Human-Computer Interaction

Termin 4: The Computer

Designing interactive systems

The **PACT** framework (*Benyon et al., 2005*)

Interacting with computers

to understand human-computer interaction ... need to understand computers!

The computer

a computer system is made up of various elements

each of these elements affects the interaction

- input devices text entry and pointing
- output devices screen (small&large), digital paper, virtual reality
- physical interaction e.g. sound, haptic, bio-sensing
- memory, processing, ...

How many computers ...

in your house?

- PC
- TV, VCR, DVD, HiFi, cable/satellite TV
- microwave, cooker, washing machine
- central heating
- security system

can you think of more?

in your pockets?

- PDA
- phone, camera
- smart card, card with magnetic strip?
- electronic car key
- USB pen drive

try your pockets and bags

A 'typical' computer system

- ? iscreen, or monitor, on which there are text and windows
 - keyboard
 - mouse/trackpad
 - variations
 - desktop
 - laptop
 - PDA

- Devices vs. interaction
 - existing devices dictate the supported styles of interaction
 - devices especially designed for certain interaction modes
 - if we use different devices, then the interface can support different styles of interaction

Input devices: text entry

keyboards chord keyboards, phone pads handwriting, speech

Keyboards

- ☐ Most common text input device
- Allows rapid entry of text by experienced users (faster than hand-writing)
- Keypress closes connection, causing a character code to be sent
- Connected by cable or wireless
- □ Inherited from type writers, first keyboard in 1874 ("Remington No. 1")

layout – QWERTY

layout – QWERTY

- ☐ Standardised layout, but ...
 - non-alphanumeric keys are placed differently
 - accented symbols needed for different scripts
 - differences between languages
- Everybody uses QWERTY, but arrangement <u>not optimal</u> for typing!
 - layout to prevent typewriters jamming
 - common combinations of consecutive letters placed at different ends of the keyboard
 - Anecdote: try typing "typewriter"
- Alternative designs allow faster typing, but large social base of QWERTY typists causes reluctance to change

alternative keyboard layouts

Alphabetic

- keys arranged in alphabetic order
- not faster for trained typists, not for beginners either

Dvorak

- since 1932
- common letters under dominant fingers
- biased towards right hand
- common combinations of letters alternate between hands
- 10-15% improvement in speed and reduction in fatigue
- But large social base of QWERTY typists produce market pressures not to change

layout - Dvorak

special keyboards

designed to reduce fatigue for repetitive strain injury (RSI)

Maltron left-handed keyboard for one handed use

Kinetics keyboard

Chord keyboards

- □ only a few keys (4-5)
- □ letters as combination of keypresses
- □ compact size ideal for portable applications
- □ short learning time keypresses reflect letter shape
- □ Fast once you have trained
- ☐ Social resistance, plus fatigue after extended use
- ☐ Niche market for some wearables

Phone pads and T9 entry

use numeric keys with multiple presses

```
2 - a b c 6 - m n o

3 - d e f 7 - p q r s

4 - g h i 8 - t u v

5 - j k l 9 - w x y z

hello = 4433555[pause]555666

surprisingly fast!
```

- ☐ T9 algorithm for predicting entries
 - type as if single key for each letter
 - use dictionary to guess right word
 - hello = 43556 ...
 - give options when ambiguities like 26 -> 'am' or 'an'

Numeric keypads

for entering numbers quickly

- calculator, PC keyboard
- ☐ Telephone, ATM

not the same!!

calculator/ keyboard

Handwriting recognition

- Text can be input into the computer using a pen and a digesting tablet
- □ Lots of technical problems:
 - capturing all useful information stroke path, pressure, etc., in a natural manner
 - segmenting into individual letters
 - interpreting individual letters
 - coping with different styles of handwriting
 - speed
- Used in PDAs and tablet computers, leave the keyboard
- on the desk!
- □ But...

Speech recognition

- ☐ Almost every device comes with a mic
- □ Improving rapidly
- Most successful when:
 - single user initial training and learns peculiarities
 - limited vocabulary systems
 - used with headset or telephone
- Problems with
 - external noise interfering
 - imprecision of pronunciation, speed, varying prosody
 - large vocabularies
 - different speakers and dialects

Dictate directly to your Mac with ViaVoice, but remember to speak slowly and clearly.

Input devices: pointing and drawing

mouse, touchpad trackballs, joysticks etc. touch screens, tablets eyegaze

Mouse

- □ Handheld pointing device
 - very common
 - easy to use
- □ Two characteristics
 - planar movement
 - buttons usually from 1 to 3 buttons on top, used for making a selection, indicating an option, or to initiate drawing, etc.
- Mechanical vs., optical

Mouse

- □ Located on desktop
 - requires physical space
 - little arm fatigue
- ☐ Only relative movement detectable
- ☐ Movement of mouse moves screen cursor
 - Cursor oriented in (x, y) plane, mouse movement in (x, z) plane ...

- ☐ *indirect* manipulation device
 - device itself doesn't obscure screen
 - accurate and fast
 - hand-eye coordination problems for novice users

...in practice, every monitor has fingerprints.

Touchpad

- small touch sensitive tablets
- □ 'stroke' to move mouse pointer
- □ used mainly in laptop computers
- good 'acceleration' settings important
 - fast stroke
 - □ lots of pixels per inch moved
 - □ initial movement to the target
 - slow stroke
 - □ less pixels per inch
 - □ for accurate positioning
- combined with keypad functions

Trackball and thumbwheels

Trackball

- ball is rotated inside static housing (like an upside down mouse)
- relative motion moves cursor
- indirect manip. device, fairly accurate
- separate buttons for picking
- used in some portable and notebook computers
- meant to reduce RSI

Thumbwheels ...

- for accurate CAD two dials for X-Y cursor position
- for fast scrolling single dial on mouse

Joystick & trackpoint

Joystick

- Absolute vs. isometric
- Isometric: pressure of stick = velocity of cursor movement
- buttons for selection on top or on front like a trigger
- often used for computer games and 3D navigation

Keyboard trackpoint ("nipple")

- for laptop computers
- miniature joystick in the middle of the keyboard

Discrete positioning controls

- ☐ in phones, TV controls etc.
 - cursor pads or mini-joysticks
 - discrete left-right, up-down
 - mainly for menu selection

Touch-sensitive screen

- □ Detect the presence of finger or stylus on the screen.
 - works by interrupting matrix of light beams, capacitance changes or ultrasonic reflections
 - direct pointing device
- Advantages:
 - fast, and requires no specialised pointer
 - good for menu selection
 - suitable for use in hostile environment, clean and safe from damage.
- ☐ Disadvantages:
 - finger can mark screen
 - Imprecise, finger is fairly blunt
 - lifting arm is tiring

Stylus & light pen

Stylus

- small pen-like pointer to draw directly on screen
- may use touch sensitive surface or magnetic detection
- used in PDA, tablets PCs and drawing tables

Light Pen

- detects light from screen
- does not work with LCDs
- now rarely used

both ...

- direct pointing, obvious to use
- can obscure screen

Eyegaze

- control interface by eye gaze dir.
 - e.g. look at menu item to select it
- uses laser beam or infrared light reflected off retina
- mainly used for evaluation
- potential for hands-free control
- □ high accuracy requires headset
- cheaper and lower accuracy devices available, sit under the screen like a small webcam

Output devices: displays

bitmap screens (CRT & LCD) large & situated displays digital paper

bitmap displays

- screen is vast number of coloured dots
 - Resolution
 - □ number of pixels, SVGA 1024 x 768, PDA 240x400
 - □ density of pixels (dots per inch), 72-96 dpi
 - aspect ratio (between width and height)
 - ☐ 4:3 for most screens, 16:9 for wide-screen TV
 - colour depth
 - □ number of different colours for each pixel
 - □ 8 bits each for red/green/blue = millions of colours
- ☐ CRT vs. LCD

CRT - health hazards!

- ☐ X-rays: largely absorbed by screen (but not at rear!)
- □ UV- and IR-radiation from phosphors: insignificant levels
- □ Radio frequency emissions, plus ultrasound (~16kHz)
- □ Electrostatic field leaks out through tube to user
 - Intensity dependant on distance and humidity. Can cause rashes by accelerating dirt particles.
- ☐ Electromagnetic fields (50Hz-0.5MHz). Create induction currents in conductive materials! Two types of effects:
 - visual system high incidence of cataracts in operators
 - concern over miscarriages and birth defects
- □ Do not...
 - sit too close, use very small fonts, use for long periods without a break, place directly in front of a bright window, work in not well-lit surroundings
- ☐ Take extra care if pregnant

special displays

Random Scan (Directed-beam refresh, vector display)

- draw the lines to be displayed directly
- no jaggies ("Treppeneffekt")
- lines need to be constantly redrawn
- rarely used except in special instruments

(b)

Direct view storage tube (DVST)

- Similar to random scan, but with semipermanent storage grid underneath phosphors
- Persistent, no flicker
- Can be incrementally updated but not selectively erased
- Used in some analogue oscilloscopes

large displays

- □ used for meetings, lectures, etc.
- technologies

plasma

- usually wide screen

video walls

- lots of small screens together

projected

- RGB lights or LCD projector

back-projected

- frosted glass + projector behind

powerwalls

- lots of projectors

situated displays

- □ displays in 'public' places
 - large or small
 - very public or for small group
- display only
 - for information relevant to location
- or interactive
 - use stylus, touch sensitive screen
- in all cases ... the location matters
 - meaning of information or interaction is related to the location

Hermes (Lancaster Univ.)

- small displays beside office doors
- handwritten notes left using stylus
- □ office owner reads notes using web interface

small displays beside office doors

Handwritten notes left using stylus

office owner reads notes using web interface

Output & input devices: Virtual Reality

positioning in 3D space moving and grasping seeing 3D (HMDs and caves)

positioning in 3D

Measure position and/or orientation

 \square 6 degrees of freedom in space: x, y, z + roll, pitch, yaw

positioning in 3D

- ■SpaceBall
- ■SpaceOrb
- □Space Mouse

Moving in 3D - Tracking systems

- □ Electromagnetic
 - Transmitter creates lowfrequency magnetic fields
 - Receiver(s) with antennas, distance inferred from induced currents
 - Noisy, affected by metal
- Optical
 - Marker reflect IR light
 - Combined to unique spatial configuration per tracked position
 - > 3 IR cameras

Tracking systems

□ Acoustic

- Uses ultrasound
- Typical setup for 3 DOF: 3 mics, 1 speaker
- Distance is inferred from travel time of sound
- No interference, inexpensive, sensitive to air temperature & noises

□ Intertia

- Only 3 DOFs (orientation)
- Use gyroscopes & accelerometers
- Less noise, lag

□ Hybrid

- Inertia (orient.)
- acoustic (pos.)

Intersense IS-300

Data Gloves

- ☐ Tracks the user's finger postures and movements
- ☐ Bi-metal, fibre optics, exoskeleton, etc.
- □ Common types
 - CyberGlove
 - □ 18 sensors
 - ☐ 22 sensors
 - 5DT Glove
 - ☐ 5 sensors
 - ☐ 16 sensors

tracked mouse type devices

- □ Space Mouse
- □ Ring Mouse
- □ Fly Mouse
- Wand

Cubic Mouse

Cubic Mouse

- ☐ First 12 DOF input device
- □ Tracks position and rotation of rods using potentiometers
- ☐ Other shapes and implementations possible
 - Mini Cubic Mouse

More fancy input devices

Cyberglove with haptics

Treadmill types (e.g. bicycles)

Shape tape

3D displays

- □ seeing in 3D
 - use stereoscopic vision
 - try to simulate depth cues
 - 2nd lecture recall from LTM!

Desktop VR

- Monitor-based systems
- mouse or keyboard control
- □ can be sterescopic but need not be
 - perspective and motion give 3D effect
 - usually no head tracking
 - often not immersive
- variety of modes
 - non-stereo, non-immersive ordinary desktop display
 - stereo to screen and shutter glasses
 - stereo to polarizing screen overlay and polarized glasses

Sensorama

- □ Morton Heilig began designing the first multisensory virtual experiences in 1956 (patented in 1961).
- □ The Sensorama combined projected film, audio, vibration, wind, and odors.
- □ The five "experiences" included
 - a motorcycle ride through New York
 - a bicycle ride
 - a ride on a dune buggy
 - a helicopter ride over Century city in 1960
 - a dance by a belly dancer.

Head-mounted display

(Sutherland, 1968)

- ☐ small TV screen for each eye
- □ slightly different angles

☐ (Mechanical) tracking

Head-mounted displays

- ☐ Scene completely surrounds user
- Graphics are sharp and bright
- ☐ Field of view (FOV) is narrow
- Devices are heavy, causes fatigue
- □ Can't see other people, although see-through HMDs

BOOM (Binoccular Omni Orientation Monitor)

- ☐ High resolution
- Wide Field of View
- ☐ User must not carry heavy weight
- □ tracking with minimal lag
- ☐ Limited user movement
- □ Requires the user to hold onto the BOOM for control

VR motion sickness

- □ time delay (>100ms)
 - move head ... lag ... display moves
 - conflict: head movement vs. eyes
- depth perception
 - objects presented at different stereo distances
 - but all focused in same plane (monitor)
 - conflict: eye angle vs. focus
- □ conflicting cues => sickness
 - motivate improvements in technology

Projection Walls

- ☐ Multi-projector systems, require overlap
- □ Head-tracking

Image 1 Image 3
Overlap Overlap
Blending Zone Blending Zone

Pictures courtesy TAN

MMI / SS05

Cylindrical Screen Configurations

- □ Common in industry
- Head tracking difficult, requires distortion correction

Workbench

- □ Table-top metaphor
- □ Change display orientation
- ☐ Integrate real & virtual
- Less immersion
- □ Occlusion/cancellation
- □ \$\$\$

Two-Sided Workbench

- □ View volume
- □ Telepresence
- □ \$\$\$

CAVE

- Multi-wall (usually 4)
- □ Provides wide FOV
- ☐ Can see other people
- ☐ Stereo more realistic
- ☐ Missing walls break illusion
- □ Brightness
- □ \$\$\$

Input & output devices: physical controls, sensors, etc.

special displays and gauges touch, feel, smell physical controls environmental and bio-sensing

dedicated displays

- □ analogue representations:
 - dials, gauges, lights, etc.
- ☐ digital displays:
 - small LCD screens, LED lights, etc.
- head-up displays
 - found in aircraft cockpits
 - show most important controls
 - depending on context

Touch, feel, smell

- □ touch and feeling important
 - in games ... vibration, force feedback
 - in simulation ... feel of surgical instruments
 - called *haptic* devices
- □ texture, smell, taste
 - current technology very limited

physical controls

- □ specialist controls needed ...
 - industrial controls, consumer products, etc.

Example: BMW iDrive

- single multi-purpose device for controlling menus
- haptic feedback: feel small 'bumps' for each item
- makes it easier to select options by feel
- □ slides backwards & forwards, rotates

Environment and bio-sensing

- sensors all around us
 - car lights turn on small switch on door
 - ultrasound detectors security, washbasins
 - RFID security tags in shops
 - temperature, weight, location
- □ ... and even (our own) bodies ...
 - iris scanners, body temperature, heart rate, galvanic skin response, blink rate, goniometry
 - possible applications: emotion recognition (affective computing), life signal monitoring, etc.

Limitations on interactive performance

Computation bound

Computation takes time, causing frustration for the user
 Storage channel bound

Bottleneck in transference of data between storages

Graphics bound

 Updating displays requires effort - sometimes helped by adding a graphics co-processor to take on the burden

Network capacity

 Many computers networked - shared resources and files, access to printers etc. - but interactive performance can be reduced by slow network speed

Finite processing speed

- Designers tend to assume fast processors, and make interfaces more and more complicated
- But problems occur, because processing cannot keep up with all the tasks it needs to do
 - cursor overshooting because system has buffered keypresses
 - icon wars user clicks on icon, nothing happens, clicks on another, then system responds and windows fly everywhere
- Also problems if system is too fast e.g. help screens may scroll through text much too rapidly to be read

Next: Interaction

- □ Design principles, paradigms, basics
- Different kinds
 - Text-based, commando languages
 - WIMP and GUIs
 - Natural language
 - Multimodal
 - 3D interaction in VR
 - Agent- and Avatar-based
 - ____