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ABSTRACT

The analysis of very large sets of data with multiple
thousand measurements is an increasing problem. High-
throughput approaches in the life science lead to large
amounts of data which need to be analyzed by data min-
ing approaches. Focusing on clustering and visualization
approaches a common problem are very large similarity
matrices. Standard techniques suffer from memory and
runtime limitations for such complex settings or are not
applicable at all. Here we present a hierarchical compos-
ite clustering employing data specific properties to deal
with this problem for data with an inherent hierarchical or-
der. As an additional advantage our algorithm allows easy
control of the clustering depth. The method is a proto-
type based approach leading to sparse, compact and inter-
pretable models. We derive the algorithm and present it on
data taken from tissues slices of high resolution MALDI
Imaging. Results show an effective clustering as well as
significant improvements of the computational complex-
ity for this type of data.

1. INTRODUCTION

Life science experiments generate large sets of measure-
ments as a more and more challenging problem for the
used machine learning methods. Often similarity matri-
ces, generated from the data, are used as an input to the
machine learning approaches and clusterings or a low di-
mensional visualization of the data is in focus. Prominent
techniques of this type are e.g. Single Linkage Cluster-
ing (SLC) or Multi Dimensional Scaling (MDS) [1]. In
the last decade the number of processed samples and the
resolution in life science experiments has increased a lot
and hence also the amount of data. The similarity matrices
of such data are getting huge now and calculation with it
becomes very challenging. One potential solution for this
problem is to use iterative approaches, but this would slow
down the analysis process significantly in most cases and
will in parts also be suboptimal. An alternative strategy is
to employ specific structural information of the data as we
will show subsequently for a clustering task. In this study
we focus on a specific type of prototype based clustering
based on Self-Organizing Maps (SOM) as introduced by
Kohonen [2] and a specific type of data with an inherent
hierarchical structure as it is common e.g. for tissues data
(consisting of different types of sub-tissues).

An especially well suited approach to deal with hier-
archical data is the Tree based Self Organizing Map or
Evolving Tree-SOM (ET) [3]. Although very promising,

it is limited in case of very huge sets of data. In this paper
we will extend the ET to a hierarchical composite cluster-
ing approach (HCC) using local and global learning strate-
gies. The approach will be evaluated on two distinct sets
of data taken from tissue studies as common in pathology.
The paper is organized as follows: in Sec. 2 we give a
brief introduction to prototype based learning and explain
the used basic algorithms SOM, ET and an additional pro-
totype based clustering developed for the handling of very
large data sets. In Sec. 4 the HCC approach is presented
and applied on real life experimental data as described in
Sec 3. We conclude with a summary of the results and an
outlook for further improvements and research directions.

2. METHODS

2.1. Self organizing maps

The SOM constitutes one of the most popular unsuper-
vised approaches for clustering, visualization and data
mining of high-dimensional data [2]. SOMs belong to
the prototype based methods of data representation. Due
to its inherent regularization abilities SOMs are also ap-
plicable in case of sparse data sets. SOMs can be taken
as unsupervised learning of topographic vector quantiza-
tion with a topological structure (grid) within the set of
prototypes (codebook vectors). Thereby, roughly speak-
ing, topology preservation means that similar data points
v ∈V with V ⊆ RD and D the data dimensionality are
mapped onto identical or neighbored grid locations which
have pointers into the data space (weight vectors). The
weight vectors also are called prototypes, because they
represent parts of the data space.

Assume that data v ∈ V ⊆RD are given distributed
according to an underlying distribution P (V ). A SOM is
determined by a set A of neurons r equipped with weight
vectors (prototypes) wr ∈ RD. The neurons are arranged
on a lattice structure, which determines the neighborhood
relation N(r, r′) between the neurons r and r′. Denote
the set of prototypes by W = {wr}r∈A. The mapping
description of a trained Heskes-SOM1 defines a function

ΨV→A : v 7→ s (v) = argmin
r∈A

le (r) (1)

where
le (r) =

∑
r′∈A

hσ(r, r′)ξ (v,wr′) (2)

1An extension provided by Heskes incorporating a cost function



is the local neighborhood weighted error of distances
ξ (v,wr′). ξ (v,w) is an appropriate distance mea-
sure, usually the quadratic Euclidean norm ξ (v,wr) =
(v −wr)2. However, here we only suppose ξ (v,w) to
be arbitrary assuming differentiability and symmetry and
assessing some dissimilarity. The function

hσ(r, r′) = exp
(
N(r, r′)

2σ2

)
(3)

determines the neighborhood cooperation with range σ >
0. In this formulation, an input stimulus v is mapped onto
that position r ∈ A of the SOM, the local error le (r) of
which is minimum, whereby the average over all neurons
according to the neighborhood is taken. We refer to this
neuron s(v) as the winner.

During the adaptation process a sequence of data
points v ∈ V is presented to the map representative for
the data distribution P (V). Each time the currently most
proximate neuron s(v) according to (1) is determined. All
prototypes are gradually adapted according to the neigh-
borhood degree of the respective neuron to the winning
one by

4wr = −εhσ (r, s(v))
∂ξ (v,wr)
∂wr

(4)

with a small learning rate ε > 0. This adaptation follows
a stochastic gradient descent of the cost function for the
SOM as introduced by HESKES [4]:

ESOM =
1

2C(σ)

∫
P (v)

∑
r

δs(v)
r

∑
r′

hσ(r, r′)ξ( v,wr′)dv

(5)
where C (σ) is a constant which we will drop in the fol-
lowing, and δr

′

r is the usual Kronecker symbol checking
the identity of r and r′.

One main aspect of SOMs is the visualization abil-
ity of the resulting map due to its topological structure.
Under certain conditions the resulting non-linear projec-
tion ΨV→A generates a continuous mapping from the data
space V onto the grid structure on A. This mapping
can mathematically be interpreted as an approximation
of the principal curve or its higher-dimensional equiva-
lents [5]. Thus, as pointed out above, similar data points
are projected on prototypes which are neighbored in the
grid space A. Further, prototypes neighbored in the lat-
tice space should code similar data properties, i.e. their
weight vectors shoud be close together in the data space
according to the dissimilarity measure ξ. This property
of SOMs is called topology preserving (or topographic)
mapping realizing the mathematical concept of continuity
(see also [6]). For data sets with an inherent hierarchical
structure the rectangular grid topology is not any longer
appropriate and a tree topology may be more appropriate
as shown subsequently.

2.2. Evolving Tree

Suppose we consider an ET T with nodes r ∈ RT (set
of nodes) and root r0 which has the depth level lr0 = 0.
A node r with depth level lr = k is connected to its suc-
cessors r′ with level lr′ = k + 1 by directed edges εr→r′
with length is unit. The set of all direct successors of the
node r is denoted by Sr. If Sr = ∅ is valid, the node

r is called a leaf and denoted by �. The degree of a
node r is δr = #Sr, here assumed to be constant δ for
all nodes except the leafs. A sub-tree Tr with node r as
root is the set of all nodes r′ ∈ RTr

such that there exists
a directed cycle-free path pr→r′ = εr→m ◦ . . . ◦ εm′→r′
with m, . . . ,m′ ∈ RTr

and ◦ as the concatenation opera-
tion. Lpr→r′ is the length of path pr→r′ , i.e. the number
of concatenations plus 1. The distance dT (r, r′) between
nodes r, r′ is defined as

dT (r, r′) = Lpr̂→r
+ Lpr̂→r′ (6)

with paths pr̂→r and pr̂→r′ in the sub-tree Tr̂ and RTr̂

contains both r and r′ and the depth level lr̂ is maxi-
mum for all sub-trees Tr̂′ which contain r and r′. A con-
necting path between a node r and a node r′ is defined
as follows: let pr̂→r′ and pr̂→r be direct paths such that
Lpr̂→r′ ·Lpr̂→r

is dT (r, r′). Then pr→r′ is the reverse path
pr′→r̂ · pr̂→r and the node set of P is denoted byNpr→r′ .
As for usual SOMs, each node r is equipped with a pro-
totype wr ∈ RD, provided that the data to be processed
are given by v ∈V ⊆ RD. Further, we assume a differ-
entiable similarity measure dV : RD × RD → R. The
winner detection is different from usual SOM but remains
the concept of winner-take-all. For a given subtree Tr
with root r the local winner is

sTr
(v) = arg min

r∈Sr

(dV (v,wr)) (7)

If sTr
(v) is a leaf then it is also the overall winner node

s (v). Otherwise, the procedure is repeated recursively for
the sub-tree TsTr

. The receptive field Ωr of a leaf r (or its
prototype) is defined as

Ωr = {v ∈V |s (v) = r} (8)

and the receptive field of root r′ of a sub-tree Tr′ is defined
as

Ωr′ = ∪r′′∈RT
r′

Ωr′′ (9)

The adaptation of the prototypes wr takes place only
for those prototypes, where the nodes r of are leafs. The
other nodes remain fixed. This learning for a randomly
selected data point v ∈V is neighborhood-cooperatively
as in usual SOM:

4wr = εhSOM (r, s (v)) (v −wr) (10)

with s (v) being the overall winner and ε > 0 a small
learning rate. The neighborhood function hSOM (r, r′) is
defined as a function depending on the tree distance dT
usually of Gaussian shape

hSOM (r, r′) = exp
(− (dT (r, r′))2

2σ2

)
. (11)

with neighborhood range σ.
Unlike for the SOM we cannot guarantee that s(v) is

the true best matching unit (bmu), because the tree model
is subject of a stochastic optimization process.

The whole ET learning is a repeated sequence of adap-
tation phases according to the above mentioned prototype
adaptation and tree growing beginning with a minimum
tree of root r0 and its δ successors as leafs. The deci-
sion, which leafs become roots of sub-trees at a certain



time can be specified by the user. Subsequently for each
node r a counter br is defined. This counter is increased if
the corresponding node becomes a winner and the node is
branched if a given threshold θ ∈ N, θ > 0 is reached.

Possible criteria might be the variance of the recep-
tive fields of the prototypes or the number of winner hits
during the competition. The prototypes of the new leafs
should be initialized in a local neighborhood of the root
prototype according to dV . Hence, the ET also can be
taken as a special growing variant of SOM.

2.3. Patch clustering for large datasets

Patch Clustering is a method to cluster datasets, which are
too big to fit into the main memory. The idea is to cluster
patches of the data separatly from another and to employ
statistics about the last patch in the learning procedure.
This statistics include the old prototypes and how often
they became the BMU. The statistics and the datapoints
from the next patch are used to learn new prototypes, until
every patch has been learned. Details are provided in [7].

2.4. Evolved Tree of Subtrees

In Order to process very large datasets we develop an
evolved tree of subtrees, called Hierarchical Composite
Clustering (HCC). Therefore we employ the aforemen-
tioned patch clustering. The data set V is divided into K
patches which are then processed using patch-clustering
with a defined in general smaller number of prototypes.
This results in a patch clustering model (PCM) which
constitutes the global learning model. Now the receptive
fields of the prototypes of the PCM are analyzed equiva-
lent to (8) generating a subset of V denoted as Vi. For a Vi
a ET is generated and the obtained subtree Ti is assigned
to the leaf �i of the global tree TG with the root node
ro as the mean of V . Using this procedure even for large
data sets V the problem can be divided reasonably well
into solvable sub-problems. The potential loss of accuracy
with respect to a full model is only minor for our data, see
also [7]. The global tree represents the rough hierarchical
structure of the data and its leaf prototypes represent sub-
sets of the original data. Hence the leafs �i of the global
tree are used as the roots for the local trees Ti, which are
independently of each other learned with the respective
subset of the large data set. Both steps describe our HCC
approach and generate the complete model. Prototype-to-
prototype distances and the placement of new data points
in the clustering can be calculated as described in 2.2.
This procedure reduces the complexity for the local trees
if the global tree is of moderate size and scales with the
number of leafs in TG with regard to memory restrictions
and computation time. Further, the independence of the
local trees allows direct parallelization. Moreover the di-
mensionality D of the subsets Vi can be reduced in gen-
eral, because of the appearance of dimensions with no or
constant entries, resulting in a sparsely populated data ma-
trix, further reducing the model complexity. In this way
the subtrees Ti exist in a lower dimensional space. Visu-
alizations of ET and TG (with subtrees) are obtained by
calculating the prototype tree distances projected by MDS
to 1D or 3D.

3. DATA AND EXPERIMENTAL SETTINGS

We apply our approach on mass spectrometric data from
two matrix assisted laser desorption ionization (MALDI)

imaging experiments. The original data are tissue slices
from rat brain and breast cancer tissues measured by a
mass spectrometer and preprocessed as described in [8].
The data after preprocessing are given as peak lists with
pairs (m/c, I) indicating a mass position and a corre-
sponding intensity. All peak lists are mapped on a com-
mon mass axis using a tolerance of 500 ppm. The first data
set is from a rat and denoted as D1. It is still with a low
resolution of 1062 measurement and D = 121. The sec-
ond data set is taken from a breast cancer tissue, denoted
as D2 and contains 100594 spectra with D = 76. All
data sets have been analyzed using the above mentioned
methods. It should be noted that D1 is still processable
with standard tools and D2 is already very challenging for
regular methods. Both data sets should be considered as
toy examples without a stronger interpretation objective.
Standard parameter settings are as follows: the branching
factor was fixed to 3 for all regular ET trees and 20 for the
TG. The maximal number of iterations until convergence
is 3e6. Standard ET settings (see [9]) are defined such that
all ET trees have in average 40 leafs. Neigborhood range
σ = 2 and the start learning rate ε = 0.1.

4. EXPERIMENTAL RESULTS AND
INTERPRETATION

Table 1 shows the computation times for the tree model
decomposition of D2 in comparison with a standard ET
(the model complexity was chosen such that it was still
computable), we also show a result for tree with higher
depth utilizing the new freedom in the calculation com-
plexity. One observes that the processing time is signif-
icantly reduced for our approach. All obtained models
have been additionally evaluated visual in comparison to
known ground truth labeling provided by an expert. We
found that all models performed well in clustering the data
in a structural or biological meaningful way but with HCC
in a significant quicker time. Considering the ongoing
technological progress in this field, especially in MALDI
imaging, resolutions of 10µm are already appearing, lead-
ing to at least 1 million spectra per cm2 of tissue such that
our method becomes a valuable analysis approach.

Approach Number of nodes calculation time
ET 184 10624 sec
HCC (simple) 159 713 sec
HCC (deep ) 1244 2208 sec

Table 1. Comparison of the computation times

For D1 all approaches learned the clustering very
quick, the corresponding coloring in comparison to the
regular microscope image is shown in Figure 1 including
a sketch of a hierarchical analysis of the data. Employing
the given topology of ET, motivated by an expected inher-
ent hierarchical ordering of the data, we are able to browse
through the different clusters of the ET which nicely cor-
responds to different sub structures in the original data.

Figure 2 shows a calculated clustering and coloriza-
tion of D2 using the HCC approach. The right plot in the
same figure shows the corresponding microscope image,
partially labeled by an expert. One can clearly identify
the connnective tissue region (dark intensities). In a RGB



Figure 1. Clustering result for D1 obtained from the ET
model and employing the hierarchy.

colored version2 also the inflamation region (lower center)
and large parts of the cancer regions can be distinguished.

Figure 2. Clustering for D2 obtained by HCC, the ET
model is similar; corresp. microscope image (right)

In the HCC approach it is possible that the first hier-
archical level (step one of HCC) generates a sufficiently
precise model of the problem on the basis of the rough
level data set whereas the precise adaptation is delegated
to the local trees (step two of HCC). Moreover, the inde-
pendence of the local learning allows parallelization.

Figure 3 shows an approximated number of weight
updates for a given dataset, depending on the number of
leafs in TG, not incorporating possible parallelization. As
expected, there exists an optimal number of nodes in the
global tree, since a one-prototype global tree (see Figure 3
left side) equates to a fully learned Evolving Tree and the
other extreme, giving the global tree the desired size of
the full model (see Figure 3 right side) equates the fully
learned Evolving Tree as well. The influence of faster
BMU search and dimensionality reduction is not depicted
here, but the overall characteristics are similar. An im-
provement of two orders of magnitude is observed here.

2Available on request

Figure 3. Estimated logarithmic number of weight up-
dates for a dataset of size 1e6 depending on the size of
TG. Dashed line for ET.

5. CONCLUSIONS

We presented a hierarchical composite clustering ap-
proach for evolving trees to cluster very large sets of data.
Inital experiments show that our approach is effective in
computation time as well as clustering performance. We
were able to provide a good labelings or data colorings for
MALDI imaging data on two data sets in agreement to a
provided expert labeling. The different hierarchical lev-
els allow a view onto the data with a specific granularity
and a plausible tissue section colorization, being in ac-
cordance with the usual analysis approach of pathologists
and therefore a progressive step forward to an automatic
processing of tissue with high resolution MALDI Imag-
ing. In the next steps we will evaluate our approach on
further, larger sets of hierarchical data and derive quality
measures for the obtained clusterings. Also the incorpora-
tion of label information in the clustering and an effective
parallelization of the algorithm, to generate real-time tis-
sue colorizations are of interest.
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