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Abstract
The ‘Lombard effect’ consists of various speech adaptation mech-
anisms human speakers use involuntarily to counter influences
that a noisy environment has on their speech intelligibility. These
adaptations are highly dependent on the characteristics of the
noise and happen rapidly. Modelling the effect for the output side
of speech interfaces is therefore difficult: the noise characteristics
need to be evaluated continuously and speech synthesis adapta-
tions need to take effect immediately. This paper describes and
evaluates an online system consisting of a module that analyses
the acoustic environment and a module that adapts the speech
parameters of an incremental speech synthesis system in a timely
manner. In an evaluation with human listeners the system had a
similar effect on intelligibility as had human speakers in offline
studies. Furthermore, during noise the Lombard-adapted speech
was rated more natural than standard speech.

Index Terms: Speech synthesis, Lombard effect, Speech intelli-
gibility, Incremental processing, Adaptation, Interactive systems

1. Introduction
When people talk in a noisy environment, such as a busy pub,
their speech inevitably gets masked by other conversations, mu-
sic, ambient sounds from the bar, and so on. To make themselves
better understood to their conversation partners, speakers con-
stantly try to counteract the effect of masking by adapting their
speech, taking the characteristics of the noise into account. For
example (see [6] for a comprehensive review), they increase the
intensity of their speech to increase the signal to noise ratio; they
shift speech energy to higher frequency bands where the ear is
most sensitive; or use exaggerated pronunciation of phonemes
or words to make them less ambiguous and more recognisable.
This behaviour is known as the ‘Lombard effect’ [11].

Although many of the individual adaptation mechanisms
constituting the Lombard effect are known, models of these
mechanisms are often underspecified, in the sense that it is not
clear how exactly they react to (different) noise conditions. Sim-
ilarly, the degree to which each of them contributes to speech
intelligibility is still under discussion. It is also largely unknown
how individual adaptation mechanisms interact.

Lately, researchers started to use synthesis-based approaches
to study how Lombard-models influence intelligibility [6, 7].
Advanced models even work with non-stationary background
noise and change the synthesis parameters in parallel to changes
of the noise. Most of these models only work ‘offline’, i.e., they
need to know the background noise before synthesis.

This paper presents and evaluates a first system for ‘online’
Lombard speech synthesis. It analyses the auditory environment
continuously and updates the Lombard model parameters accord-
ingly. These are then used in an incremental speech synthesis
system (INPRO_iSS, [2]), which immediately incorporates the

model parameters into its synthesis process. In contrast to offline-
models of Lombard speech, such an online system is suitable for
use in interactive systems – for example conversational agents in
spoken dialogue systems – that operate in continuously changing
and hard to predict acoustic environments, such as for example in
cars or in industrial settings. Constructing online models of Lom-
bard speech poses new and interesting challenges – for speech
science as well as for research on speech synthesis – that are not
obvious from offline models.

2. Background
2.1. Lombard speech

For some adaptation mechanisms in Lombard speech, research
already provides good findings of the behaviour of speech para-
meters in changing noise conditions. In general, however, the
exact behaviour of many speech parameters, especially their in-
teraction, is not yet understood very well. For the most obvious
adaptation parameter, speech intensity, it is known that human
speakers increase the level of their voice linearly (simultaneously
emphasising higher frequencies), but only half as much, with
the perceived noise level [10]. This relatively small increase is
sufficient to compensate for the noise as multiple perception
channels are used during speaking and listening. This parameter
is known to be most effective (it straightforwardly increases the
signal-to-noise ratio) and well understood.

As a more advanced countermeasure, speakers increase the
fundamental frequency of their voice when noise is present [3].
This adaptation is done in a way that is sensitive to the exact noise
context. Human speakers temporarily shift their fundamental
frequency to a detected minimum in the noise spectrum [8].
Furthermore, the variation in fundamental frequency increases
up to about 0.8 tones. It is, however, not yet clear how the
increase in variation interacts with changes in noise [8].

Another adaptation observed in Lombard speech is speech
rate [21]. As many factors like phone duration and count and
duration of stops influence the rate of speaking, there is no simple
and universal measure for change in speech rate [15]. In general,
it is known that the duration of specific sentences increases
by around 30% in hyper-articulated speech [15], which is very
similar to Lombard speech [19]. Which noise level or type of
noise produces which changes in speech rate is, again, not yet
well understood. Further speech parameters, such as formants
or consonant–vowel ratio, are also adapted in Lombard speech,
but will not be modelled in this work. A comprehensive survey
of known adaptation mechanisms used in Lombard speech is
provided by Cooke and colleagues [6].

2.2. Adaptive speech synthesis

Research has embraced the possibility to use synthetic speech
to model and evaluate Lombard-adaptation mechanisms. With
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synthetic speech it is possible to control both the model-based
manipulation and the underlying speech itself, making the pro-
cess reproducible and objective in the sense that certain noise
characteristics always result in the same adaptation.

Synthesis-based Lombard speech usually results from spe-
cific Lombard-adapted voice-models that are obtained by deriv-
ing them from a corpus of human Lombard speech or by modify-
ing parameters of a non-Lombard adapted synthetic voice such
that it exhibits Lombard-like properties afterwards. Valentini-
Botinhao and colleagues, for example, do the latter by modifying
the Mel cepstral coefficients by optimising the distribution of
spectral energy according to a ‘glimpse proportion’ measure
[23]. Systems that use such specific voice-models for Lombard
speech have the limitation that they are not optimised for differ-
ent types of noise and are therefore suboptimal for systems used
in changing noise conditions.

A more flexible system for such conditions is C2H, which
implements a feedback loop that optimises vowel and consonant
space given the perceived environmental noise. This system is
not specifically generating Lombard speech, but is meant as a
computational model of hypo- and hyper-articulated speech [14].

Both systems took part in the ‘Hurricane challenge’ [7],
which aims at making synthetic speech as intelligible as possible
given a predefined noise sequence. While the challenge provides
an objective intelligibility rating for participating systems, it does
not measure their reactivity to noise, nor the human-likeness of
the resulting speech.

Online adaptation of synthetic speech has also been used
in different applications. Ström and Seneff, for example, have
implemented a turn-keeping strategy which increases loudness
using a pre-emphasis filter that specifically boosts the higher
frequencies of speech [20].

2.3. Incremental speech synthesis

Standard speech synthesis systems take text (e.g., a sentence)
as input, encode it into a speech signal, and then return the
audio signal to be delivered as output [22]. It is not possible to
change the speech output once it is encoded. This is problematic
in interactive applications, where speech output may need to
be altered quickly depending on factors that are not under the
system’s control and thus hard to predict (e.g., user actions or
noise in the environment), or when it is not yet possible to fully
specify the input text (e.g., when the environment is changing).

A solution to this problem is an ‘incremental’ approach
to speech synthesis. In incremental processing, a system is
“triggered into activity by a minimal amount of its characteristic
input and produces characteristic output as soon as a minimal
amount of output is available” [9, p. 70]. An incremental speech
synthesis system thus needs to be able to take partial input (e.g.,
the first few words of a sentence) and to produce initial audio
frames (rather than the complete audio signal) as output. While
delivering the audio frames already encoded, the input to an in-
cremental speech synthesis system may be extended, and not yet
delivered parts may be revised or re-synthesised with changed
parameters.

The system presented in this paper builds upon the incre-
mental HMM-based speech synthesis system INPRO_iSS [2],
an incremental version of MARYTTS [18]. INPRO_iSS reduces
lookahead context on each internal level of processing as much as
possible (with minimal impact on synthesis quality) and changes
processing to produce only as much output as is needed on
the next lower level for a ‘just-in-time’ delivery of speech [1].
Changes to a unit (e.g., a word, a phoneme) of synthesis can thus
be requested until shortly before its actual delivery.
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Figure 1: Schematic architecture of the online Lombard speech
synthesis system. Based on a real-time analysis of the character-
istics of the acoustic environment, the Lombard Module adapts
the synthesis parameters in the vocoder of the incremental speech
synthesis system INPRO_iSS while the system is speaking.

The way incremental processing is realised in INPRO_iSS,
via the ‘IU’-framework for incremental processing [17], makes
it highly suitable for modelling online Lombard-adaptation. Ex-
changing a word for another – a high-level adaptation – is pos-
sible until shortly before the word is delivered. Changing the
pronunciation of a phoneme (e.g., by lengthening) is possible
until the phoneme is delivered. Low-level adaptations, such as
changes to speech intensity, are even possible immediately.

INPRO_iSS realises changes in speech rate by simply skip-
ping or repeating vocoding parameters (for shortening or length-
ening, respectively). Speech intensity changes are realised by
boosting the speech energy and simultaneously emphasising
higher frequencies, via post-processing of the vocoding para-
meters, which results in a decrease of spectral tilt. Changes are
only possible in certain limits as the synthetic voices are not
constructed with highly flexible adaptation in mind.

3. System
The system for online Lombard speech synthesis consists of three
main modules: the noise-analysis module, the Lombard module,
and the incremental speech synthesis system INPRO_iSS (see
Figure 1). Additionally, the speech synthesis is controlled by the
ISS-control module that provides incremental input (text in form
of incremental unit networks, cf. [5]), and starts, pauses, and
stops speech output. The noise-analysis module and the Lombard
module run concurrently to the speech synthesis. This way, the
Lombard module can continuously adapt synthesis parameters
according to the acoustic environment and the implemented
model of Lombard speech. The following sections describe the
noise-analysis module and Lombard model/module.

3.1. Noise-analysis module

The noise-analysis module is connected to a microphone that
records with a sampling rate of 44.1 kHz. It characterises the
noise context in terms of (1) the sound pressure level (SPL) and
(2) the frequency with minimum amplitude. SPL is calculated
via the root mean square method. To find the global minimum
amplitude in the spectrum the Fourier transform for the limited
frequency bandwidth that is in reach of the female human voice
(175–275 Hz; [8]) is computed (we use a female synthetic voice).
To smooth these features, frames with the size of 214 (i.e., 16k)
samples (0.37 s), with an overlap of 75%, are used. This allows
for a higher update frequency without losing time resolution
of the Fourier transform. Furthermore, to enhance the accuracy,
each frame is multiplied with the Hann function. Both features
are passed on to the Lombard model.
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3.2. Lombard model and module

The Lombard module takes the features that characterise the
noise context, computes adjustments for speech parameters ac-
cording to the Lombard-model, and passes the adjusted paramet-
ers on to the incremental speech synthesis module INPRO_iSS.
To avoid abrupt changes in speech adaptation, the noise level
feature is smoothed again. For SPL this is done by using the mean
SPLnoise(t) = Mean(SPLt , . . . , SPLt−9) of the last 10 values in-
stead of the value SPLt of the current frame only. As a result, the
system needs around one second to fully accommodate a change
in the noise level. In the following, the adjustment of speech
parameters used in our system is explained in detail.

Voice intensity and spectral emphasis In general, the increase
in voice intensity and shift of spectral energy only depends on
the sound pressure level of the noise [10]. The ability to raise the
voice intensity in INPRO_iSS, however, is limited to a maximum
increase ΔImax of about 7–9 dB (see Section 2.3). Following
Lane [10], the intensity gain at each point of time in our model
is

I(t) =
SPLnoise(t)− SPLbase

2ΔImax
,

where SPLbase is the base sound pressure of the environment (set
to 46 dB) and ΔImax is the maximum increase in sound pressure
the system can counter (assumed to be 7.5 dB). Tests showed
that the sound pressure level of the voice in INPRO_iSS increases
roughly linearly with its ‘energy’ parameter (which ranges from
0 to 190) in the frame post-processor of the vocoder and is thus
set to I(t) ·190.
Fundamental frequency The long-term progression of the
fundamental frequency is adapted according to the findings of
Garnier and Henrich [8], i.e., the fundamental frequency raises
with the voice intensity. Since the synthetic speech starts to
sound unnatural above a fundamental frequency of 210 Hz, our
system is limited to a maximum f0-shift (Δ f0max) of 20 Hz. This
is much less than f0-shifts observed in human Lombard speech
(up to 100/200 Hz for male/female speakers, [8]).

Garnier and Henrich also found that humans shift the fun-
damental frequency towards minima in the noise spectrum – if
present and reachable by the voice [8]. The presence of such a
minimum is determined by comparing the variance of the last 50
minima fmin = [argmin f (At( f )), . . . ,argmin f (At−49( f ))] with a

threshold θ (set to 25 Hz in our system), where At( f ) is the
amplitude of frequency f in the spectrum of frame t. Combining
these two cases, the shift of the fundamental frequency Δ f0(t) is
thus modelled as

Δ f0(t) =

{
Mean(fmin) if Var(fmin)< θ ,
Δ f0max · I(t) otherwise.

In addition to the long-term progression, short-term vari-
ation in fundamental frequency is a second characteristic that is
modelled in our system. Based on the finding that the standard
deviation of the fundamental frequency increases in noisy condi-
tions [8], the difference between the fundamental frequency and
the frequency of each voiced frame is multiplied with a factor
α(t) that only depends on the intensity gain I(t):

α(t) = 1+αmax · I(t)
Here, αmax is the factor which increases the deviation of the
fundamental frequency by 0.8 tones, a value measured in human
Lombard speech [8]. The fundamental frequency parameter is
modified in the frame post-processor of INPRO_iSS’s vocoder.

Speech rate The Lombard model adjusts the speech rate lin-
early with changing noise levels. As the synthetic speech starts

to sound unnatural below a speech rate of 85%, a maximum
decrease of 0.15 – again less than reported for human Lombard
speech in the literature [12, 15] – was set. This is due to the
fact that the synthetic voice does not natively support lengthen-
ing and that the model of how speech rate influences phoneme
and pause durations in INPRO_iSS (see Section 2.3) does not
result in more frequent and longer pauses typical in human Lom-
bard speech [15]. Further, more complex phenomena such as
influences on glottal stops, consonant–vowel ratio, or phoneme
reduction are not modelled in the system, yet. In our model, the
adjusted speech rate at each point of time t is set in INPRO_iSS’
vocoder to be

SR(t) = 1−0.15 · I(t).

4. Evaluation
To evaluate the speech intelligibility and naturalness of the online
Lombard speech synthesis and the different adaptation models
presented above, a listening study was conducted. In a within-
subject experiment, participants listened to segments of a Ger-
man short story [16] synthesised in real-time with different de-
grees of Lombard-adaptation in non-stationary noise conditions.
After each segment of the story, participants assessed how nat-
ural the adaptations to the changing conditions were and how
intelligible the synthetic voice was. In contrast to the objective
Lombard speech intelligibility evaluation procedure used, e.g.,
in the Hurricane challenge [7], a subjective rating measure is
used here. Although this is potentially less accurate, it enables
an evaluation of longer stimuli that allow significant changes of
background noise to occur within one stimulus.

4.1. Setup

Participants sat in front of a computer that ran the online Lom-
bard speech synthesis system, controlled the experiment, and
displayed the evaluation questionnaires. Non-stationary back-
ground noise was played from two speakers (M-Audio AV40
Studiophile) set up behind the computer and recorded with a mi-
crophone (Samson Go Mic USB) that fed into the noise-analysis
module. Speech, synthesised in the German female MARYTTS-
voice ‘bits1-hsmm’ with default settings, was played to the parti-
cipants via ‘open-back’ headphones (Turtle Beach PX22). This
setup made it possible for participants to hear both the voice as
well as the background noise, without creating a feedback loop
between the speech output and the noise-analysis module.

A multi-babble noise from a bar [13] was used as the back-
ground noise and its loudness level was systematically changed
between approximately 46 dB and 60 dB during play-back. Peri-
ods of low and high intensity were between 3–7 s long (sampled
from a uniform random distribution) with 0.5 s linear transitions.

The short story was segmented into 32 parts, each between
20–30 s long (with the exception of the final segment, which
had a length of approximately 50 s). For each participant, each
segment was assigned to one of the following four synthesis
conditions, reflecting different degrees of Lombard-adaptation:

NA The speech parameters were not adapted with changing
noise conditions

VI Voice intensity and spectral emphasis was adapted

FF+SR Fundamental frequency and speech rate was adapted

VI+FF+SR Voice intensity and spectral emphasis, fundamental
frequency, and speech rate was adapted

Assignment to conditions was random, but balanced such that
for every set of four participants each segment is paired with all
conditions and each condition occurs with the same frequency.
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Figure 2: Boxplots of participants’ ratings of the items naturalness, understood words, and understood meaning by synthesis conditions
(NA: no adaptation; VI: adaptation of voice intensity and spectral emphasis; FF: adaptation of fundamental frequency; SR: adaptation of
speech rate). Scores are z-transformed by participant and item, higher scores are better.

4.2. Procedure

Participants read a written description of the study, were able
to ask questions, and, based on this information, consented to
participate. They were then seated in front of the computer, put
on the headphones and listened to the synthetic voice providing
more detailed instructions. Participants were told to regard this
voice as the baseline for later assessments.

After instructions were given, the study was self-guided.
Participants started each segment of the short story with a mouse-
click. The background noise began playing with the start of the
speech output and ended together with the segment. After each
segment participants assessed the synthetic speech by rating a
single item on naturalness and two items on intelligibility on a
7-point Likert-scale displayed on screen:

Naturalness How do you rate the naturalness of the synthetic
voice in increasing noise conditions? (unnatural—natural)

Words I understood every word (none—every)

Meaning I understood the meaning (not at all—fully)

They then proceeded to the next segment and were debriefed
after the final segment.

4.3. Results and discussion

Ten students and employees from Bielefeld University volun-
teered to participate in the evaluation study. The data of two of
them had to be discarded due to technical difficulties with the
system (as this was noticed immediately, the balance over the
conditions could be maintained nevertheless). All participants
were native speakers of German and reported normal hearing
capabilities. Participants received a sweet for their participation.

The ratings of each participant for each of the three items
was z-transformed to allow for easier comparison between parti-
cipants. The results are visualised in Figure 2. As can be seen,
the VI condition (voice intensity and spectral emphasis based
Lombard-adaptation) as well as the VI+FF+SR condition (voice
intensity and spectral emphasis, fundamental frequency and
speech rate based Lombard-adaptation) were consistently rated
higher (i.e., higher perceived naturalness and speech intelligibil-
ity) than both the NA condition (with the normal, non-adapted
voice) and the FF+SR condition.

The adaptation of fundamental frequency and speech rate,
however, had no effect on naturalness or intelligibility: The
FF+SR condition is rated similar to the NA condition (albeit with
a larger interquartile range and longer whiskers, which could be
interpreted as uncertainty of participants). The VI+FF+SR condi-
tion is also rated similarly to the VI condition (here the increase
in intensity seems to have masked any perceivable differences).

The result that an increase in speech intensity entails an
increase in intelligibility matches the finding from Garnier and
Henrich’s study of human Lombard speech [8]. Effects of funda-
mental frequency and speech rate adaptation on speech intelli-
gibility could not be found in our evaluation.

One reason for this may be that the adaptation of funda-
mental frequency, and speech rate found in human Lombard
speech could not be fully modelled with the speech synthesis
system used. The dynamics of the Lombard-models had to be
limited, because the HMM-voice starts to sound unnatural when
parameters are set to more extreme values.

However, the non-result for these parameters came not fully
unexpected. Although adjustment to fundamental frequency and
speech rate is found in human Lombard speech, Garnier and
Henrich note that these adaptations are subtle and less prominent
than increases in speech intensity [8]. Similarly, Bradlow and
colleagues found that fundamental frequency and speech rate in
general do not have a large impact on speech intelligibility [4].

5. Conclusion and outlook
This paper presented a first system for online Lombard speech
synthesis which adjusts synthesis parameters in order to main-
tain a high level of intelligibility in changing noise conditions.
Such a system has useful applications in interactive systems –
for example spoken dialogue systems – that are used in noisy
environments. The system was evaluated with different models
of Lombard speech in a listening experiment and it was found
that online adaptation of voice intensity and spectral emphasis
increased speech intelligibility and was rated to be more natural
in noisy conditions than normal speech. A more subtle and ad-
vanced Lombard-adaptation model, however, did not have an
effect on intelligibility and perceived naturalness.

While building the system, two general problems were en-
countered: (1) Current synthetic voices are less dynamic than
the human voice and thus limited in adaptability. It is therefore
not possible to model all research findings of human Lombard
speech with ‘off-the-shelf’ synthetic voices and speech synthesis
systems. (2) As experimental studies on the human Lombard
effect usually examine a limited number of noise conditions,
empirical models are often underspecified for online Lombard-
adaptation in speech synthesis which needs continuous models
of how speech parameters are to be adapted. To make significant
improvements to online Lombard speech synthesis for interact-
ive systems, further research, both on the engineering and on
the empirical side, is needed. Nevertheless, the limited models
employed here may already be a useful improvement to speech
interfaces used in noisy environments.

The source code of the software (Noise and Lombard mod-
ules) as well as supplementary material on the evaluation study
is available upon request: http://purl.org/net/lombard
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