is only one possible application) but to demonstrate the effectiveness of our ap-
proach for dissimilarity data of larger scale. The classification results are summarized

5 Clipping and flipping were found similar effective, with a little advance for flipping. With
flipping the information of the negative-eigenvalues is at least somewhat kept in the data rep-
resentation so we focus on this representation. Shift correction was found to have a negative
impact on the model as already discussed in [1].

6 A larger sample size did not lead to further substantial improvements in the results.
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Table 2: Average test set accuracy for SwissProt (DS1), Chromosome (DS2), Proteom (DS3)
using a Nyström approximation of 1% and 10% and no or flip eigenvalue correction. Kernel
matrices have been Nyström approximated either, as proposed during the eigenvalue correction,
or later on, like in the standard approach. The signatures are based on the approximated kernel
matrices.

DS11% DS21% DS31% DS110% DS210% DS310%

Signature [109,1,10878] [ 41,1,4158] [25,1,2492] [1078,19,9891] [296,123,3781] [235,10,2273]

CVM-No 92.81± 0.74 94.64± 0.88 64.42± 2.89 75.53± 0.90 40.43± 2.12 23.95± 2.4
SVM-No 92.82± 0.90 94.24± 1.00 45.59± 3.01 82.92± 2.00 47.21± 2.42 27.56± 2.93

Signature [110,0,10878] [42,0,4158] [26,0,2492] [1097,0,9891] [419,0,3781] [245,0,2273]

CVM-Flip 92.78± 0.74 94.62± 0.85 91.62± 1.57 97.01± 0.54 96.98± 0.77 96.98± 1.28
SVM-Flip 93.02± 0.70 94.31± 1.37 93.65± 1.52 97.56± 0.51 96.98± 0.88 97.34± 0.73

Table 3: Average test set accuracy for SwissProt (DS1), Chromosome (DS2), Proteom (DS3) us-
ing a Nyström approximation of 30% and no or flip eigenvalue correction. Kernel matrices have
been Nyström approximated (with L = 30% ·N ) either, as proposed during the eigenvalue cor-
rection, or later on, like in the standard approach. The signatures are based on the approximated
kernel matrices.

DS1 DS2 DS3

Signature [2995,300,7693] [759,493,2948] [577,118,1823]

CVM-No 72.14± 2.01 60.24± 3.12 56.75± 2.56
SVM-No 77.01± 3.03 66.36± 2.94 49.21± 2.51
Signature [3295,0,7693] [1252,0,2948] [695,0,1823]

CVM-Flip 96.85± 0.53 96.90± 0.66 99.17± 0.28
SVM-Flip 97.49± 0.36 96.98± 0.45 98.85± 0.78

in Table 2-3 for the different Nyström approximations 1%, 10% and 30%. First one ob-
serves that the eigenvalue correction has a strong, positive effect on the classification
performance consistent with earlier findings [1]. However in case of a small number
of landmarks the effect of the eigenvalue correction is less pronounced compared to
the uncorrected experiment as shown in Table 2 for DS1 and DS2. In these cases the
Nyström approximation has also reduced the number of non-negative eigenvalues, as
shown by the corresponding signatures, such that an implicit eigenvalue correction is
obtained. For DS3 the remaining eigenvector has a rather high magnitude and a strong
impact accordingly, such that the classification performance is sub-optimal for the un-
corrected experiment. Raising the number of landmarks Table 2-3 also the classification
performance improves for the experiments with eigenvalue correction. The experiments
without eigenvalue correction show however a degeneration in the performance, be-
cause more and more negative eigenvalues are still kept by the Nyström approximation
as shown in the signatures7.

7 Comparing signatures at different Nyström approximations also shows that many eigenvalues
are close to zero and are sometimes counted as positive,negative or zero.
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Fig. 3: Top: box-plots of the classification performance for different sample sizes of DS1 using
the proposed approach with 100 landmarks. Bottom: The same experiment but with the standard
approach. Obviously our approach does not sacrifice performance for computational speed.

As shown exemplary in Figure 3 the classification performance on eigenvalue-
corrected data is approximately the same using our proposed strategy or the standard
technique, but the runtime performance (right plot in Figure 2) is drastically better for
an increase in the number of samples. To show this we selected subsets from the Swis-
sProt data with different sizes from 1000 to 10000 points and calculated the runtime
and classification performance using the CVM classifier in a 10-fold crossvalidation,
with a fixed Nyström approximation of L = 100 and a flipping eigenvalue correction.
The results of the proposed approach are shown in the left box-plots of Figure 3 and
the results for the standard technique are shown in the right plot. The corresponding
runtimes are shown in Figure 3, with the runtime of our approach as the curve on the
bottom and the runtime of the standard method on the top, two magnitudes larger on
log-scale.
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6 Outlook and Conclusions

In this paper we discussed the relation between similarity and dissimilarity data and
effective ways to move across the different representations in a systematic way. Using
the presented approach, effective and accurate transformations are possible. Kernel ap-
proaches but also dissimilarity learners are now accessible for both types of data. While
the parametrization of the Nyström approximation is already studied in [11, 24] there
are still different open issues. In future work we will analyze more deeply the han-
dling of extremely large (dis-)similarity sets and transfer our approach to unsupervised
problems. While the proposed strategy was found to be very effective e.g. to improve
supervised learning of non-metric dissimilarities by kernel methods, it is however also
limited again by the Nyström approximation, which may fail to provide sufficient ap-
proximation. Accordingly it is still very interesting to provide dedicated methods for
such data as argued in [17]. For non-psd data the error introduced by the Nyström ap-
proximation is not yet fully understood and bounds similar as proposed in [3] are still
an open issue. In our experiments we observed that flipping was an effective approach
to keep the relevant structure of the data but this are only heuristic findings and not yet
completely understood, we will address this in future work. Acknowledgments: We
would like to thank the Max-Planck-Institute for Physics of Complex Systems in Dres-
den and Michael Biehl, Thomas Villmann and Manfred Opper as the organizer of the
Statistical Inference: Models in Physics and Learning-Workshop for providing a nice
working atmosphere during the preparation of this manuscript. Frank-Michael Schleif
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