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Abstract. Topographic mapping offers a very flexible tool to inspect
large quantities of high-dimensional data in an intuitive way. Often, elec-
tronic data are inherently non Euclidean and modern data formats are
connected to dedicated non-Euclidean dissimilarity measures for which
classical topographic mapping cannot be used. We give an overview
about extensions of topographic mapping to general dissimilarities by
means of median or relational extensions. Further, we discuss efficient
approximations to avoid the usually squared time complexity.

1 Introduction

With electronic data sets increasing rapidly with respect to size and dimen-
sionality, Kohonen’s ingenious self organizing map (SOM) has lost none of its
attractiveness as an intuitive data inspection tool: it allows humans to rapidly ac-
cess large volumes of high dimensional data [18]. Apart from its very simple and
intuitive training technique, the SOM offers a large flexibility by providing simul-
taneous visualization and clustering based on the topographic map formation. In
consequence, application scenarios range from robotics and telecommunication
up to web- and music-mining; further, the self-organizing map is a widely used
technique in the emerging field of visual analytics because of its efficient and
robust way to deal with large, high-dimensional data sets [17].

The classical SOM and counterparts derived from similar mathematical ob-
jectives such as the generative topographic mapping or neural gas [21, 3] have
been proposed to process Euclidean vectors in a fixed feature vector space. Of-
ten, electronic data have a dedicated format which cannot easily be converted
to standard Euclidean feature vectors: biomedical data bases, for example, store
biological sequence data, biological networks, scientific texts, textual experiment
descriptions, functional data such as spectra, data incorporating temporal de-
pendencies such as EEG, etc. It is not possible to represent such entries by means
of conventional feature vectors without loss of information, many data being in-
herently discrete or compositional. Rather, experts access such data by means
of dedicated comparison measures such as BLAST or FASTA for biological se-
quences, alignment techniques for biological networks, dynamic time warping
for time series, etc. From an abstract point of view, dissimilarity measures or
kernels which are suited for the pairwise comparison of abstract data types such
as strings, trees, graphs, or functions are used.

Already almost 10 years ago, Kohonen proposed a very intuitive way to
extend SOMs to discrete data characterized by dissimilarities only [19]: instead
of mean prototype positions in a Euclidean vector space, neuron locations are
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restricted to data positions. The generalized median serves as a computational
vehicle to adapt such restricted neurons according to given dissimilarity data.
This principle can be extended to alternatives such as neural gas, and it can
be substantiated by a mathematical derivative from a cost function such that
convergence of the technique can be proved [7]. Depending on the characteristics
of the data set, however, the positional restrictions can lead to a much worse
representation of the data as compared to the capabilities of continuous updates
which are possible in a Euclidean vector space.

As an alternative, specific dissimilarity measures can be linked to a nonlinear
kernel mapping. Kernel versions of SOM have been proposed for example in
the contribution [28] for online updates and [4] for batch adaptation; in both
cases, the standard SOM adaptation which takes place in the high-dimensional
feature space is done implicitly based on the kernel. Kernelization of SOM allows
a smooth prototype adaptation in the feature space, but it has the drawback
that it is often not applicable since many classical dissimilarity measures cannot
be linked to a kernel. For such cases, so-called relational approaches offer an
alternative [13]: prototypes are represented implicitly by means of a weighting
scheme, and adaptation takes place based on pairwise dissimilarities of the data
only. This principle has already been used in the context of fuzzy clustering [15];
in the past years, it has been successfully integrated into topographic maps such
as SOM, neural gas, or the generative topographic mapping [13, 12].

Both principles, median extensions of SOM or relational versions, have the
drawback of squared time complexity due to their dependency on the full dissim-
ilarity matrix. Since the computational costs of specialized dissimilarities such as
alignment for strings or trees can be quite time consuming, the main computa-
tional bottleneck of the techniques is often given by the computation of the full
dissimilarity matrix. For this reason, different approximation techniques have re-
cently been proposed which rely on only a linear subset of the full dissimilarity
matrix and which reduce the computational effort to an only linear one. Two
particularly promising techniques are offered by the Nyström approximation,
on the one hand, which can be transferred to dissimilarities as shown in [11].
On the other hand, if a computation of the dissimilarities can be done online,
patch processing offers a very intuitive and easily parallelizable scheme which
can even deal with non i.i.d. data distributions [1]. This way, efficient linear time
processing schemes for topographic mapping of dissimilarity data arises.

In this contribution, we define topographic mapping based on cost functions
first. Afterwards, we introduce two different principles to extend the techniques
to dissimilarity data: median and relational clustering. Both methods can be
substantiated by mathematical counterparts linking it to cost functions and
pseudo-Euclidean space, respectively. We conclude with technologies which allow
to speed the topographic mapping up to linear time complexity.

2 Topographic mapping

Prototype based approaches represent data vectors x ∈ R
n by means of proto-

types w1, . . . ,wN ∈ R
n based on the standard squared Euclidean distance

d(x,wi) = ‖x−wi‖
2 (1)
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The receptive field of prototype wi is determined by the characteristic function

χi(x) =

{

1 if d(x,wi) ≤ d(x,wj) for all j
0 otherwise

(2)

Given a finite set of data points x1, . . . ,xm, the quantization error

Eqe =
1

2

∑

i,j

χi(xj)d(xj ,wi) (3)

offers one quality measure for a prototype-based representation of data. Popular
learning schemes such as k-means clustering or vector quantization are directly
based on this cost term, which is optimized by means of an online gradient
technique (vector quantization), or a batch approach (k-means), respectively [8].
The cost function can be interpreted as a limit case of statistical data modeling
by means of a mixture of Gaussians where the centers are located at prototype
positions. Batch learning results as a limit case of an EM optimization scheme
of the data log likelihood in this setting [2].

Albeit the quantization error constitutes one of the most popular measures
to evaluate unsupervised clustering, it is often not sufficient in practical appli-
cations due to several aspects: it suffers from numerical problems due to the
multimodality of the cost function and its sensitivity to noise and outliers. In
addition, further functionalities are often required in application scenarios such
as the possibility to visualize the prototypes and to inspect relations in between
prototypes. Both problems are addressed by topographic mapping.

Topographic mapping integrates a neighborhood structure of the prototypes
into the model. This way it achieves both, a better robustness with respect to
local optima, outliers, and noise in the data as well as enhanced functionality due
to the explicit neighborhood relations of the prototypes. In essence, topographic
mapping takes place by matching a neighborhood topology of the prototypes
and the topology which is inherent in the data distribution; as a consequence,
the prototypes together with its neighborhood structure can be interpreted as
compressed representation of the data set and its topological structure. Con-
crete topographic mapping technologies differ in the way how the neighborhood
structure is defined.

Neural gas (NG) as proposed by Martinetz relies on a data optimum topology
which is inferred directly from the data [21]. The popular SOM imposes a fixed
predefined neighborhood defined by a regular lattice topology, typically a two
dimensional lattice in Euclidean or hyperbolic space [18, 24]. This way, not only
a neighborhood structure is inferred but it can also directly be visualized on the
computer screen. Since data and lattice topology need not coincide, topological
mismatches can occur unlike in NG. The original SOM does not possess a cost
function in the continuous case and its mathematical investigation is quite de-
manding, see e.g. [16, 18, 6]. A slight variation of the definition of the receptive
fields as compared to (2), however, enables the derivation from a cost function
very similar to (3)

ESOM =
1

2

∑

i,j

χ∗

i (xj)
∑

k

exp(−nd(i, k)/σ2)d(xj ,wk) (4)

where nd(i, j) refers to a priorly fixed neighborhood structure of the prototypes,
e.g. their distance in a predefined two dimensional lattices, and the characteristic
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function of the receptive fields χ∗

i (xj), unlike (2), is measured via the averaged
distances

∑

k exp(−nd(i, k)/σ2)d(xj ,wk). Online adaptation iteratively adapts
the winning prototype and its neighborhood towards a given data point, while
batch adaptation iterates the following two computations

compute χ∗

i (xj) for all i, (5)

adapt wk :=

∑

i,j χ
∗

i (xj) · exp(−nd(i, k)) · xj
∑

i,j χ
∗

i (xj) · exp(−nd(i, k))
(6)

It has been shown in [5] that this procedure converges in a finite number of steps
towards a local optimum of the cost function. The convergence is very fast such
that a good initialization is necessary to avoid topological mismatches as pointed
out in [9]. For this reason, typically, an initialization by means of the two main
principal components takes place, and the neighborhood σ is annealed carefully
during training.

The generative topographic mapping (GTM) can be seen as a statistical
counterpart of SOM which models data by a constraint mixture of Gaussians
[3]. The centers are induced by lattice positions in a low dimensional latent
space and mapped to the feature space by means of a smooth function, usually
a generalized linear regression model. That means, prototypes are obtained as
images of lattice points vi in a two dimensional space wi = f(vi) = Φ(vi) ·W
with a matrix of fixed base functions Φ such as equally spaced Gaussians in two
dimensions and a parameter matrix W . Every prototype induces an isotropic
Gaussian probability with variance β−1 which are combined in a mixture model
using uniform prior over the modes. For training, the data log likelihood

∑

j ln
1
N ·

∑

i

(

β
2π

)n/2

exp
(

−β
2 d(xj ,wi)

)

is optimized by means of an EM approach which

yields to linear algebraic equations to determine the parameters W and β. As
SOM, GTM requires a good initialization which is typically done by aligning the
principal components of the data with the initial images of the lattice points. The
smoothness of the mapping f , i.e. the number of base functions in Φ, determines
the stiffness of the resulting topological mapping. Unlike SOM which focusses
on the quantization error in the limit of small neighborhood size, this stiffness
accounts for a usually better visualization behavior of GTM, see e.g. Fig. 1. It
can clearly be seen that GTM respects the overall shape of the data manifold
while SOM pushes prototypes towards data centers, leading to local distortions.
A better preservation of the manifold shape can also be obtained using VisSOM
instead of SOM [27], albeit this technique is not substantiated by a global cost
function such as GTM.

3 Median clustering

Often, data are not given as vectors, rather pairwise dissimilarities dij =
d(xi,xj) of data points xi and xj are available. Thereby, the dissimilarity need
not correspond to the Eulidean metric, and it is not clear whether data xi can be
represented as finite dimensional vectors at all. In the following, we refer to the
dissimilarity matrix with entries dij as D. We assume that D has zero diagonal
and that D is symmetric.

This situation causes problems for classical topographic mapping since a con-
tinuous adaptation of prototypes is no longer possible like in the Euclidean case.
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One solution has been proposed in [19]: prototype locations are restricted to the
positions offered by data points, i.e. we enforce wi ∈ {x1, . . . ,xm}. In [19] a very
intuitive heuristic how to determine prototype positions in this setting has been
proposed based on the generalized median. As pointed out in [7], it is possible to
derive a similar learning rule from the cost function of SOM (4): Like in batch
SOM, optimization takes place iteratively with respect to the assignments of
data to prototypes (5) and with respect to the prototype positions. The latter
step does not allow an explicit algebraic formulation such as (6) because of the
restriction of prototype positions; rather, prototypes are found by exhaustive
search optimizing their contribution to the cost function:

wk = argmin
xl







∑

i,j

χ∗

i (xj) exp(−nd(i, k)/σ2)d(xj ,xl)







(7)

In the original proposal [19], the summation is restricted to the neighborhood,
and possible candidates xl are restricted to data points mapped to the vicinity
of prototype wk. This can be seen as an efficient approximation of the above
optimization in particular for small neighborhood range. The choice of (7) has
the advantage that convergence of the technique in a finite number of steps can
be guaranteed since the algorithm optimizes the cost function of SOM (4) for
restricted prototype locations [7].

In complete analogy, batch neural gas can be extended to dissimilarity data
by means of the generalized median and the respective cost function. For GTM,
a transfer is not possible in general because it is not possible to define a smooth
mapping from a continuous latent space to the discrete space of known data
points characterized by pairwise dissimilarities.

One important drawback of median approaches is given by the computa-
tional complexity: compared to linear time complexity for standard Euclidean
topographic mapping, the effort increases to squared complexity due to the ne-
cessity of an exhaustive search for every optimization step of the prototypes (7).
This can be partially accelerated by means of different techniques such as block
summing and branch and bound techniques (see e.g. [14]); due to the depen-
dency of the cost function on all pairwise dissimilarities, every exact technique
must inherently be quadratic, however.

Another problematic issue concerns the initialization of median SOM, and
its limited capability of smooth updates as compared to standard Euclidean
versions. Unlike the Euclidean SOM, an initialization of the map in the direction
of the main principal components is hardly possible since only a discrete data
space is at our disposable. Due to the rapid convergence of batch techniques, this
causes the severe risk that the topographic mapping gets stuck in local optima.
Further, as compared to Euclidean settings, less flexibility of the prototypes is
available which can cause worse solutions as compared to continuous settings.
Tab. 1 shows the results of the techniques for the chromosomes data set, a
benchmark from cytogenetics [20]. It consists of 4200 images of chromosomes
from 22 classes. Images are compared by aligning strings which describe the
thickness of the chromosome profiles in the grey images. Since a labeling is
available, an evaluation of the results can be done by posterior labeling of the
prototypes according to their receptive field. The test set accuracy (in %) which
results from a repeated cross-validation is reported.
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median SOM median NG AP relational SOM relational NG relational GTM
0.72 0.82 0.9 0.92 0.93 0.92

patch AP patch RNG Ny RNG patch RGTM Ny RGTM Ny RGTM
(40/10) (0.01) (10/5) (0.01) (0.1)

0.76 0.88 0.93 0.87 0.88 0.55

Table 1. Classification accuracy (in %) on the test set obtained by repeated cross-
validation and different clustering techniques on the chromosomes data, the numbers
refer to (number of patches / k for k-approximation) for patch processing and (per-
centage of landmarks) for the Nyström approximation

Obviously, median SOM yields worse results as compared to continuous vari-
ants such as relation SOM, which we will explain in the next section. Further,
it can be observed that the topological constraint of SOM by the priorly fixed
lattice leads to worse results as compared to NG. Interestingly, the accuracy of
median techniques is not caused by the restricted representation ability of me-
dian clustering, rather numerical problems occur due to the restricted flexibility
while optimizing the cost function. This observation is substantiated by the re-
sult of affinity propagation (AP) as shown in Tab. 1. AP constitutes an exemplar
based clustering scheme which is derived from the quantization error by means
of a representation of this cost function as factor graph, and an approximate
optimization by means of the max-sum algorithm [10]. Unlike median SOM or
median NG, an inherently smooth adaptation process which adapts the likeli-
hood of the data points of becoming an exemplar takes place for AP, resulting
in an increased classification accuracy albeit the final solution is represented in
terms of data exemplars just as median clustering. AP, however, does not involve
any topology such that no topographic mapping is obtained.

4 Relational clustering

As discussed above, the discrete nature of median clustering causes a severe
risk to get trapped in local optima of the cost function. Hence the questions
arises whether a continuous adaptation of prototypes is possible also for gen-
eral dissimilarity data. A general approach to extend prototype-based clustering
schemes to general dissimilarities has been proposed in [15] in the context of
fuzzy clustering, and it has recently been extended in [13] to batch SOM and
NG.

Assume that the dissimilarities dij stem from unknown data in an unknown
high dimensional feature vector space, i.e. dij = ‖Φ(xi) − Φ(xj)‖

2 for some
feature map Φ. Assume that prototypes can be expressed as linear combinations
wi =

∑

j αijΦ(xj) with
∑

j αij = 1. Then, distances can be computed implicitly

d(wi,xj) = [Dαi]j −
1

2
· αt

iDαi (8)

It has been shown in [13] that this equation also holds if an arbitrary symmetric
bilinear form induces dissimilarities in the feature space rather than the squared
Euclidean distance.
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This observation offers a way to directly transfer SOM and NG to a general
symmetric dissimilarity matrix D. As explained e.g. in [13], there always exists
a vector space together with a symmetric bilinear form which gives rise to the
given dissimilarity matrix. This vector space need not be Euclidean since some
eigenvalues associated to the form might be negative or zero. Commonly, this
is referred to as pseudo-Euclidean space where the eigenvectors associated to
negative eigenvalues serve as a correction to the otherwise Euclidean space. For
this vector space, batch NG or SOM can be applied directly in the vector space,
and using (8), it can be applied implicitly without knowing the embedding,
because of two key issues

1. an implicit representation of prototype wi in terms of coefficient vectors αi,
2. Equation (8) to compute the distance in between a data point and a proto-

type.

Since prototypes as computed by batch NG or SOM can be written as convex
combination of data points, and since the update of a prototype depends on
the distance only and it decomposes into updates of the coefficients, NG and
SOM can be immediately transferred to this setting. So-called relational SOM
(RSOM), for example, is given by the iteration of the following steps:

compute d(wi,xj) based on Equation (8) (9)

compute χ∗

i (xj) based on these values (10)

adapt αki :=
∑

j
χ∗

i (xj)·exp(−nd(i,k))
∑

i,j
χ∗

i
(xj)·exp(−nd(i,k)) (11)

Note that this procedure is equivalent to an implicit application of SOM in the
pseudo-Euclidean embedding space. It is independent of the concrete embedding
and gives the same results if an alternative embedding is used. Further, it is
equivalent to standard SOM if a Euclidean embedding of data exists. For general
dissimilarities, it constitutes a reasonable extension of SOM to the general case
with continuous updates of prototypes.

This procedure, however, has one drawback: albeit it constitutes an exact
implementation of SOM in pseudo-Euclidean space, it is no longer clear that
the procedure offers an optimization of the corresponding SOM cost function
in the embedding space. This is due to the fact that batch SOM itself does
not necessarily optimize the cost function in non-Euclidean space; rather, the
mean value might constitute a saddle point of the quantization error if data
are non-Euclidean. In fact, the quantization error of one receptive field is no
longer a convex cost function in the general setting and its optimization is NP
hard [25]. Regarding this complexity, the choice (11) can be seen as a reasonable
efficient compromise which optimizes the data representation within a receptive
field with respect to the positive eigendirections of the underlying bilinear form.
See the work [13] for more discussions and experiments concerning this issue. It
turns out that the choice (11) hardly deteriorates the value of the cost function
in practical applications.

In a similar way, NG can be directly extended to arbitrary dissimilarity data,
yielding relational NG (RNG). Similarly, GTM can be extended based on the key
observation (8) since also for GTM, prototypes can be chosen as linear combina-
tions of data with coefficients summing up to one. Using Lagrangian functions, it
can be proved that this is automatically fulfilled for standard GTM [12]. To real-
ize the approach efficiently, the low dimensional latent space is directly mapped
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Fig. 1. Visualization of the protein data set incorporating 226 proteins in 5 classes
using RSOM (left) and RGTM (right).

to the space of coefficients, see [12]. For relational GTM (RGTM), however, an
interpretation by means of a stochastic model is not always clear due to the fact
that distances can become negative in pseudo-Euclidean space. For such settings,
an interpretation as density values is not obvious; in addition, numerical prob-
lems can occur. The publication [12] investigates this setting and demonstrates
the feasibility of the approach in several real life examples.

As for the standard Euclidean counterpart, relational GTM tends to display
data in a way more suitable for direct data visualization, since less distortions
take place for a reasonable number of base functions. One example is shown
in Fig. 1. Here protein sequences from different families are compared using an
evolutionary distance [22]. In total, 226 globin proteins with 5 different classes
are depicted. In both visualizations, the clusters separate according to the a
priori known classes. For the RSOM, the prototypes cover the data space with
many data being located at the map boundaries, while RGTM widely keeps the
internal arrangement due to its stiffness.

In Tab. 1, relational topographic mapping is compared to median approaches,
evaluating the techniques in a repeated cross-valiation considering the classifi-
cation accuracy on the test set for the chromosomes benchmark data. As can be
seen from the results, the larger flexibility offered by continuous prototype adap-
tation in relational topographic mapping leads to an improvement of almost 20%
for SOM and almost 20% for NG, arriving at a slightly better value than AP.
This fact can be explained by the much simpler numerical optimization of the
techniques if a more flexible continuous prototype adaptation is possible instead
of only discrete steps. Albeit convergence of relational topographic mapping is
not strictly guaranteed (since saddle points might be chosen instead of local
optima in case of negative eigenvalues of the corresponding pseudo-Euclidean
embedding), divergence never occurred in practical problems.
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5 Efficient approximations

Both, median and relational clustering suffer from a quadratic time complexity
as compared to linear complexity for their vectorial counterparts. In addition,
relational clustering requires linear space complexity since it stores prototypes in
terms of coefficient vectors representing the relevance of every data point for the
respective prototype. This fact makes the interpretability of the resulting map
difficult since it is no longer easily possible to inspect prototypes in the same
way as data points. Further, the quadratic time complexity makes the methods
infeasible already for medium sized data sets. Different heuristics have recently
been proposed in this context to speed up median and relational clustering.

Patch processing constitutes a very simple approach to derive a finite space
linear time method based on a prototype based technique. It has been proposed
in [1] in the context of the application of NG for streaming data, and, interest-
ingly, it even gives good results if data are not i.i.d. The main idea is to process
data consecutively in patches of fixed size. The prototypes counted with multi-
plicities according to their receptive fields represent all already seen data, and
they are included as regular points counted with multiplicities in the next patch.
This way, all information is taken into account either directly or in compressed
form by means of the prototypes.

If transferred to dissimilarity data, this approach refers to a linear subset of
the full dissimilarity matrix only: only those dissimilarities are necessary which
correspond to a pair of data in the same patch, further, distances of prototypes
representing the previous points and data points in a patch are used. In conse-
quence, an only linear subpart of the full dissimilarity matrix is used this way.
Since it is not known a prior which prototypes are used for the topographic
mapping, however, the method requires that dissimilarities can be computed in-
stantaneously during the processing. For real life applications this assumption is
quite reasonable; e.g. biological sequences can be directly stored and accessed in
a data base; their pairwise comparisons can be done on demand using sequence
alignment.

Median clustering can directly be extended in a similar way. Unfortunately,
such as median topographic mapping itself, it suffers from local optima due to
the limited prototype flexibility. In [29], a corresponding extension of affinity
propagation is proposed. Due to problems of AP to deal with multiple points,
however, the result is worse as compared to AP for the full data set, see Tab. 1.

For relational clustering a direct extension of the patch approach is not pos-
sible because prototypes are presented indirectly by referring to the data points.
This way, eventually, every prototype refers to all data, i.e. all pairwise dissimi-
larities have to be known to compute distances in between prototypes and data.
In the approach [13], a simple though efficient heuristic is proposed. A prototype
is approximated by a fixed number of data points k which are closest to the pro-
totype. These data points are taken to represent the already seen information in
compressed form for a new patch. Depending on the value k and the number of
patches, a different approximation quality is obtained. Tab. 1 displays the result
of relational NG and relational SOM when using patch clustering. As can be
seen from the results, a mild degradation of the accuracy (less than 5%) can be
observed due to the information loss. The method turns out to be rather robust
with respect to the choice of the approximation quality k and the patch size.
Further, it can deal with data which are not accessible in an i.i.d. fashion.
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The Nyström approximation has been introduced as a standard method to
approximate a kernel matrix in [26]. It can be transferred to dissimilarities as
presented in [11]. The basic principle is to pick M representative landmarks in
the data set which give rise to the rectangular sub-matrixDM,m of dissimilarities
of data points and landmarks. This matrix is of linear size, assuming M is fixed.
It can be shown (see e.g. [11]) that the full matrix can be approximated in an
optimum way in the form

D ≈ Dt
M,mD−1

M,MDM,m (12)

whereDM,M is induced by anM×M eigenproblem depending on the rectangular
submatrices of D. Its computation is O(M3) instead of O(m2) for the full matrix
D. This approximation is exact if M corresponds to the rank of D. It is possible
to integrate the approximation (12) in such a way into the distance computation
(8) such that the overall effort is linear with respect to m instead of quadratic.
This way, a linear approximation technique for relational clustering results. See
[11] for detailed formulas. The quality of the result depends very much on the
approximation quality of (12), i.e. landmarks should induce a representative
dissimilarity matrix. In consequence, the technique is not suited for data which
are not i.i.d. For representative landmarks, however, the result can be quite
good, as can be seen in Tab. 1: an approximation of the full dissimilarity matrix
using only one % of the data as landmarks deteriorates the result not at all
for RNG, and by only 4% for RGTM. Interestingly, the result can severely be
influenced by the choice of the landmarks: for RGTM, if we pick 10% of tha dat
as landmarks, the classification accuracy decreases by nearly 40%. This can be
associated to the fact that a highly skewed representation of the dissimilarity
matrix is obtained in this case due to the characteristic of the eigenvalue profile
of the corresponding dissimilarity matrix. Unlike patch processing, it is fixed
a priori which parts of the dissimilarity matrix are relevant for the Nyström
method. In consequence, this technique is suited if the dissimilarity matrix D is
available a priori, but access to entries of D and the topographic mapping are
costly.

As a final demonstration of the feasibility of the approach, we show the
result of an experiment in line with the early work of Kohonen for median
clustering [19]: GTM is used to visualize a portion of the SWISSPROT data
base containing sequences. 10988 sequences according to 32 different functional
classes characterized by prosit labels are considered. A GTM with Nyström
approximation with 100 landmarks yields the visualization as shown in Fig. 2.

6 Conclusions

We have presented an overview of topographic mapping of dissimilarity data
by means of median and relational clustering. Interestingly, popular techniques
such as SOM, NG, or GTM can be extended this way, opening the way towards
modern data analysis tools for general data formats described in terms of pair-
wise dissimilarities only. For large data sets, the squared complexity caused by
the size of the dissimilarity matrix makes the techniques infeasible already for
medium sized data sets. We have presented two techniques to arrive at efficient
linear time approximations which offer state of the art linear techniques to deal
with large data sets.
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Fig. 2. Around 10000 protein sequences compared by pairwise alignments are depicted
on a RGTM trained with the Nyström approximation and 100 landmarks. Posterior
labeling displays 19 out of the 32 classes defined by prosit for this data set in a topology
preserving manner.
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