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Modeling the Knowledge Base

of Mathematics Learners:
Situation-Specific and
Situation-Nonspecific Knowledge

IPKE WACHSMUTH

Introduction

This chapter describes an approach to modeling the domain-specific knowl-
edge of mathematics learners in a predicate-logic formalism suited for com-
puter implementation. Two hypotheses are central to this approach. First,
a person’s cognitive behavior is a knowledge-based process that evolves
from relatively simple component processes of an inferential nature. The
complexity of a person’s observed behavior in a domain depends on the
knowledge base: how many facts and rules he or she has and how these
facts and rules are organized. Second, a person’s behavior in a task situa-
tion is generally not supported by the total body of his or her long-term
knowledge. Rather, it is assumed that knowledge must be activated to be
used in a given situation and that the accessibility of particular knowledge
depends on contextual cues in the situation. The degree to which particular
knowledge is contextually bound with respect to a set of specific situations
is called situation specificity.

The activation of particular knowledge may depend on various kinds
of contextual information. Significant context information is carried by
the language involved in communicating a task situation. Language is a
primary carrier of instructional transactions and is thus a dimension to be
considered in modeling the knowledge of mathematics learners along with
the dimension of operational knowledge as captured by the rule-based
approach. This discussion focuses on the linguistic dimension.

The chapter begins with a brief discussion to motivate and exemplify
the issue of situation specificity. A short introduction to computerized
learner models follows. The major part of the chapter presents a logical
programming approach to modeling student knowledge on the basis of
a representation system implemented in the PROLOG (PROgramming in
LOGic) language. Principles followed in modeling student knowledge are
presented and discussed. Finally, an outline is given of how the approach
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could lead to the development of a student modeling component in an
intelligent tutoring system.

Situation Specificity and Inconsistent Student Behavior

It is a frequent observation in mathematics instruction that learners who
master a task when it is posed in a standard setting may stumble when the
“same’” task is embedded in a new context; for example, an applied situa-
tion. A possible effect is that a learner gives different answers to a mathe-
matical question posed in different contexts. In this sense the learner’s
behavior can be inconsistent across different situations involving the same
sort of mathematics.

Empirical investigations have shown that learners’ ability to apply
knowledge of a subject domain cannot be considered independently of
the context in which that knowledge was acquired (Seciler, 1973). When
subjects have had to demonstrate their knowledge in settings that deviated
from the situational context of instruction, they have not always been able
to do so. While formal thinking structures arise from the individual’s ex-
perience with specific problems in specific situations, they rarely reach an
unrestricted, universal generality. Without further guidance an individual
may not be able to apply a given rule in novel situations. Further, it is very
probable that in one individual and with respect to one subject domain,
different thinking structures can coexist that can become activated alter-
nately, depending on the symbol system primarily triggered or cued by a
situation (in particular ¢f. Seiler, 1973, p. 268).

From clinical research in the realm of rational number learning, Wachs-
muth (1985a, 1985b) has presented examples that illustrate some of the
points mentioned previously. One fifth-grade subject’s behavior in com-
paring the size of several fractions gave cvidence of having knowledge but
being unable to use it optimally in an applied situation. The evidence in-
dicated that the activation of knowledge was inhibited by the latency of,
and a lack of mutual access to, relevant subdomains of fraction knowl-
edge. It was hypothesized that the subject used one repertory of rules to
make judgments about the equivalence or nonequivalence of fractions and
another repertory of rules to determine the sequence (in magnitude) of
nonequivalent fractions. When the second repertory was employed heavily
in arranging a set of 12 fractions according to their order relationship as
numbers (represented by different gray shadings), some fractions that had
originally been recognized as being equivalent were treated as uncqual.
The activation versus nonactivation of the different sets of rules might
explain why the subject exhibited inconsistent behavior with respect to
stating the equivalence of certain fractions.

On the basis of another fifth grader’s performance, two competitive
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domains of fraction knowledge, specific to situations governed by certain
language, were identified. Triggered by contextual cues, each domain
could be activated independently of the other, but a connection across
the different situations was lacking. When the interviewer contrasted con-
tradictory answers given in the different contexts, the inconsistency in the
subject’s knowledge base caused a cognitive conflict to occur.

With respect to the psychology of learning, the issue of inconsistency is
crucial. First, any serious attempt to improve instruction must recognize
and deal with the fact that isolated, possibly incompatible, domains—
“islands™ of knowledge—can exist in the human mind and give rise to
inconsistent behavior. Second, the discovery of inconsistencies can yield
important hints about flaws in a learner’s knowledge base and indicate
where to invest remedial efforts. Identifying the conditions and laws of
a student’s inconsistent behavior prepares the grounds for remediation.
Remediation so grounded will promote mature conceptions that are con-
sistent and stable across a broad range of situations,

In summary it is the intent of any instruction to bring about knowledge
that is widely applicable. That knowledge tends to remain situation specific
seems to require particular instructional attention. Such restriction in a
learner’s developing cognitive structure might be overcome by intelligent
guidance that diagnoses the learner’s condition and evaluates appropriate -
tutorial strategies. A central requirement for such an effort is that the
cognitive structures of a learner be understood in terms of a framework
that allows precise description of deficits.

Learner Models

Good teaching requires an understanding of the learner’s thinking. A good
teacher’s instructional efforts are not restricted to preplanned behavior but
can respond to a diagnosis and remediation of the learner’s misconcep-
tions. To make decisions about pedagogical interventions successfully,
teachers must be able to put themselves in the learner’s place, that is, make
a model of the student’s current thinking.

The construction and use of formal learner models is expected to pay off
in improved instruction through better understanding of the organization
of the learner’s subject knowledge. Computerized learner models have
become very important in attempts to apply artificial intelligence tech-
niques for educational purposes in intelligent tutoring systems. In such
a system a computer tutor diagnoses the student’s errors and leads the
student to an understanding of them. To do this the system uses the col-
lected knowledge base of experienced teachers of the subject domain.

Three components comprise the general framework of an intelligent -
tutoring system (cf. Barr & Feigenbaum, 1982, pp. 229-235):
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1. An “expert” component, which is charged with the task of generating
problems and evaluating the correctness of the student’s solutions

2. A student-model component, which is to represent the student’s current
understanding of the material to be taught

3. A tutoring component, incorporating knowledge about natural-lan-
guage dialogues, teaching methods, and the subject area

The core of this approach is to compare, in a given problem situation, the
student’s actual response with an ideal interaction generated by the expert
component (Figure 4.1). The difference will then be evaluated in order to
make a decision about appropriate tutorial strategies.

In most instances so far, work has concentrated on the construction of
single components of an intelligent tutoring system. Learner models are
regarded as one of the most important components in the construction of
intelligent tutoring systems but also have been found to be among the most
difficult. A number of approaches have attempted to model individual
students’ understanding of the material to be taught; for example, by keep-
ing catalogs of the student’s response history or by setting “learned/not
learned” flags in the rule base or in a subject-matter semantic net. Other
approaches have modeled student knowledge as a deviation from expert
knowledge. (For a more extensive review of this field cf. Barr & Feigen-
baum, 1982, pp. 231-232). The issue of situation specificity is scarcely
captured by such approaches, because they focus mainly on facts and rules,
while the context-bound quality of such “particles of knowledge™ is of
concern here.

The notion of a learncr model is concretized for the present purpose
as follows: A learner model is a system that makes concrete assumptions
about a student’s way of acting in specific situations. The generality versus

Situation

Difference Model !

S

Ficure 4.1. Difference model: Learner’s suboptimal performance is explained as
deviation from optimal performance.
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specificity of a particular way of acting is then captured by the range (i.c.,
number and sort) of situations associated with it.

In order to design a computer-implementable representation for learner
models, the first goal is to specify a representation language that can ex-
press pieces of student knowledge and model the use of such knowledge. A
second goal of particular importance with respect to intelligent tutoring
systems 1s the design of a component that generates and updates actualized
hypotheses of individual learner knowledge.

As a mecans to describe and analyze the representation and use of do-
main-specific knowledge concisely, a formalized learner model, LAKOS,
was developed at the University of Osnabriieck. (LAKOS is an acronym
standing for the German translation of logical analysis of cognitive organ-
izational structures.) lts main intent is to derive hypotheses about the
cognltwe structures of individual learners. Such hypotheses, expressed
in terms of the model, should provide ““logical” explanations for learners’
behavior even if the behavior appears irrational at first glance. A com-
puterized version of the model, based on the technique of logical pro-
gramming, has been developed. It models learner knowledge in terms of
network structures as formulated by a human experimenter.

The LAKOS model emphasizes the following:

1. The linguistic competence of the learner, in the sense of what words are
available to the learner, what mcanings are associated with these, and in
which contexts they are available and understood

2. The operational competence of the learner, in the sense of what abstract
ways to act (rules) are available to the lcarner and in which situations
they can be activated and used

3. The organization of the learner’s knowledge as a basis for the flexibility
of his or her performance

4. The disparity or connectedness of knowledge substructures

5. The generality or specificity with respect to the class of situations in
which particular rules can be used

Although so far the construction of learners’ knowledge structures must
be accomplished by a human experimenter, these efforts can be an impor-
tant precursor for conceptualizing intelligent tutoring systems. Whether
our goal is to improve instructional strategies or to develop computerized
teaching systems, the main objective of modeling a learner’s knowledge
structures remains the same: to obtain hypotheses about the learner’s mis-
conceptions and suboptimal behavior such that the teacher, or the system,
can intervene in a corrective manner. In the same way that a good teacher
should be able to understand the behavior of a learner, especially where it
deviates from ideal behavior, intelligent tutoring systems should be able to
diagnose origins of behaviors in terms of a lecarner model on which to base
decisions about tutorial interventions.
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Description of the LAKOS Model

The first implemented version of the model is the LAKOS1 system. It
was conceptualized as a deductive question-answering system (Black,
1968) not restricted to a specific subject matter and was implemented in
the PROLOG language (a Micro PROLOG version, MLOG, was used;
Gust & Gust, 1984). The system can hold natural language dialogues of
a restricted, standardized form with a user. The user proceeds by asking
questions or probing behavior as if in a diagnostic interview. The computer
takes the role of a person, some rudiments of whom are modeled in the
machine, and answers questions or executes commands from the person’s
point of view. The system’s responses are displayed on the terminal. They
represent the actions or answer statements of the person as predicted by
the model. If the user asks why the computer model gives a reason for its
most recent answer.

The design of any such system requires both the specification of a repre-
sentation scheme for bodies of facts and a method for deriving conclusions.
In the LAKOSI] system, the representation scheme is a combination of
formal logic and a network approach, and the reasoning method is deduc-
tive inference based on the resolution procedure (Robinson, 1963). As
“world-dependent” components the knowledge base and the parser and
generator need to be specified with respect to a specific application.

The reactions of the LAKOSI1 system are generated as knowledge-based
processes. The elements in the knowledge base are formulated as rules
and facts. The rules are conditional statements, each consisting of one
or more phrases, the antecedent(s), followed by an arrow, followed by
another phrase, the consequent. Facts are included as rules without ante-
cedents. In this approach there i1s no clear distinction between declara-
tive and procedural knowledge. A rule has a declarative meaning as a
descriptive statement about its constituents. In addition it has a procedural
meaning by virtue of being executable by the interpreter. As 1s usual in the
PROLOG language, rules are written in reverse, beginning with the con-
sequent, interpreted as a goal that recurs on the antecedents as subgoals.

A prototypical instantiation of this model 1s the TERRI program, which
was first presented in 1984 at the 5th International Congress on Mathe-
matical Education in Adelaide (Carss, 1986; for more information cf.
Wachsmuth, 1985a). Due to the economy of PROLOG, this program runs
on an Apple II micro computer (with Z80 processor). It models responses
from an uncertain pupil, not only to “straight™ questions such as “Which

is greater, % or %? but also to questions asking why the student gave a

particular answer, for example, % is greater than % [sic] because they

have the same number on top and 4 is greater than 3. The student re-
sponses are not necessarily mathematically consistent but are modified in
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the light of what wordings are used or what questions have already been
asked by the user. Empirical clinical data from a long-term experimental
teaching study carried out in the United States (the Rational Number
Project') served as a basis for the instantiation of the model.

As is seen in Figure 4.2, the LAKOSI system consists of a dialogue inter-
face, a knowledge base referred to as long-term memory, and three pro-
cesses, PARSE, EVALUATE, and RESPONSE, which constitute components in
the cognitive processing carried out by the system. Because of the limited
subject matter for the TERRI program, it was possible to design a rela-
tively simple natural language interface. (A parsing routine for arbitrary
English sentences would be far more complex than the entire deductive
system.) Further components of the system are a (semantic) short-term
memory and a mechanism regulating the activation of knowledge coded in
long-term memory, referred to as focus.

A working cycle of the system consists of three major steps:

1. pARSE transforms an input sentence into an expression in the representa-
tion language, activating a subset of the knowledge recorded in long-
term memory.

2. EvALUATE scarches the activated part of the knowledge base for relevant
information and makes inferences to produce an answer internally.

3. RESPONSE generates a language answer and returns it to the terminal.

The results of the most recent inferences are kept in short-term memory
for possible usc in the evaluation of further queries. If the process fails at
any step, an appropriate message is put out.

The knowledge in long-term memory is organized in the form of a
knowledge network. The nodes in this network contain lexical language
records and knowledge of a particular field of discourse in the form of rules
that are interpreted as abstract ways to think and act. A single record in a
node of the knowledge network is referred to by the term knowledge ele-
ment. A knowledge element can be employed when it is marked active and
when the data or part of the data of an input string match its structure.

The activation of knowledge is realized through the focus mechanism,
which tags the network nodes that are currently accessible. The focus can
shift along the links in the network during a dialogue in progress, causing
a dynamic partitioning of the knowledge network into active and inactive
knowledge. In this sense access structures are determined by the topology
of the network. When a whole working cycle is completed, the focus re-

! Data and findings used stem from the Rational Number Project, which was in part
supported by the National Science Foundation under Grants No. SED 79-20591
and No. SED 81-12643. Any opinions, findings, and conclusions expressed here are
those of the author and do not necessarily reflect the views of the National Science
Foundation.
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Fiure 4.2. The LAKOS] dialogue system. Light arrows denote access; heavy
arrows denote information flow. Shaded region refers to inactive knowledge.

mains at the current node as starting focus for the next input which one
could interpret as a “‘mind sct”.

The central idea of this modeling approach is that the potential actions
an individual is able to perform are determined by his or her knowledge
network. The explanatory power of the model thus lies in the fact that its
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actions in the course of a simulated dialogue arise from the organizational
structuring of its knowledge base.

Principles in the Modeling of Student Knowledge

As the basis for the model, it is assumed that individual structures of
human memory—the “knowledge network™—are constituted by (1) sets
of knowledge elements (“packets of knowledge™) and (2) connections
between these (*“‘organizational network™). A knowledge packet is com-
posed of a single node or a subnet consisting of several nodes (that is, a
knowledge packet can be further structured). In the first instance only
tree-structured networks were assumed; if there is a theoretical reason to
do so, more general structures can also be represented.

The modeling of learner knowledge was exemplified in the realm of
rational number learning with particular respect to size comparisons of
fractions. Students’ ability to make relative size judgments about fractions
has been found to be an indicator for their development of a quantitative
understanding of rational numbers (Behr, Wachsmuth, Post, & Lesh,
1984).

Based on the general model discussed previously, the hypothetical
knowledge structures of individual learners concerning size comparisons
of fractions were described in a tree-structured network. Modular pieces
of learner knowledge were derived from subject answers given in clinical
interviews and were captured in rules that were stored in indexed memory
nodes. We present the general guidelines we followed to represent the
operattonal competence of particular students:

1. Partition the subject domain into subclasses that require specific ways
to act.
2. Select test items to assess the student’s performance with respect to
these subclasses.
3. Formulate rules based on the student’s explanations.
4. Specify an appropriate node index to integrate a rule in the knowledge
network.

For example, the following major subclasses of the particular subject
domain, size comparisons of fractions, were distinguished (cf. Behr et al.,
1984):

SN: Comparison of same-numerator fractions, for cxample, 3 and 3

SD: Comparison of same-denominator fractions, 5 and }_%
2

GE: Comparison of general fractions, 2 and g or % and g
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Some words of explanation just for the first two subclasses: While chil-
dren’s early performance 1s frequently found to be dominated by whole-
number schemas (e.g., “‘one third is less than one fourth because three is
less than four™), they will eventually need to separate their thinking from
the whole-number schemas and acquire a rule that puts fractions with the
samc numerators in the reversed order relation with respect to their de-
nominators. In contrast the order relation of same-denominator fractions is
consistent with the order relation of the whole numbers in the numerators.
But here it is sometimes observed that at one stage the new rule that puts
same-numerator fractions in correct order is overgeneralized and used to
order same-denominator fractions in reversed fashion (e.g., “three fifths is
less than two fifths’"). At a later stage this kind of overgeneralization may
be prevented by way of further discrimination of task characteristics (same
numbers in the numerators vs. in the denominators).

TasLE 4.1. Formulation of rules based on subject responses to items in fraction
subclasses early in teaching experiment.

Sample answers in subclass SN

Band 3
& 8

“Three eighths [is less].” Explain. ““It takes more to cover.”
3and 3
6 8
“Omnc is less. Three eighths.” Explain. “It would take more 10 cover the unit.”
Source
[tems B1-3.1 and B1-3.6, Bert (age 10:0)
Verbal description
“The second onc of two fractions with equal numerator is less, if the first denominator is
lcss than the second one.™
Rule
(= XY (P XMV < = (1Ess*Y*Y)

Sample answers in subclass SD*
3 and_.ﬁ__
3 6
“One’s less. Five sixths.” Explain. “1t would take more to cover,™
3 and 2
6 6
“Three sixths.” Explain. “Oh, no, five sixths is less™ (shakes his hcad in his hands).
Explain. *Tt takes more to cover the umit.”
Source
Items B1-4.1 and B1-4.6, Bert {age 10;0)
Verbal description
“The second one of two fractions with cqual denominator is less, if the first numcrator is
less than the sccond one.™
Rule
(> (X"Y) (*UY)) < = (1rss*X* U)

SD, same denominators:; SN, same numerators.
“ Incorrect ordering of 8D fractions due to overgeneralization of reversed order relation.
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Such stages in the gradual development of a learner’s ability to master
tasks in the item classes mentioned can be captured in the model by
different knowledge networks that model different levels of the learner’s
competence with respect to the taxonomy of the tasks. Tables 4.1 and 4.2
show basic examples of how student answers were used to obtain rules.?

Rules of thumb were derived from the experimental use of the model
with the objective of reproducing protocols from interview sessions with
subjects. Such “rules of thumb™ were used to specify the node indexes. For
example:

® Rules that are older with respect to the student’s learning history are
put in “higher” nodes, whereas rules acquired more recently are put in
subordinate nodes.

TaBLE 4.2. Formulation of rules based on subject responses to items in fraction
subclasses later in teaching experiment.

Sample answer in subclass SN
S and 3
12 9
“One’s less. Five twelfths.™ Explain. **Well, the pieces, the twelfths are smaller, so . . .
but the . . . that means they're smaller, the larger number on the bottom ar top is
smaller. . . . If the top number is the same, then the larger number on the bottom means
that’s smaller.”
Source
Ttems 11-2.2, Bert (age 10:2)
Verbal description
“The first one of two fractions is less if the numerators arc cqual and the second
denominator is less than the lirst one.”
Rule
(< ("X*Y) (*U*V)) < = (80*U*X) (LESS*V*Y)

Sample answer in subclass SD*

b and Y
7 7

"One’s less. Six sevenths.™ Explain. “There arc not as many pieces covered or shaded.”
Source

Item I1-3.1, Bert (age 10:2)
Verbal description

“The first one of two fractions is less if the denominators are equal and the first

numerator is less than the sccond one. ™

Rule

(< (*X'Y) (FU*V)) < = (8Q*Y*V) (LEss"X*U)

5D, same denominators; SN, same numerators,
* Differcntiation between size of pieces (reflected by denominator) and number of pieces
(reflected by numerator) prevents overgeneralization.

2 Terms like “cover”, “pieces”, etc. refer to imagined physical representations of
fractions as were used in the instruction.
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® Rules that are observed in a common context are given the same node
index.

¢ Rule nodes that are observed to be accessible from one another are
linked to lie on a path.

® Rule nodes that are observed to be disparate are given separate access
paths from the superordinate node.

As explained in the introduction, the contextual dependency of a
learner’s operational competence is (partly) reflected in the way that the
student understands certain words. The representation of learner knowl-
edge uses the following guidelines to incorporate this linguistic aspect:

e [dentify “significant” words with respect to the subject domain, that
is, words that possess a specific meaning as distinguished from everyday
language or words that are observed to trigger certain behavior. (Signifi-
cant words serve to activate parts of the knowledge base.)

® “Rules of thumb™:

The more generally available a significant word, the “higher” is the node
index for integrating the word in the knowledge network; in the ex-
treme, a word that is observed to be available in all contexts with the
same meaning 1s put in the highest node.

The more specific a significant word, the “lower” is the node index for
the word; in the extreme, a word available in only one context (“key
word”) is put in a leaf node (cf. Table 4.3),

Two words, cach of which is observed to be available in only one context
at the same degree of generality/specificity, obtain the same node index.

Whereas words that are understood across different contexts give access
to a larger part of the knowledge base, key words limit the rules available
for inferences to the rules on the path to the leaf node that holds the key
word. With respect to the network representation, there is no principal
distinction between language knowledge and operational knowledge other
than declaring particular entries to be of type TaLK or type RULE. As “ele-
ments” of a learner’s knowledge, both types of entries may be put in the
same node. Thus, particular words may be associated with particular ways
to act.

Toward a Learner Module in an Intelligent
Tutoring System

The LAKOS model was developed primarily with a psychological intent,
namely, to obtain a better notion of the way in which the organizational
structuring of the “knowledge base” of a learner gives rise to particular
kinds of behavior. So far, a human experimenter formulates the descrip-
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TaprE 4.3. Identification of key words based on situational dependence of subject
respanse to items within subclass SD.
Question was: i[ractionl: and ;fraction2:, are they equal or is one fess?
9 and L
24 24
“They're cqual. Same size pieces and it takes the same amount to cover and the same size
pieces. [gestures] “They're equal.” OK, what about the 9? “That'd be nine pieces and
seven picees. . .. They're cqual.” What exactly do you mean by “they are equal™'?
“They have the same size pieces, 5o you know.”
6 and 12
15 15
*They'rc cqual. Because they have the same denominator.™
Source
Items VII-2.4 and VII-3.2, Terri (age 11:6)
Key phrase
EQUAT OR ONE LESS

Dircctions were to arrange [ractions in order
5 and 12 )
15 15
6

(Puts 15 left ni'%} Explain *Becausc 6 comes before 12 so [ thought

that’s the way you doit.”
Source

Item VI1-3.1, Terri (age 11;6)
Key word

QRDER

SD, same denominators.

tions that specify the knowledge base of an individual student on the basis
of assessments of the student’s performance and explanations. To do this
the experimenter makes judgments about how to capture particles of the
student’s knowledge in rules and about how to integrate them in a knowl-
edge network. In a sense the experimenter acts as an expert in the for-
malization of student knowledge, using heuristics, rules of thumb, and so
on as previously described.

The following discussion explores how the approach presented could
lead into the construction of a learner-model module to be incorporated in
an intelligent tutoring system. Although these ideas are preliminary and
none has yet been implemented in such a system, they may help to clarify
possible directions for further work.

The question to be attacked in the context of intelligent tutoring systems
is how to go about having an automated learner-modeling component
generate hypotheses about a learner’s domain-specific knowledge in the
course of instructional sessions. Two things are necessary. First, the design
of a representation system for learner knowledge and, second, the design
of processes to generate and update assumptions about the user of the
tutoring system during teaching dialogues and diagnostic assessments.
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Although the modeling approach presented in the preceding sections
seems to cover some of the requirements for a representation system, the
second topic has yet to be dealt with. In principle it requires that the ex-
perimenter’s expertise in representing learner knowledge be made explicit
enough to be captured in rules that can be executed by a computer.

A hard approach, which certainly would involve a lot of effort, might
be to let the system conduct diagnostic dialogues with the user on the
basis of which the rules are inferred by the system. Technically, it does
not seem totally absurd to parse students’ explanations to obtain strings
in the semantic representation language. These could then serve to be
generalized into rules. But if this idea were technically realized, it would
probably be at high cost, at least on the basis of the technology currently
available for the processing of natural language. Furthermore, bounds
would probably be reached when students could not sufficiently explain
their actions.

A way that seems much more feasible at the present stage is the follow-
ing. An empirical screening in the particular field of subject matter will
make known many strategies that students use. Some strategies—both
correct and incorrect—will be common to many learners. Such data are
available from the Rational Number Project (c.g., Behr et al., 1984), and
probably from work in a number of other areas. A catalog of possible rules
formally describing such strategies can then be incorporated into the sys-
tem, grouped by subclasses within which they are ordered by increasing
sophistication (e.g., in terms of the number of subgoals in a rule). The
following steps could yield a description of a learner’s current knowledge
in the domain:

® Match the student’s performance on selected test items with rules in the
relevant subclass.

® For each item choose the first (i.e., simplest) rule that produces the same
response as the student.

® Choose an adequate node index (according to the subclass), and inte-
grate the rule in the knowledge network.

Although a rule selected in this way may not completely mimic the stu-
dent’s actual thinking, it at least captures the student’s behavior in the
sense of an “axiomatic characterization.”

A major problem to be dealt with in this approach occurs when a student
uses idiosyncratic rules with outcomes that are not produced by any of the
rules in the catalog. Another problem appears when a student exhibits
inconsistent behavior even within a subclass of items without variation of

contextual conditions. For example, a student may know that % cquals %

but will order less familiar cquivalent fractions according to some whole
number relationships of numerators and denominators, like 4 less than 9.
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Although this case could be dealt with by creating subnodes that allow
further discrimination of item characteristics, great problems would occur
when a student responded inconsistently to different presentations of the
same test item with no situational variations observable.

The next question would be how to change the rule base when changes
are observed in consecutive diagnostic assessments carried out by the
system. So far, in the psychological approach to the implementation of a
reproductive simulation model, no rule previously employed is ever taken
off the network. (This allows modeling processes of “backsliding” to
seemingly cradicated behaviors.) Rather, if a “new” rule is diagnosed that
produces different behavior in situations that were already included in
the model, a constraint is imposed on the “‘old” rule, which intercepts its
employment when inadequate by making finer discriminations of situa-
tional characteristics. Although the justification for this way of modeling is
explicitly psychological, it would probably be sensible for an intelligent
tutoring system to kcep track of students’ “old” rules in order to recognize
fallbacks.

This article raised the issue of situation specificity to make an argument
that tutoring must not be approached too naively. If the aim of a tutoring
system is to bring about progress in a learner’s ability to utilize knowledge
in a broad range of situations, then the following two general objectives for
such a system should be taken into account:

® To help the learner master a set of rules that can support successtul per-
formance in the subject matter in question

® To enable the learner to use these rules in a sufficiently varied set of
situations to ensure that the learner’s rules will be evoked in a variety of
contexts

These objectives are derived from the following pragmatic assumption:
Only when learners exhibit consistent success with a variety of applied situa-
tions involving a subject matter can they be assumed to have developed a
sufficiently general understanding of the subject matter to predict success in
an even broader class of situations.

Consequently, the question arises, how shall we represent sitnational
characteristics of learner knowledge in the student module of an intelli-
gent tutoring system? Earlier we suggested that situational competence is
characterized by the learner’s command of certain language. A possible
way to model the situation specificity of a learner’s rules, then, might be
the following: We need to link a node holding rules of operations relevant
to certain situations as a superordinate to nodes holding linguistic units that
characterize those situations. Then the relevant rules would become active
by activation of any subordinate node. In case only a single situation node
can trigger activation of a rule node, that knowledge would have to be
regarded as situation specific. The more specific situations are represented
in nodes subordinate to a rule node, the broader the range of situations



78 Wachsmuth

in which that knowledge can be activated. If all in a predetermined set
of situational descriptions sclected for instructional tutoring are found to
be linked to the corresponding rule node, then that knowledge would be
termed situation nonspecific (with respect to the objectives of the tutoring
system).

In the LAKOS model as prototypically specified, levels of different
specificity of a student’s rules can be distinguished with respect to situa-
tions typified by certain language. We have presented some ideas about
how this approach could be developed into a student-model module of an
intelligent tutoring system. These ideas are still far from full realization
and exploitation. Probably the hardest problem to be dealt with is the
diversity of reasons that cause learners to make errors (see the illuminat-
ing discussion of this issue by Davis, 1982). At the present stage one may
be modestly optimistic that progress in the modeling of student knowl-
edge will make some sort of “intelligent’ tutoring possible upon further
advancement of current developments.
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