Human-Computer Interaction

Session 8 Spoken Language Interaction

MMI / SS09

The evolution of user interfaces
(and the rest of this lecture)ImplementationYearParadigmImplementation

Used today...

- on the desktop, e.g. dictate
- on the phone, e.g. ticket booking, pizza ordering

Ongoing research on...

- natural language
- mobile devices & robots
- automotive interaction
- Virtual Reality

MMI / SS09

Example: Virtual Constructor

(Jung et al., 1998)

Interpret instructions based on knowledge about the world and the situation

 Objects can be referred to by their actual or potential role ("tail unit" instead of "bar"), as well as their contextdependent properties

Spoken Language Dialogue Systems (SLDS)

A system that allows a user to speak his queries in natural language and receive useful spoken responses from it

Provides an interface between the user and a computer-based application that permits spoken interaction in a "relatively natural manner"

MMI / SS09

Natural language – things to think of

Phonology & Phonetics

speech sounds and their usage

Morphology

components and structure of words

Syntax

structural relationship between words & phrases

Semantics

meaning of words (lexical) and word combinations (compositional)

Pragmatics

language use in context in order to accomplish things (said: "I'm cold" \rightarrow meant: "shut the window")

Discourse

larger meaningful connection across linguistic units

Phonetics

study of speech sounds

- Phone (segment) = speech sound (e.g. "[t]") vowels, consonants
- Allophone: different pronounciations of a phone
 [t] in "tunafish" → aspirated, voicelessness thereafter
 [t] in "starfish" → unaspirated
- *Diphone, triphone,* ... = combination of phones
- Syllables = made up of vowels and consonants, not always clearly definable ("syllabification problem")
- Prominence = Accented syllables that stand out
 Louder, longer, pitch movement, or combination

MMI / SS09

Speech recognition	
(in a nutshell)	•
MMI / SS09	

Which segments?

Co-articulation = change in segments due to movement of articulators in neighboring segments

Phonemes?

problematic due to co-articulatory effects

Allophones?

- Variants of a phoneme in specific contexts
- Example: Phoneme $/p/ \rightarrow [p]$ in spill and [ph] in pill

Diphones ("Zweilautverbindungen")?

- Diphones start half-way thru 1st phone and end halfway thru 2nd
- ⇒ critical phone transition is contained in the segment itself, need not be calculated by synthesizer
- Example: diphones for German word "Phonetik": f-o, o-n, n-e, e-t, t-i, i-k

MMI / SS09

Text-to-speech synthesis

Central steps:

- 1. Analyse text and select sound segments
- 2. Determine prosody and how to model it across the single segments
- 3. Turn into acoustic waveform (speech synthesis)

[gus] [gis] ['hɛdʒ.hɔg] ['hɛdʒ.hɔgz]
['hɛdʒ.hɔg]
r 0 01
['hɛdʒ.hɔgz]
und rules - [f]; phe – h] + any pice´)
- [

Formant synthesis

Formant = Region of frequency in which tones have a (comparably) strong intensity Significant elements of tone, depending on position and intensity of the vowel and timbre

Primäres Spel

Шннш

Frequenz

Frequenz

Einheiten- länge	Einheit	#Einheiten (Englisch)	#Regeln	Qualität
kurz	Allophone Diphone Triphone Halbsilben Silben Doppelsilben Wort Phrasen	60-80 <40 ² -65 ² <40 ³ -65 ³ 2K 11K <11K2 100K-1.5M ∞	hoch	gering
lang	Satz	8	gering	hoch

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text>

Unit selection

One example of a diphone is not enough!

Unit selection:

- Record multiple copies of each unit with different pitches and durations
- How to pick the right units? Search
- Example (Hunt & Black, 1996):
 - $\hfill\square$ Input: three F0 values per phone
 - □ Database: phones+duration+3 pitch values
 - $\hfill\square$ Cost-based selection algorithm

Non-uniform unit selection

- Units of variable length
- Reduced need of automatic prosody modeling

MMI / SS09

HMM-based synthesis

From a sequence of phonemes (+contextual annotation), use HMMs to generate sequences of a parameterised form, from which a waveform can generated

Parameterised form contains information about

- spectral envelope
- fundamental frequency (F0)
- aperiodic (noise-like) components (e.g. for 'sh' and 'f')

Trajectory HMM algorithm (Tokuda et al.): uses statistics of the dynamic properties during the generation process (instead of generating means of Gaussian)

46

Academic TTS systems - demos

BOSS (IKP, Bonn)	non-uniform unit- selection	Mp3 (2001)
IMS Stuttgart	Diphone concat., Festival+MBROLA	Mp3 (2000)
Uni Duisburg	Formant synthesis	Mp3 (1996)
Mary (DFKI)	Diphone synthesis, HMM	Mp3 (2000) Mp3 (2008)
VieCtoS (ÖFAI, Wien)	Halbsilben, schlechte Tobi-Labelung	Mp3 (1998)
SVox (ETH Zürich)	Diphone concat.,	Mp3 (1998)
HADIFIX (IKP, Bonn)	HSlbsilben, DIphone und sufFIXe	Mp3 (1995)
MMI / SS09		

Commercial TTS systems - demos

BabelTech Babil	Diphone concat., MBROLA-like	Mp3 (2000)	
AT&T	non-uniform unit- selection	Mp3 (1998)	
BabelTech BrightSpeech	non-uniform unit- selection	Mp3 (2003)	
IBM ctts	non-uniform unit- selection	Mp3 (2002)	
Loquendo	non-uniform unit- selection	Mp3 (2003)	
Nuance RealSpeak	non-uniform unit- selection	Mp3 (2006)	
SVox Corporate	Diphone concat.	Mp3 (2005)	
MMI / SS09	1	1	

Bernd Frötschl (FU Berlin): Samples, Tools, Resourcen http://page.mi.fu-berlin.de/froetsch/tts.html
Comparison of state-of-the-art TTS systems http://ttssamples.syntheticspeech.de/deutsch/index.html
Janet Cahn's Master Thesis, PhD Thesis http://xenia.media.mit.edu/~cahn/
Demos and links for speech synthesizers http://felix.syntheticspeech.de/
Lecture on speech synthesis by Bernd Möbius http://www.ims.uni-stuttgart.de/~moebius/teaching.shtml

