
Persistent Objects with O2DBI

Jörn Clausen∗

Center for Genome Research

Bielefeld University, Germany

13th October 2000

∗jc@Genetik.Uni-Bielefeld.DE

Contents

1 Introduction 4

2 The Beauty of Objects 5

2.1 Methods versus Procedures . 5

2.2 Doing it in Perl . 7

3 Persistent Objects and Relational Databases 9

3.1 Two Worlds . 9

3.2 Mapping Objects to Tables . 10

3.3 Doing it again in Perl . 11

4 Code generation with O2DBI 14

4.1 A simple Example . 14

4.2 Using O2DBI . 15

4.3 Modules generated by O2DBI . 17

4.4 Using the modules generated by O2DBI 19

5 Current limitations and planned enhancements 21

5.1 Things missing from the implementation 21

2

5.2 Plans for the future . 22

3

1 Introduction

This document describes O2DBI. This Perl module helps you to utilize the advan-
tages of object-oriented programming and relational databases at the same time.
You are able to define a set of objects, which are then transparently stored in a
database. Thus objects are made persistent, and can be accessed from different
locations.

I assume that the reader as some basic knowledge about object-oriented program-
ming and relational databases. To keep the examples simple, all code fragments
are shown without error handling. Don’t try this at home! Always check return
values.

4

2 The Beauty of Objects

2.1 Methods versus Procedures

Object-oriented languages, object-oriented programming, OO in short has become
very popular during the last ten years. Some important languages were created
by augmenting successful languages with objects, e.g. C++ and Perl5. Others were
designed right from the start with OO technologies in mind, like Python.

OO-capable languages usually come with some more advanced methods, like over-
loading or exception handling (which are not directly OO-related), and inheritance
and information hiding. One purely syntactical feature, which for itself already
may advocate using an OO approach, is the enhanced readability of programs
written in an object-oriented language.

Table 2.1 shows a comparison of two small code fragments. Their purpose is to
store and access data on some persons, which are identified uniquely by their IDs.
In the imperative version on the left side, the name of the person is extracted by
the function id2name . In the OO version, the person is represented as an object,
which is instantiated by the method init . The name can be queried by applying
the method name to the object. Two more functions and methods are available
to extract the address of the person and the appropriate zipcode. But the object-
oriented version is far more elegant, as it introduces a new class for addresses. Note
that twice an anonymous object is created, by calling the method address on
$person . Then appropriate methods are used on this anonymous address object.

$personid = 1234;
$name = id2name($personid);
$address = id2address($personid);
$zipcode = extract_zipcode($address);

$person = person->init(1234);
$name = $person->name;
$address = $person->address->printable;
$zipcode = $person->address->zipcode;

Table 2.1: A comparison of imperative and OO programming

5

$ctitle = cd_id2title($cdid);
$btitle = book_id2title($bookid);

sell_cd($personid, $cdid);
sell_book($personid, $bookid);

$ctitle = $cd->title;
$btitle = $book->title;

$book->sell($person);
$cd->sell($person);

Table 2.2: Name clashes, and avoiding them

One common annoyance in imperative programming is, that you can easily create
name clashes. Think of an application where you are dealing with books and CDs.
Both are again identified by unique but unrelated IDs (i.e. you can have a book
and a CD with the same ID). If you want to know the title of a book and the title
of a CD, a simple function id2title wont do, as the function cannot know if it
received the ID of a book or a CD. Usually, you end up with the solution shown
in table 2.2. As a result, your program will be cluttered with long and complicated
function names. In OO world, you don’t even have this problem. You have two
methods title , and depending on what object you apply this method, the Right
Thing is done. Each object ”knows“ which method it has to use, as it is the method
defined in its own class. Table 2.2 assumes that appropriate objects already have
been instantiated. But if you want to get just the title of a CD, you can even do

cd->init($cdid)->title

and forget the object immediately afterwards.

Another benefit of OO notation is a better detection of common programming
glitches. In table 2.3, some functions and methods are shown to sell books and
CDs to persons. The functions deal only with numerical IDs, so you have to pay
attention to pass a book ID as parameter to sell_book . You can easily mix things
up, e.g. confusing the order of the parameters. Even in stronger typed languages
than Perl such problems would go unnoticed. Using the OO version, such errors
are harder to program and easier to detect. It’s a matter of taste, if you define a
method sell inside the book and CD classes, or a method buy inside the person
class. In the latter case, this method can be called both with book and CD objects.
Either the method can determine what is currently sold, or both classes define a
set of common methods, so that the buy method doesn’t have to know if it sells
a book or a CD. Confusing the order of parameters is much harder. In the last
example, a person is bought by a book. On the one hand, this will throw an error
when executing the code, as the book class does not have a method buy . On the
other hand, carefully reading this code should make the programmer suspicious.

6

sell_book($personid, $bookid);
sell_cd($personid, $cdid);
sell_book($bookid, $personid);

$book->sell($person);
$person->buy($cd);
$book->buy($person);

Table 2.3: Passing parameters, type checking

2.2 Doing it in Perl

Defining classes in Perl is quite easy. A class is just a Perl module, and an object
is a reference to a variable which ”knows“ from which class it was instantiated.
Inside a class, you define constructors, destructors and methods, which are just
ordinary subroutines defined in the module. Data encapsulation usually forbids
direct access to the attributes of an object. Instead, methods have to be used to
store, read or modify data inside an object.

As an example, consider another person class. The module has a constructor new
and two methods name and dob to get or set the name of the person and the
date of birth, respectively. Probably there are other methods. Part of the module
is shown in table 2.4. The package statement tells Perl that the following code
defines a class person . The method new can be used to create new person objects.
It takes as arguments the name of the person and the date of birth:

$person = person->new(’Joe User’, ’1.1.1970’);

Inside the method, the data is stored in a hash. A reference to this hash is blessed,
i.e. turned into an object. The reference is then returned to the caller of the con-
structor. Now each method applied to this object is looked up in the same module
as the constructor.

package person;

sub new {
my ($class, $name, $dob) = @_;

my $person = { name => $name,
dob => $dob,
... };

bless($person, $class);
return($person);

}

Table 2.4: The constructor of the person class

7

sub name {
my ($self, $name) = @_;
if (defined($name)) {

$self->{name} = $name;
}
return($self->{name});

}

Table 2.5: Getting or setting an attribute

One such method is name, which can be used to get or set the name of the person.
When used without an argument, the name of the person is returned:

$name = $person->name;

When called with an argument, it is stored as the new name:

$newname = $person->name(’Joe N. User’);

In addition, and as check if an error occured, the newly set name is returned. Table
2.5 shows the implementation of this method. Other methods accessing the basic
attributes of an object are very similar.

8

3 Persistent Objects and Relational Databases

3.1 Two Worlds

Objects are short-lived things. When the application terminates, all currently in-
stantiated objects are discarded, and their contents are lost. In larger applications,
where you deal with massive amounts of data, this is usually not desired. When
you store data inside an object, this data has to be ”remembered“, so that you can
use the same object again later. Objects need some kind of persistence.

Databases are used to store large amounts of data. Although there are different
types of databases, the most widespread are relational databases. The basic idea of
an RDBMS (Relational Database Management System) is to store data inside tables.
The virtue of creating a database schema is to come up with appropriate tables
for your application. You try to model a view of the real world, which has to be
correct, sufficient and non-redundant.

So, how do objects and databases fit together? At first glance, these are two dif-
ferent worlds, with very different concepts. In OO-land, an object represents an
entitity, which is clearly seperated from all other objects. In an RDBMS, data con-
cerning a single ”thing“ can be spread across several tables. A single table contains
data of all the other ”things“ as well. So the same information can have two very
different representations, when stored inside objects or inside a database.

Surprisingly, this dilemma can be solved rather easily. Objects can be mapped to
tables, so a relational database can be used to store the data contained in objects.
The interesting fact is, that this mapping process can be fully automated. When
designing an application, the developer can think in terms of objects, and some
tool derives the database schema to store these objects in an RDBMS.

9

book
title string

author string
pages int

isbn string

book
oid title author pages isbn
.
.

Table 3.1: Mapping a class to a table

3.2 Mapping Objects to Tables

The process of transforming a class description into a database schema is straight
forward. For simple objects, that contain only atomic member variables, the class
is represented by a table with one column for each attribute. Each object is then
stored as one row in the table. In addition, each row, i.e. each object, gets an
additional field called object identifier. This is a numerical value, which identifies
each object uniquely in the table. In other words: It is the primary key of this table.
This oid will be used later to reference objects. Table 3.1 shows a class description
and the corresponding table.

As one book may have several authors, the object shown in table 3.2 is more re-
alistic. Instead of one author, an array of authors is associated with each book.
The corresponding description of such a one-to-many relation within a database is a
seperate author table, which is connected to the book table via keys. The column
book_oid contains the object identifier of the corresponding book. To reconstruct a
book object from the database, one row from the book table and all rows from the
author table containing the appropriate book identifier have to be read.

As one author may have written several books, an even more realistic description

book
title string

authors array of string
pages int

isbn string

book
oid title pages isbn
.
.

author
book_oid author

.

.

Table 3.2: Mapping arrays to external tables

10

book
title string

authors array of author
pages int

isbn string

author
name string

country string
DOB date
DOD date

book
oid title pages isbn
.
.

book_author
book_oid author_oid

.

.

author
oid name country DOB DOD
.
.

Table 3.3: Describing many-to-many relations

is the one shown in table 3.3. The authors are modeled as a seperate class, with
some additional information. The book object now contains an array of author
objects instead of strings. This allows one object to be used in several books, which
also reduces the redundancy of the stored data. To describe such a many-to-many
relation in a database, three tables are necessary. Again, the objects (books and
authors) and their atomic attributes are transformed to tables. An additional table
connects books and authors by matching book oids with author oids.

3.3 Doing it again in Perl

The methods from section 2.2 are easily extended to communicate with a rela-
tional database. Instead of a simple constructor new, two new methods are in-
troduced to instantiate objects. Two cases have to be covered: Creating a new
object from scratch and creating a new object based on data already stored in the
database.

To create a brand-new object, a method create is used. It is similar to the new
constructor shown above, but as a side effect the data is written to the database.
To uniquely distinguish the object, a new object identifier has to be assigned. The
create method from the person class is shown in table 3.4. This and all following
examples assume, that a global DBI handle $dbh is available, i.e. the connection
to the database has already been established.

11

sub create {
my ($class, $name, $dob) = @_;

fetch a new object identifier
my $id = newid(’person’);

store the data inside the database
$dbh->do(qq {

INSERT INTO person (id, name, dob) VALUES ($id, $name, $dob)
});

create the object
$person = { id => $id,

name => $name,
dob => $dob };

bless($person, $class);
return($person);

}

Table 3.4: Creating and storing a new object

To reconstruct an object from data already in the database, the method init is
used. Its usage was shown very briefly in section 2.1. This constructor takes as
argument the object identifier that was assigned to the object when it was created
by the create method. Table 3.5 shows the implementation. More constructors
are possible and usually necessary. Sometimes it is handy to instantiate a person
object based on the name of the person instead of its oid.

The methods for accessing the attributes are extended, too. In table 3.6, the
method name now writes a new name directly back to the database. In this ap-
proach, the data is read once from the database and written back immediately,
every time an attribute is updated. Other methods are possible:

• The data can be read every time, when it is accessed. Instead of storing
the attributes inside the object, each call of a method like name queries the
database. This will decrease the performance, but can ensure correct data,
when concurrent applications access the database.

• Writing back the data can be defered until the object is destroyed. The
destructor of the object is responsible for storing all attributes inside the
RDBMS. This may increase the performance, depending on how often data
is changed within one single object. But changes may get lost, e.g. if the
application crashes and the destructor is not executed.

12

sub init {
my ($class, $id) = @_;

fetch all data associated with the given ID
$sth = $dbh->prepare(qq {

SELECT name, dob FROM person WHERE id=$id
});
$sth->execute;
($name, $dob) = $sth->fetchrow_array;
$sth->finish;

create the object
$person = { id => $id,

name => $name,
dob => $dob };

bless($person, $class);
return($person);

}

Table 3.5: Reconstructing an object from the database

sub name {
my ($self, $name) = @_;
if (defined($name)) {

$id = $self->id;
$sth = $dbh->prepare(qq {

UPDATE person SET name=? WHERE id=$id
});
$sth->execute($name);
$sth->finish;
$self->{name} = $name;

}
return($self->{name});

}

Table 3.6: Database aware access to an attribute

13

4 Code generation with O2DBI

4.1 A simple Example

Using the methods shown in the two previous chapters, it is easy to create a set of
persistent objects. You get a collection of modules that share a lot of common or
similar code. All the modules contain the same types of constructors and methods
to access their member variables. Obviously, generating this code automatically
would be a great benefit. This would save the programmer from a lot of typing,
and the number of errors would be reduced.

O2DBI is such a tool. The object schema is given as a Perl program, that generates
all modules and the necessary SQL commands to initialize the database. Table 4.1
shows the description of the author class from table 3.3.

When executing this script, O2DBI generates several files:

• For each class, a module with the shown standard methods is generated. In
the example above, one file called author.pm is created. It is placed inside
a directory simpleDB , which is the name of the project, as given in the last
line of the script. You can include this class in your own applications with

use simpleDB::author;

• For each class, a second file is generated. In this example it is called au-
thor_add.pm . Initially, this file is empty, except for a few comment lines.
The developer can use this file to add more methods to the class. These
methods cannot be described in an abstract way, so they have to be ”hand
coded“. author.pm reads author_add.pm , so all methods defined in this
file are members of the class.

When the O2DBI script is executed again, all the main class modules are
overwritten, to reflect changes in the object schema. But none of the addi-
tional modules are regenerated, if they already exist. The developer may only
change code inside the _add.pm modules, not the base modules.

14

use O2DBI;

%schema = (’author’ => {
members => {

’name’ => ’CHAR(40)’,
’country’ => ’CHAR(40)’,
’dob’ => ’DATE’,
’dod’ => ’DATE’
},

creator => [’name’, ’country’, ’dob’],
constructors => [

[’name’]
]

}
);

O2DBI->deploy(\%schema, ’simpleDB’, ’postgres’);

Table 4.1: The author class in O2DBI

• A file DBMS.pmis placed inside the project directory. This file opens a con-
nection to the database and provides a DBI database handle. It is used by the
class modules internally, it must not be used inside any application directly.

• A file with the necessary SQL statements to initialize the database is gener-
ated. In this example, it is called simpleDB.sql . It creates all the necessary
tables and defines indexes where appropriate. The database administrator has
to create a database simpleDB and execute these statements.

4.2 Using O2DBI

To describe the object schema for O2DBI, you collect all class definitions inside a
hash. The keys of this hash are the names of the classes. Table 4.2 shows this part
of the code to describe a more complex schema.

The value for each key is a hash reference, denoted by the curly braces. Each of
these hashes contains three keys: members, creator and constructors . The
contents of these keys define the member variables, the parameters of the create
method, and the available constructors to instantiate objects based on data inside
the database.

15

%schema = (’author’ => {
...

},
’book’ => {

...
},
’cd’ => {

...
}

);

Table 4.2: Defining several classes

The value of the members key is another hash reference. Each key in this hash is
a member variable of the class. The value is the type of the variable. It has to be
a valid SQL expression, that will be used later for the appropriate CREATE TABLE
statement. Two special entries for keys and values are allowed:

• The member name may be prefixed with an @. Instead of an atomic variable,
this denotes a list (or array, hence the perlish ”at“ sign) of the given type.
O2DBI then creates an additional table, as shown in table 3.2.

• Instead of an SQL type, the value may be ”ref on “ followed by the name of
an object. This describes a reference to another object.

Both extensions may be mixed, i.e. you can have a list of references to objects.
Table 4.3 shows all possible combinations. The fourth entry is used to describe the
situation shown in table 3.3.

The value of the creator key is a list reference. This list consists of those at-
tributes, that are passed to the create method. The attributes are usually those

%schema = (’book’ => {
members => {

’title’ => ’CHAR(40)’,
’@keyword’ => ’CHAR(40)’,
’publisher’ => ’ref on publisher’,
’@author’ => ’ref on author’

}
);

Table 4.3: Types of members

16

known at create time of the object. Certain other attributes, e.g. ”date of death“,
are not necessarily known when the object is created. Instead of passing an empty
or null value, they are not passed to the constructor.

The value of the constructors key is a reference to a list of lists (i.e. a list of
references on lists). Each list defines a constructor, similar to the init -method
shown in table 3.5. But instead of the object identifier, the constructor expects the
attributes given in the list. In the example in table 4.2, a method initby_name
would be generated, that returns the appropriate author object to a given name.
This implies that the name has to be unique. This is enforced by creating a unique
index on the corresponding table.

To convert the object schema into real code, O2DBI’s only method is used, deploy .
It is called with a reference to the hash, a project name and the type of database.
All modules are written to a directory with the same name as the project. If this
directory does not exist, it is created. O2DBI currently supports ”postgres “ and
”mysql “ as types of database.

4.3 Modules generated by O2DBI

Each module generated by O2DBI has the same structure. In the following descrip-
tion, these symbolic names are used:

BaseName The base name of the project, i.e. the name of the database and the
name of the directory, to which all modules are written.

class The name of the class.

$obj An instance of an object from that class.

$arg An argument passed to a method.

attr The name of an attribute.

Each module contains these methods:

$object = BaseName::class->create($arg1, $arg2, $arg3)
A new object is created and inserted into the database. The arguments are
those specified in the create directive in the description file.

$object = BaseName::class->init_id($id)
A new object is instantiated, based on data read from the database. The object
is identified by the oid $id .

17

$hashref = BaseName::class->fetchallby_id
All objects of the class are instantiated an returned as a hash reference. The
key to the hash is the object identifier, the value is the corresponding object.

$object = BaseName::class->init_attr($arg)
$object = BaseName::class->init_attr1_attr2($arg1, $arg2)

An object is instantiated, based on the passed atributes. For each element of
the creator list, an appropriate method is generated. If a list contains more
than one attribute, their names are concatenated by underscores.

$hashref = BaseName::class->fetchallby_attr
$hashref = BaseName::class->fetchallby_attr1_attr2

Similar to fetchallby_id , parallel to each constructor a method is gener-
ated, that returns a hash reference with all objects. The keys to this hash are
the values of the attributes, concatenated with commas.

$listref = BaseName::class->fetchall
All objects are instantiated and returned, but this time as a list reference. If
the order of the objects is not relevant, this method may be used instead of
one of the fetchallby_ methods.

$listref = BaseName::class->fetchbySQL($whereclause)
With the methods above, either single objects can be instantiated, or all ob-
jects together. But in a lot of cases, a set of objects is needed, based on certain
selection criteria. This can be done by using this method. As argument, a
fragment of SQL code is expected, that can be used as a WHEREclause in a
SELECTstatement. For example

$listref = simpleDB::person->fetchbySQL(’age>=20 AND age<=45’);

would select all persons with an age between 20 and 45 years, assuming that
the person class has an attribute age . The SQL code has to be valid, other-
wise the database will return an error. Only values from the corresponding
table (person in this case) can be tested in the clause.

$object->delete
The data associated with the object is deleted from the database and the
object is destroyed.

$id = $object->id
The object identifier of the object is returned.

$value = $object->attr
$retvalue = $object->attr($newvalue)

For each attribute, a corresponding method is generated. The method can
be used to read or write the value of the attribute. If the method is called
without an argument, the current value is returned. If an argument is given,
the attribute is set to this new value. The database is updated immediately. To
check for possible errors, either the new value or an error code are returned.

18

$retvalue = $object->mset({ attr1 => $value1, attr2 => $value2})
Each time the value of an attribute is changed, the database is updated. If sev-
eral attributes of the same object are changed at the same time, this results in
a number of subsequent connections to the database. To reduce the number
of connections, these method calls can be accumulated with this method. It
expects a hash reference as argument, with the attributes as keys, pointing to
the new values.

4.4 Using the modules generated by O2DBI

Table 4.4 shows a short Perl script that uses the author class from table 4.1. Af-
ter including the module with the use statement, all methods from the class are
available. First, a new object is created and written to the database. The object
identifier that was assigned to this object is printed. Next, the object with the oid
1234 is instantiated back from the database and the name of that author is shown.
Next, all authors are fetched from the database, and the stored data is printed.

Most of the methods return the value ”-1“ to indicate an error. Table 4.5 shows
the recommended code to check if e.g. the init method succeeded. You should
always check if the constructors returned an object or an error code.

19

use simpleDB::author;

$joe = simpleDB::author->create(’Joe User’,
’Germany’,
’1.1.1970’);

print "Joe User was assigned id ".$joe->id."\n";

$someone = simpleDB::author->init_id(1234);
print "fetched author 1234, which is ".someone->name."\n";

foreach $author (@{simpleDB::author->fetchall}) {
$name = $author->name;
$country = $author->country;
$dob = $author->dob;
$dod = $autor->dod;
print "$name from $country, born $dob, deceased $dod\n";

}

Table 4.4: Usage of the author class

$joe = simpleDB::author->init_id(1234);
if ($joe < 0) {

die "can’t initialize author object for oid 1234\n";
}
$name = $joe->name;

Table 4.5: Checking the return value of a method

20

5 Current limitations and planned
enhancements

In the current version of O2DBI, several features described in this paper are not
present or not fully working. O2DBI is useful for creating prototypes of software
very fast, but some aspects of the current design reduce its useabilty for large, real
world applications. Of course the author intends to overcome these limitations
and make O2DBI suitable for more complex problems. Feedback concerning this,
and every other aspect of O2DBI is always welcome.

5.1 Things missing from the implementation

Although described in section 4.2, the data types available for the attributes are
limited. Currently, only atomic types are fully supported. Neither lists of val-
ues nor references to other objects are supported. O2DBI can parse the shown
notation, and the generated tables are correct (including necessary normalization
steps), but the associated methods are not working yet. Part of this problem can be
solved rather easily: Instead of using ”ref on object “, use ”INT “. Instead of an
object, the associated method then expects the object identifier of the referenced
object. So, instead of writing

$publisher1 = $book1->publisher;
$book2->publisher($publisher2);

you simply use

$publisher1 = simpleDB::publisher->init_id($book1->publisher);
$book2->publisher($publisher2->id);

21

’cd’ => [
members => {

’title’ => ’CHAR(40)’,
’@songs’ => {

’title’ => ’CHAR(40)’,
’index’ => ’INT’,
’length’ => ’INT’

}
}

Table 5.1: A struct-like data type

This is a little bit more verbose, and the error checking leaves a little bit to be
desired, but it is working.

Lists of things are not working at all. Currently, O2DBI understands another nota-
tion, but again, the generated methods do not support it. You can define struct-like
fields, as shown in table 5.1. These can even be nested. O2DBI performs all the
required normalizations, but you cannot access these tables with the generated
methods.

Access to the database should be nearly invisible to the application programmer
and the user. The DBMS.pmmodule provides a database handle, that is used by
all class modules. No additional login information or passwords may be used to
create this handle. In certain situations, e.g. when dealing with sensible data, this
may be impossible.

5.2 Plans for the future

Of course, all current limitations should be removed within the next releases of
O2DBI. Other enhancements are possible and desirable:

• Caching of objects. Once an object is init ed from the database, further
initializations should use it instead of rereading the data from the database.

• Better support for more databases. Currently, PostgreSQL and MySQL are sup-
ported. The generated SQL code can be made more portable among different
RDBMSs.

• Supporting other languages. Although the object schema is currently defined

22

as a Perl script, this does not limit the generated code to be Perl. Modules or
classes for other languages can be generated, e.g. Java or Python.

• Defining the object schema language independant. In the very early stages of
O2DBI, the schema was defined by an XML document. This was dropped in
order to concentrate on the real function of O2DBI, and not to be distracted
by the parser. Once the syntax for the object schema has settled, describing
it in XML again will be an easy transition.

23

Bibliography

[1] Scott W. Ambler. Mapping Objects To Relational Databases. White paper, Am-
bySoft Inc., 1999.
http://www.AmbySoft.com/mappingObjects.pdf

[2] Wolfgang Keller. Mapping Objects to Tables - A Pattern Language. Technical re-
port, 1997.
http://www.objectarchitects.de/arcus/publicat/mapo2t.ps.gz

24

