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Abstract. In this paper we present an extended version of Evolving
Trees using Oja’s rule. Evolving Trees are extensions of Self-Organizing
Maps developed for hierarchical classification systems. Therefore they are
well suited for taxonomic problems like the identification of bacteria. The
paper focus on clustering and visualization of bacteria measurements. A
modified variant of the Evolving Tree is developed and applied to obtain
a hierarchical clustering. The method provides an inherent PCA analysis
which is analyzed in combination with the tree based visualization. The
obtained loadings support insights in the classification decision and can
be used to identify features which are relevant for the cluster separation.

Key words: tree som, bacteria identification, mass spectrometry, hier-
archical PCA, unsupervised feature selection

1 Introduction

The identification of bacteria in medical and biological environments by means
of classical methods like gram stain is time consuming and frequently leads to
mistakes in separation of species or even genus. These data are categorized in
a taxonomical tree-structure. It can be expected that the supporting measure-
ments reflect such a structure. Further its known that for some bacteria molec-
ular finger prints exist [9]. Taking these two aspects into account we derive the
Hierarchical PCA-based Evolving Tree to obtain an optimal compact encoding
and tree-structured representation of such data based on Evolving Trees [13] and
Oja-PCA learning [12].

The utilization of mass spectrometry (MS) provides a fast and reproducible
way to receive bio-chemical information to identify bacteria cultured on nutri-
ent solution. One task in this line is an appropriate classification of the high-
dimensional mass spectra. This requires a reasonable classification structure to
achieve adequate storage and retrieval performance. It is further valuable to
obtain interpretable visualizations of the data for a later expert analysis. Ex-
isting approaches are based on the direct comparison of spectra with manually
selected reference spectra by means of a (pre-filtered) peak matching including
their intensity as well as their mass position [9, 11].



2 Hierarchical bacteria identification

The application of MS for bacteria identification is quite new and a repre-
sentation of the taxonomic (tree-) nature of bacteria is difficult. The problem
of discriminating bacteria species with MS is described in [1]. Forero et al. use
extracted features from images of bacteria to identify them [5]. Discrimination
of bacteria can be done also by bio-markers based on MS spectra [10]. Most
of those approaches are also based on the evaluation of the peak intensities. In
case of bacteria even the peak intensities alone are an unsafe criterion. Further,
the encoded peaks (line spectra) to be compared are huge-dimensional vectors
representing a functional relation. Fast and reliable investigation of line spectra
requires, on the one hand side, an adequate processing, which preserves the rele-
vant information as good as possible. On the other hand, optimum interpretable
data structures are required.

This contribution provides new aspects for efficient information-preserving
representation of line spectra by a data-driven tree generation using the Hierar-
chical PCA-based Evolving Trees (ET).

2 Evolving Trees and hierarchical PCA

As mentioned above the ’natural’ identification methodology in taxon-
omy/analysis of bacteria is tree structured. Therefore, in context of machine
learning, decision trees (DT) may come into mind. However, DTs don’t inte-
grate structural data information like data shape and density in an adequate
manner during tree generation. An alternative is presented by Pakkanen et
al. – the evolving trees (ET) for which we provide a formal definition later on.
The ET-approach is an extension of the concept of self-organizing maps (SOMs)
introduced by Kohonen [6].

SOMs project high-dimensional vectorial data onto a predefined low-
dimensional regular grid usually chosen as a hypercube. This mapping is topol-
ogy preserving under certain conditions, i.e. in case of no violations similar data
points in the data space are mapped onto the same or neighbored grid nodes. For
this purpose, to each node a weight vector, also called prototype, is assigned. A
data point is mapped onto this node, the prototype of which is closest according
to a similarity measure in the data space, usually the Euclidean distance. This
rule is called winner-take all. In this sense, all data points mapped onto the
same node are called receptive field of this node and the respective prototype is
a representative of this field.

2.1 Evolving Trees

Yet, the usual rectangular lattice as output structure is only mandatory. Other
choices are possible depending on the task. ETs use trees as output structures
and, hence, are potentially suited for mapping of vectorial data with an inherent
hierarchical structure.

Suppose we consider an ET T with nodes r ∈ RT (set of nodes) and root r0
which has the depth level lr0 = 0. A node r with depth level lr = k is connected
to its successors r′ with level lr′ = k + 1 by directed edges εr→r′ with length is
unit. The set of all direct successors of the node r is denoted by Sr. If Sr = ∅
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is valid, the node r is called a leaf. The degree of a node r is δr = #Sr, here
assumed to be constant δ for all nodes except the leafs. A sub-tree Tr with
node r as root is the set of all nodes r′ ∈ RTr

such that there exists a directed
cycle-free path pr→r′ = εr→m ◦ . . . ◦ εm′→r′ with m, . . . ,m′ ∈ RTr

and ◦ as the
concatenation operation. Lpr→r′ is the length of path pr→r′ , i.e. the number of
concatenations plus 1. The distance dT (r, r′) between nodes r, r′ is defined as

dT (r, r′) = Lpr̂→r
+ Lpr̂→r′ (1)

with paths pr̂→r and pr̂→r′ in the sub-tree Tr̂ and RTr̂
contains both r and r′

and the depth level lr̂ is maximum for all sub-trees Tr̂′ which contain r and r′. A
connecting path between a node r and a node r′ is defined as follows: let pr̂→r′

and pr̂→r be direct paths such that Lpr̂→r′ · Lpr̂→r
is dT (r, r′). Then pr→r′ is

the reverse path pr′→r̂ · pr̂→r and the node set of P is denoted by Npr→r′ . As
for usual SOMs, each node r is equipped with a prototype wr ∈ RD, provided
that the data to be processed are given by v ∈V ⊆ RD. Further, we assume
a differentiable similarity measure dV : RD × RD → R. The winner detection
is different from usual SOM but remains the concept of winner-take-all. For a
given subtree Tr with root r the local winner is

sTr
(v) = arg min

r∈Sr

(dV (v,wr)) (2)

If sTr
(v) is a leaf then it is also the overall winner node s (v). Otherwise, the

procedure is repeated recursively for the sub-tree TsTr
. The receptive field Ωr of

a leaf r (or its prototype) is defined as

Ωr = {v ∈V |s (v) = r} (3)

and the receptive field of root r′ of a sub-tree Tr′ is defined as

Ωr′ = ∪r′′∈RT
r′
Ωr′′ (4)

The adaptation of the prototypes wr takes place only for those prototypes,
where the nodes r of are leafs. The other nodes remain fixed. This learning for
a randomly selected data point v ∈V is neighborhood-cooperatively as in usual
SOM:

4wr = εhSOM (r, s (v)) (v −wr) (5)

with s (v) being the overall winner and ε > 0 a small learning rate. The neigh-
borhood function hSOM (r, r′) is defined as a function depending on the tree
distance dT usually of Gaussian shape

hSOM (r, r′) = exp
(− (dT (r, r′))2

2σ2

)
. (6)

with neighborhood range σ.
Unlike for the SOM we cannot guarantee that s(v) is the true best match-

ing unit (bmu), because the tree model is subject of a stochastic optimization
process.
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The whole ET learning is a repeated sequence of adaptation phases according
to the above mentioned prototype adaptation and tree growing beginning with
a minimum tree of root r0 and its δ successors as leafs. The decision, which
leafs become roots of sub-trees at a certain time can be specified by the user.
Subsequently for each node r a counter br is defined. This counter is increased
if the corresponding node becomes a winner and the node is branched if a given
threshold θ ∈ N, θ > 0 is reached.

Possible criteria might be the variance of the receptive fields of the prototypes
or the number of winner hits during the competition. The prototypes of the new
leafs should be initialized in a local neighborhood of the root prototype according
to dV . Hence, the ET also can be taken as a special growing variant of SOM as
it is known for example from [2].

Since ETs are extended variants of usual SOM one can try to transfer eval-
uation methods known from SOMs to ETs. Unknown samples can be identified
using the ET in the following way. The ET is fully labeled by assignment of a
label to each node by an analysis of the receptive fields of the corresponding sub-
trees. The root node remains unlabeled. For each receptive field a common label
is determined by a majority voting of the contained samples and their labels. An
unknown, new item is preprocessed as described later on. For this item the bmu
in the tree is determined in accordance to Equation (2) and s(v) is calculated.
The label of the receptive field of s(v) defines the label of the item.

2.2 Hierarchical PCA by Evolving Tree learning using Oja’s rule

In [12] a learning rule for neuron models has been proposed which inherently
provides a principal component analyses of the represented data. This rule was
recently used in [7] to get an optimal data encoding and proven to be effective
in learning using neighborhood cooperativeness. We combine this approach with
the learning of Evolving Trees such that the prototype representing a data cluster
become the first eigenvector of this cluster. In this way a hierarchical PCA can
be calculated. We replace the learning rule of Equation (5) by the following Oja
based learning dynamic but keeping the neighborhood cooperativeness of ET:

4wr = εhET (r, s (v))O (v −Owr) (7)
O =< v,wr > (8)

Further the winner determination of Equation (2) is changed accordingly

sTr
(v) = arg max

r∈Sr

(< v,wr >) (9)

As pointed out in [12] the update for the weight vector wr as defined by Equa-
tion (7) will, neglecting statistical fluctuations, tend to the dominant eigenvector
c of the input correlation matrix C of the input data v limited to the receptive
field of wr. Using this approach we obtain eigenvectors for each cluster, at each
depth level lr for each node of the tree. The first eigenvector as obtained from an
analysis of the prototype wr at lro

is the regular first principal component of the
whole data set. With increasing depth of the tree the data are clustered by the
Tree-SOM approach and a hierarchical PCA analysis of the sub-clusters become
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available. The principal components can be used to analyse and visualize the
cluster separability. Further the obtained loadings provide insights in a variance
based analysis of the individual input dimensions of the clusterings such that
separating features become apparent.

3 Evolving Tree applied on mass spectra of bacteria

The introduced Hierarchical PCA-based Evolving Tree is now applied to investi-
gate MS-spectra for identification of bacteria. These data are spectra of different
species of Vibrio- and Listeria-bacteria. Thereby we use the spectra in a pre-
processed form of line spectra. The resulting identification is visualized and it is
shown how the obtained hierarchical PCA model can be interpreted.

3.1 Data, Measurement and Pre-processing

The data used in the experiments are MS spectra of 56 different vibrio species
and 7 different Listeria species. Every data-set contains about 20 − 40 single
spectra, being measurements of the same bacterium. Together there are 1452
spectra of vibrio and 231 spectra of Listeria. Each MS measurement is processed
as described later on. Biological details on the bacteria samples can be obtained
from [4].

Details on the mass spectrometry technique can be found in [8]. At the end
of the measurement process one obtains for each measurement a spectrum with
a mass axis in m/z respectively Dalton and an unit-less intensity for every mass.
The spectrum is encoded as a high-dimensional vector (profile spectrum) of
intensities, often visualized as a function of mass.

The standard pre-processing to generate a line spectrum (consisting only of
peaks) is provided by the measurement system as detailed in [3]. A line spectrum
typically consists of around 100−500 peaks depending on the sample complexity
and system mode while the profile spectra are original given as measurements
with around 40 000 sample points. In order to the line spectra for our approach
the input vectors of peak lists are mapped onto a global mass vector covering
every appearing peak within a predefined tolerance (here 500 ppm) depending
on the expected measurement accuracy.

The resulting aligned peak-lists are now located in the same data space, still
very high-dimensional. For the Listeria data the line spectra have a dimensional-
ity of D = 1181 (peak positions) whereas for the vibrio data the dimensionality
is given as D = 2382.

3.2 Experiments

Euclidean distance is used to find the bmu. δr = 3 for all nodes without leafs.
The learning is done in accordance to the standard SOM approach, thereby the
initial learning rate α0 is defined as α0 = 0.2 which is logarithmically decreased
during learning to a final value of αend = 0.01. The neighborhood cooperation
value σ is initialized with σ = 1 and logarithmically decreased to σ = 0.35 in
accordance to suggestions given in [15]. The total number of learning iterations I
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Fig. 1. Evolving Tree of seven Listeria species

is determined depending on the number of training samples, the desired number
of clusters #C, δr and θ as shown in [14].

We apply the proposed methodology on the two data sets. In the first exper-
iment an hierarchical PCA using the ET is generated for the Listeria and the
Vibrio data. This is a simplified example of a bacteria identification on the genus
level. In a second experiment we consider the Listeria bacteria only. Thereby we
assume that the genus of the considered bacteria is already identified as Lis-
teria using the first tree and the remaining task consists in an identification
and visualization of the species and subspecies level. For both settings we gen-
erate the tree, analyze the hierarchical, local PCA visualizations and identify
relevant mass positions (features) by means of PCA loadings. For simplicity we
provide the plots for the Listeria data, only. In Figure 1 the Evolving-Tree for
the Listeria data is shown1. We observe a quite clear separation of the differ-
ent Listeria species in the tree, but also some mixed clusters occur. Especially
for the monocytogenes data subclusters can be identified, this however is a in-
tended effect because the monocytogenes group is known to be diverse. Here
a single taxonomical label does not perfectly reflect the biochemical picture2.
In Figure 5 we analyze the loadings of the local PCA of node 6, as obtained
in the hierarchical PCA using the ET. We observe a cut in the loadings his-
togram such that 2 − 7 dimensions can be considered to be relevant. Taking
these input dimensions into account a Pseudo-Gelview can be generated as de-
picted in Figure 3 showing a top/gelview of the spectra restricted to the peaks

1 Here we show the subtree from the Listeria/Vibrio-Tree, but an individual generated
tree is actually very similar, ignoring permutations.

2 This effect becomes even more explicit for e.g. bacillus data - which are in fact
multiple subgroups (genera) (not distinctly labeled in the taxonomy of bacteria)
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intensities at the masses indicated by the PCA. Some peaks differentiate be-
tween Listeria groups by means of intensity variations, as e.g. in the first peak
with moderate intensity values for the ivanonvii, a missing peak situation for
the grayi and high intensities else. We noticed that in general a 0/1 encoding of
the peak intensities (peak absent/present) is sufficient but for some species and
subspecies the incorporation of intensity information is valuable. In addition a
box plot of the projected data on the principal component as depicted in Figure
2 may provide further information on the separation potential of the hierarchi-
cal PCA based clustering. Doing a traversal through the feature loadings over
the different tree levels the approach identified the following masses most rel-
evant 4276.4Da, 4278.0Da, 5181.0Da, 9751.0Da. The first three dimensions are
relevant to separate the vibrio data from the Listeria and to get separations
with the vibrio genus, separating different (but not all) vibrio species. The last
dimension is a clear indicator for the presents of Listeria.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Listeria grayi [40]

Listeria innocua [20]
Listeria ivanovii ssp. Ivanovii [20]

Listeria ivanovii ssp. Londoniensis [20]
Listeria monocytogenes [63]

Listeria monocytogenes Serotyp 4B [28]
Listeria seeligeri [20]

Listeria welshimeri [20]
Vibrio aerogenes [19]

Vibrio agarivorans [20]
Vibrio albensis [1]

Vibrio alginolyticus [54]
Vibrio brasiliensis [3]
Vibrio campbellii [16]
Vibrio carchariae [1]
Vibrio chagasii [24]

Vibrio cincinnatiensis [3]
Vibrio coralliilyticus [24]

Vibrio costicola [23]
Vibrio cyclitrophicus [22]

Vibrio damsela [16]
Vibrio ezurae [13]
Vibrio fluvialis [4]
Vibrio fortis [20]

Vibrio gazogenes [22]
Vibrio gigantis [21]

Vibrio hispanicus [2]
Vibrio hollisae [24]

Vibrio ichthyoenteri [10]
Vibrio kanaloae [24]

Vibrio lentus [24]
Vibrio mediterranei [23]

Vibrio metschnikovii [24]
Vibrio mimicus [1]

Vibrio natriegens [13]
Vibrio navarrensis [1]

Vibrio neptunius [4]
Vibrio nereis [4]

Vibrio nigripulchritudo [22]
Vibrio parahaemolyticus [69]

Vibrio pectenicida [11]
Vibrio pelagius [24]

Vibrio penaeicida [8]
Vibrio pomeroyi [23]
Vibrio ponticus [20]

Vibrio ruber [23]
Vibrio scophthalmi [3]

Vibrio shilonii [24]
Vibrio splendidus [23]
Vibrio superstes [21]

Vibrio tasmaniensis [24]
Vibrio trachuri [2]

Vibrio vulnificus [29]
Vibrio xuii [13]

Values

Fig. 2. Box plot of the pc’s at the 2 node, branching the Listeria and most of the
Vibrio data in an ET on the bacteria data.

In the Table 4 the most relevant dimensions for the Listeria experiment iden-
tified by the hierarchical PCA at node 6 are depicted. Similar analyses can be
done for the other nodes as well. It should be noted that the identified masses at
a specific node are interpreted as those dimensions explaining the largest vari-
ance of the data presented in the underlying clustering. This is an unsupervised
interpretation, hence the relevant dimensions may not be relevant with respect to
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Fig. 3. Gelview of the Listeria data restricted to the identified most relevant masses.

a provided labeling. For bacteria data however we observed, that the highlighted
dimensions are in general meaningful for the taxonomy as well.

Rank Contribution Dim. Relevant Mass
1 0.6859 2243 9751.11
2 0.5860 897 4876.13
3 0.2190 1764 7402.22
4 0.1987 1441 6362.80
5 0.1879 664 4323.25
6 0.1323 1449 6388.37
7 0.1074 1307 6006.82

Fig. 4. Relevant masses contributing to the
first principal component in the tree node
(6) pooling all Listeria subspecies
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Fig. 5. Analysis of the loadings (truncated
to 100) of the local PCA for node 6.

4 Conclusions

A method for an unsupervised hierarchical PCA based analysis of bacteria spec-
tra from mass spectrometry has been presented. One obtains a hierarchical rep-
resentation of the bacteria by means of a Evolving Tree with local principal
components in a hierarchical manner. This can be used to get a better inter-
pretation of the underlying clustering. The approach is unsupervised but nicely
reflects the expected taxonomical ordering of the data. The approach can be
used to identify masses which are relevant for the clustering in a hierarchical
way, e.g. by traversing through the different levels of the tree. If the clustering
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fits to an added set of meta information, as in our case, the taxonomy of bac-
teria the identified dimensions could be interpreted in a supervised scheme as
well. The approach can be used to get highly interpretable representations of
bacteria spectra and to get quick identifications with a logarithmic number of
comparisons. 3
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