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ABSTRACT

The analysis of metabolic processes is becoming increas-
ingly important to our understanding of complex biolog-
ical systems and disease states. Nuclear magnetic reso-
nance (NMR) spectroscopy is a particularly relevant tech-
nology in this respect, since the NMR signals provide a
quantitative measure of metabolite concentrations. How-
ever, due to the complexity of the spectra typical of bio-
logical samples, the demands of clinical and high through-
put analysis will only be fully met by a system capable of
reliable, automatic processing of the spectra. We present
here a novel data representation strategy for the measured
spectra which simplifies the pre-processing of the data
and supports the automatic identication and quantification
of metabolites. The approach is combined with an ex-
tended targeted profiling strategy to allow the highly auto-
mated processing of 1H NMR spectra, generating readouts
suitable for the derivation of system biological models.
The parallel application of both manual expert analysis
and the automated approach to 1H NMR spectra obtained
from stem cell extracts shows that the results obtained are
highly comparable. Use of the automated system there-
fore significantly reduces the effort normally associated
with manual processing and paves the way for reliable,
high throughput analysis of complex NMR spectra.

1. INTRODUCTION

The quantitative profiling of metabolites and the mathe-
matical modelling of metabolic networks is expected to
make a major contribution to our understanding of com-
plex biological systems, including the processes underly-
ing development and tissue homeostasis [1].

The most commonly used methods for metabolite de-
tection are mass spectrometry (MS) and NMR spectroscopy,
while each has its specific advantages, the inherently quan-
titative nature of NMR makes it most attractive for pro-
viding data for the development of mathematical models.
However, the current challenge is to extract reliably quan-
titative data from experimental spectra which are often
complex and subject to background variability. The gen-
eral strategy involves pre-processing steps such as phase-
and baseline-correction, smoothing and data reduction [2,

3], followed by the identification of distinct metabolite
signatures in the signal and the estimation of metabolite
concentration with respect to the original biological sam-
ples. A number of approaches have been reported to help
solve these problems [4, 5, 6]. However, none of the meth-
ods currently available is sufficient to be applied in a reli-
able, automated fashion necessary for the high-throughput
processing of complex biological samples [7]. We present
here an approach designed to improve this situation by
semi-automatic analysis of the spectra such that only mi-
nor, simple interaction steps are necessary to allow the
processing of large data sets. We first provide a basic
introduction to NMR spectra analysis, and then review
the recently published approach of Targeted Profiling (TP)
[6], which will be extended in this work. Initial results
from stem/progenitor cell extracts are provided to docu-
ment the improved performance of the present approach
compared to manual expert analysis.

2. METABOLIC PROFILING BY NMR

We focus on the analysis of 1H liquid NMR spectra ob-
tained from stem/progenitor cell extracts. For the purpose
of the analysis it is assumed that the chemical preprocess-
ing and experimental design follows roughly the guide-
lines in [6]. The obtained spectra consist of 216 = 65536
measurement points per spectrum spanning a frequency
range of about 8389.2 Hz corresponding to 11.982 ppm
on a chemical shift axis for a 1H resonance frequency of
700.15 MHz. Hence the spectral resolution is approxi-
mately 0.0002 ppm. A preprocessed sample spectrum is
depicted in Figure 1. High resolution 1H NMR spectra
consist of a large number of relevant signals. Metabolite
signatures are represented in general by multiple narrow
peaks located on top of a wide underlying complex base-
line. The NMR spectrum s(ν) can be approximated as
a super composition of Lorentzians [8] but also Gaussian
functions or mixtures thereof are common. However, this
setting is highly idealized and in practical measurements
the line shape of the peaks is much more complex and
inhomogeneous due to measurement imperfections. The
unknown line shape generates multiple challenges in the
analysis. Almost all relevant signals in the NMR mea-



Figure 1. 1H NMR spectrum from a stem cell extract. It
was phased, baseline corrected, the water peak removed
and global shift corrected with respect to a CSI.

surement show strong overlapping components. Without
an appropriate model of the signal structure a deconvo-
lution is extremely complicated. This is especially true
for signal components at low concentrations which may
otherwise be easily overlooked. The Targeted Profiling
(TP) approach [6] assumes not only an ideal situation but
also that the number of candidate signatures in the mixture
s(ν) is small and restricted to a specific subset of known
metabolites. For the set of known metabolites (targets;
e.g. the metabolite Alanine (Ala), HOOC-CHNH2-CH3)
the peak sequence of a plain measurement is known be-
forehand and constructed (manually) by adding appropri-
ate peaks at the correct chemical shift position given in
ppm.

A more formal definition for the target signal Alanine
f(ν) is f(ν) =

∑G
j gj(ν) with gj(ν) as a peak pattern

(e.g. a quartet) with appropriate settings for gj(ν) as de-
scribed below. An alternative compact description of Ala-
nine is given by its 1H NMR spin system classification as
A3X spin system with the associated values for the chem-
ical shifts of A = 1.46 ppm, X = 3.76 ppm and A −X
coupling constant of 7.2 Hz. The known peak sequence
information (signature) for the metabolites can be used to
analyze the signal with respect to these signatures employ-
ing a simple least squares fit. While this approach is quite
promising, fast and efficient [6] it suffers from multiple
underestimated problems. The main problem comes with
the target itself. In TP it is assumed that the signature
of the target is perfectly known and can be observed in
the signal. This, however, is very often not the case: (1)
Due to variations in the measurement, (e.g. temperature,
pH) the positions of the sub patterns in a target (groups
of peaks) may shift in a non-linear manner. (2) A specific
line shape has to be chosen for the fitting of the targets
against the signal. In general it will be a Lorentzian or a
Gaussian line shape. This however is a more or less good
assumption which leads to further problems especially for
strongly overlapping signals as depicted in Figure 2. (3)
The simple fit of individual targets against the signal s(ν)
may fail for strong overlapping structures and also incor-
rect identifications of targets are common because the fit
is not constrained enough.

Figure 2. Overlapping effect within a preprocessed 1H
NMR spectrum with multiple metabolite signatures. It
is obvious, that the assumption of the Lorentzian fails in
parts to provide a sufficient approximation. This can lead
to wrong estimates of target heights and its concentrations.

3. EXTENDED TARGETED PROFILING

The phased and baseline corrected signal is better approx-
imated by Eq. (1).

s(ν) = (
J∑
j

αjfj(ν − o)) + ε (1)

fj(ν) =
G∑
i

gi(ν −∆i) (2)

gi(ν) =
K∑
k

Θk(ν)⊗ ℘(ν) e.g. ℘ = exp(. . .)(3)

We employ a non-negative Least Squares Fit over all iden-
tified targets fj(ν) with respect to the signal s(ν) using the
functional encoding and the subsequently generated peak
information. s(ν) is expected to be a linear combination
of the the targets fj(ν) with J as the number of targets.
Here, o can be considered as a global shift which can be
compensated by a reference shift correction and ε repre-
senting noise. The target fj can be approximated as a su-
per composition of its component functions gi defined by
the numberG of chemical shifts in the molecules spin sys-
tem. Thereby for each chemical shift and peak group gi
within the spin-system a small local shift−γ ≤ ∆i ≤ +γ
within a range of typically |γ| ≤ 0.005 ppm can be ex-
pected. Each component Θk(ν) of gi(ν) can be consid-
ered as a delta function, contributing to a line spectrum
with non vanishing amplitude for one peak position only.
K is the multiplicity of a component function gi. The
origin of the chemical shift group components Θk(ν) lies
in the spin-spin interaction characterized by the so called
scalar coupling constant and can be deduced from quan-
tum mechanical calculations for the spin system parame-
ters describing the targeted metabolite. Subsequently this
line spectrum is folded ⊗ by a line shape function ℘ to
mimic the real measurement’s lineshape.

In NMR the position of the sub patterns or peaks are
known as chemical shifts. The estimates of these shift
positions need to be as accurate as possible and are the



main error-source in the TP approach. An appropriate
peak shape estimate is the key to get a suitable subtraction
of signal components from s(ν) in order to reveal poten-
tially hidden components. In an initial step our approach
takes the shape of the chemical shift identifier (CSI), a ref-
erence compound added to the sample, as a template. This
shape is used to estimate the expected peak width present
in the signal and is used to quantify identified targets.

To overcome the shift problem we estimate values for
the disturbances ∆ shown in Eq. (1) and present an initial
solution to optimize the sub pattern positions in potential
targets using a grid search strategy. This approach leads to
in general improved position estimates for the true chem-
ical shifts of the sub-patterns gi of potential targets fj and
hence to more accurate identification and quantification
estimates as shown later on.

As pointed out before, standard TP identifies signa-
tures in NMR mixtures by employing known database ref-
erences of (manually) specified peak patterns. In our ex-
tended Targeted Profiling approach (ETP) we modify this
concept such that the targets are modeled on the theoreti-
cal spin-system model [9]. This model provides the peak
information as transition tables. The target’s spin system
description acts as a highly accurate physical model that
provides very accurate peak lists and can deal with varying
NMR spectrometer field strengths easily. The parameters
of the targets are optimized with respect to the measure-
ment at hand.

Each target description T (generating a signal fj(ν))
is characterized by a set of spin-system descriptors Td ∈
S. S describes the theoretical aspects of the spin system
of T and can be used in combination with a model of the
measurement system (NMR system) to simulate the spec-
trum fj for T . A spectrum representation of T can be
divided into multiple parts, one for each spin-system de-
scriptor Td, the peak group (g). A peak group may consist
of multiple or a single peak and is potentially overlapping
e.g due to the measurement resolutions. For each group a
potential (limited) shifting error ∆i can be expected. We
now detail the three steps of ETP (line spectrum repre-
sentation, peak assignment and shift estimation and non
negative least squares fit) to obtain an optimized fit on this
new encoding of the spectrum.

3.1. Line representation of a NMR spectrum

NMR spectra can be described by means of a set of over-
lapping peaks. To generate such a list of peaks, an ap-
propriate model of the peak shape is necessary. In gen-
eral the peak shape is assumed to be Gaussian such that
a single peak can be represented by the following equa-
tion ℘(ν) = exp(−( t−µσ )2/2) with µ as a center position
and σ as the line width. Also a Lorenzian peak shape is
commonly used as provided before. A further implicit as-
sumption is that the peak shape is symmetric and that the
model is sufficient, e.g. is no super composition of gaus-
sians or Lorentzians. In real measurements these assump-
tions are only partially fullfilled and a more complex peak
shape is observed. This makes the peak picking rather
complicated and so far different heuristic approaches have

been proposed [8, 10]. Here we focus on a simple para-
metric hill-climbing approach. We further assume that
for each measurement a known reference signal (CSI) is
available, in our case this is the Tri-Methyl-Silyl-singulett
from DSS signal1. This signal has a known position of 0
ppm, which is used to compensate the global shift offset o
of the spectrum. At the expected DSS position we search
for a maximum within a window of 0.05ppm. From this
position we go down (to lower intensities) on the left and
the right flank of the peak as long as the signal is mono-
tone decreasing. At a predefined maximal width the peak
is truncated. For this peak its center position is calcu-
lated and the peak width at half maximum (PWHM). The
PWHM is used as a rough estimate of the peak width. Due
to effects such as imperfect phasing, shimming or baseline
correction a direct inverse deconvolution of s(ν) with the
CSI reference is in general not possible. Instead we em-
ploy a hill-climbing algorithm and look for local maxima
in the whole signal which are above a predefined threshold
(expected noise level). Additional criteria are signal flanks
that are sufficiently steep and a sufficient peak width. By
application of this algorithm we obtain a list of peaks in
the spectrum. This list is subtracted from s(ν) and the al-
gorithm is repeated until no further peaks are detected.
Using this approach also overlapping peaks can be de-
tected. As an alternative strategy the approach in [8] can
be used with an underlying Lorentzian support. The list
of peaks is subsequently denoted as P . These peak lists
are compared to the potential targets and their peak lists.
If a sufficient amount of peaks (e.g. 30%) in a target (with
a tolerance of 0.01ppm) can be matched to the peaks P
we consider the target as identified and proceed with the
analysis steps for this target. Using the target description
as mentioned before we can generate a simulated peak list
for this target employing the gamma simulation environ-
ment [9]. We now have the target as a functional line spec-
trum fj(ν) with ℘ as the fitted line function mentioned
above.

3.2. Peak assignment and shift estimation

In a first step the peak list P can be filtered such that only
those peak positions remain in P which are part of the
peak lists of the targets using a rough shift tolerance of
e.g. 0.05ppm. Now an assignment matrix M = n × m
is generated with n as the number of peaks over all target
peaks and m as the number of peaks in P . Thereby mul-
tiple assignments are possible and the shift-error of the
peak with respect to the expected peak position is stored.
Further only such assignments take place which are within
a predefined tolerance 0.01ppm. After this step a voting
scheme is applied to M such that a maximal coverage of
the target peaks with a minimal error with respect to the
shifts is obtained. Hereby it is also ensured that a shift ∆i

applies only to a whole group gi. The distance between
two peaks within gi is rather stable and determined by the
quantum mechanical calculation of the spin systems cou-
pling constants. Subsequently one obtains shifts ≥ 0 for

12,2-Dimethyl-2-silapentane-5-sulfonic acid. Alternative choices for
the CSI such as TSP or ETH are possible as well.



each target T and each group g within a target. The op-
timized target simulations and peak descriptions can now
be used in the fitting approach.

3.3. Non negative linear Least Squares Fit

The targets fj(ν) are now given in the functional descrip-
tion of (2) with optimized ∆i, using known Θk and our
shape estimation for all gi(ν). We can generate a reduced
representation of each target and define a design matrix
for the non negative linear Least Squares Fit (NNLSQ).
The function to fit, is our spectrum s(ν) reduced to the
position Θk. We add constraints for non negative αi and
allow user defined fixed αj on some target fj . Solving
the optimization problem provides the αj estimates used
to calculate the concentration estimates as shown in [3].

4. EXPERIMENTS AND RESULTS

We analyzed our approach using different measurements
of metabolites in growing media. Here, the focus is not on
a specific biochemical question rather then to show that
the identified and quantified metabolite concentrations are
very close to the expert findings using ETP. Details about
the data are shown in Table 1 and Figure 3. One clearly
observes that the optimized approach provides results which
are much closer to the expert analysis. In parts TP was not
able at all to provide a concentration estimate because the
shift error lead to unidentified metabolites.

Figure 3. Concentrations for different metabolites using
ETP compared to TP and an expert analysis (Spec1).

Spec. Err. TP Err. ETP Spec. Err. TP Err. ETP
1 49.65 37.57 4 87.53 46.01
2 68.68 57.55 5 64.04 44.06
3 30.92 31.41 6 111.09 86.94

Table 1. Mean errors in µ-mol of TP and ETP with respect
to the expert concentration estimates. The expert concen-
tration is assumed to be optimal (0 error), the values for
TP and ETP are compared with the expert using the mean
square error, normalized by J . One observed that the new
approach strongly improves the concentration estimates.

In Figure 4 a reconstruction of a signal part is shown
with respect to the original signal to illustrate the effect of
the shift correction.

5. CONCLUSION

We presented a semi-automatic approach, called, Extended
Targeted Profiling, for the identification and quantification

Figure 4. Spectrum in the region of Valine (Val) and Iso-
Leucine (Ile). Two top figures show the ETP fit (filled),
left Ile, right Val. Below the same region but fitted by TP.

of metabolites in NMR measurements by excessive use of
a physical simulation model and functional description.
Initial results are already quite promising and it could be
shown that the new approach is beneficial with respect to
traditional techniques. It can simplify the metabolite pro-
filing task and is more flexible due to the formal model.
For very high overlapping signals our approach still shows
potential for improvements e.g. by optimizing the ∆ and
℘ estimates to further reduce manual interactions.
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