
POMDP solution methods

Darius Braziunas
Department of Computer Science

University of Toronto

2003

Abstract

This is an overview of partially observable Markov decision processes (POMDPs). We describe
POMDP value and policy iteration as well as gradient ascent algorithms. The emphasis is on solution
methods that work directly in the space of policies.

Contents

1 Introduction 1

2 Sequential decision processes 1
2.1 MDP framework . 1

2.1.1 Actions and state transitions . 1
2.1.2 Rewards . 2

2.2 POMDP framework . 3
2.2.1 Observation function . 3

2.3 Process histories . 3
2.4 Performance measures . 4

3 Policy representations 5
3.1 MDP policies . 5

3.1.1 Finite horizon policies . 6
3.1.2 Infinite horizon policies . 6
3.1.3 Implicit policies . 7
3.1.4 Stochastic policies . 7

3.2 POMDP policy trees . 7
3.3 α-vectors and belief state MDPs . 9

3.3.1 Implicit POMDP policies . 10
3.3.2 Belief state MDPs . 10

3.4 Finite-state controllers . 12
3.4.1 FSC model . 13

3.5 Cross-product MDP . .. 14
3.5.1 Policy graph value . 15

4 Exact solution algorithms 15
4.1 Value iteration . 15

4.1.1 MDP value iteration . 15
4.1.2 POMDP value iteration . 16

4.2 Policy iteration . 16
4.2.1 MDP policy iteration . 17
4.2.2 POMDP policy iteration . 17
4.2.3 Policy evaluation . 17
4.2.4 Policy improvement . 18

5 Gradient-based optimization 19
5.0.5 Policy graph value . 19
5.0.6 Prior beliefs . 20
5.0.7 Soft-max parameterization . 20
5.0.8 Objective function . 21
5.0.9 Gradient calculation . 21

1 Introduction

Partially observable Markov decision processes (POMDPs) provide a natural model for sequential deci-
sion making under uncertainty. This model augments a well-researched framework of Markov decision
processes (MDPs) [Howard, 1960, Puterman, 1994] to situations where an agent cannot reliably identify
the underlying environment state. The POMDP formalism is very general and powerful, extending the
application of MDPs to many realistic problems.

Unfortunately, the generality of POMDPs entails high computational cost. The problem of finding
optimal policies for finite-horizon POMDPs has been proven to be PSPACE-complete [Papadimitriou and
Tsitsiklis, 1987], and their existence for infinite-horizon POMDPs — undecidable [Madani et al., 1999].
Because of the intractability of current solution algorithms, especially those that use dynamic program-
ming to construct (approximately) optimal value functions [Smallwood and Sondik, 1973, Cassandra et al.,
1997], the application of POMDPs remains limited to very small problems.

Policy-based solution methods searchdirectly in the space of policies for the best course of action.
Constraining the policy space facilitates the search and may lead tractable (although approximate) POMDP
solution algorithms.Finite-state controllers(FSCs) are the policy representation of choice in such work,
providing a compromise between the requirement that action choices depend on certain aspects of observ-
able history and the ability to easily control the complexity of policy space being searched.

While optimal FSCs can be constructed if no restrictions are placed on their structure [Hansen, 1998a],
it is more usual to impose some structure that one hopes admits a good parameterization, and search
through that restricted space. One way is to consider the problem of finding the best FSCof a given size
for a completely specified POMDP. Even with the FSC size restriction constraint, the problem remains NP-
hard [Littman, 1994, Meuleau et al., 1999a]; therefore,gradient ascent (GA)has proven to be especially
attractive for solving this type of problems because of its computational properties [Meuleau et al., 1999a,
Aberdeen and Baxter, 2002]. Unfortunately, gradient-based approaches can converge to arbitrarily bad
local optima.

2 Sequential decision processes

A sequential decision process involves anagentthat interacts synchronously with the externalenvironment,
or system; the agent’s goal is to maximizereward by choosing appropriate actions. These actions and the
history of the environmentstatesdetermine the probability distribution over possible next states. Therefore,
the sequence of system states can be modeled as a stochastic process.

2.1 MDP framework

The most commonly used formal model of fully-observable sequential decision processes is the Markov
decision process (MDP) model. An MDP can be viewed as an extension of Markov chains with a set of
decisions (actions) and a state-based reward or cost structure. For each possible state of the process, a
decision has to be made regarding which action should be executed in that state. The chosen action affects
both the transition probabilities and the costs (or rewards) incurred. The goal is to choose an optimal action
in every state to increase some predefined measure of performance. Thedecisionprocess for doing this is
referred to as the Markovdecisionprocess.

2.1.1 Actions and state transitions

A state is a description of the environment at a particular point in time. Although we will deal with
continuous state and action spaces when describing preference elicitation problems, we generally assume

1

St

Rt

At

St+1

Figure 1: Causal relationships between MDP states, actions, and rewards.Rt is reward received at staget, i.e.,
R(St, At).

that the environment can be in a finite number of states, and the agent can choose from a finite set of actions.
LetS = {s0, s1, . . . , sN} be a finite set of states. Since the process is stochastic, a particular state at some
discretestage, or time stept ∈ T , can be viewed as a random variableSt whose domain is the state space
S.

For a process to beMarkovian, the state has to contain enough information to predict the next state.
This means that the past history of system states is irrelevant to predicting the future:

Pr(St+1|S0, S1, . . . , St) = Pr(St+1|St). (1)

At each stage, the agent can affect the state transition probabilities by executing one of the available
actions. The set of all actions will be denoted byA. Thus, each actiona ∈ A is fully described by a
|S| × |S| state transitionmatrix, whose entry in anith row andjth column is the probability that the
system will move from statesi to statesj if actiona gets executed:

paij = Pr(St+1 = sj|St = si, A
t = a). (2)

We will assume that our processes arestationary, i.e., that the transition probabilities do not depend on the
current time step.

The transition functionT (·) summarizes the effects of actions on systems states.T : S × A 7→ ∆(S)
is a function that for each state and action associates a probability distribution over the possible successor
states (∆(S) denotes the set of all probability distributions overS). Thus, for eachs, s′ ∈ S anda ∈ A,
the functionT determines the probability of a transition from states to states′ after executing actiona,
i.e.,

T (s, a, s′) = Pr(St+1 = s′|St = s, At = a). (3)

2.1.2 Rewards

R : S × A 7→ R is a reward function that for each state and action assigns a numeric reward (or cost, if
the value is negative).R(s, a) is an immediate reward that an agent would receive for being in states and
executing actiona.

The causal relationships between MDP states, actions, and rewards are illustrated in Figure 1.

2

St

Rt

At

St+1

Ot+1

Figure 2:Causal relationships between POMDP states, actions, rewards, and observations.

2.2 POMDP framework

A POMDP is a generalization of MDPs to situations in which system states are not fully observable. This
realistic extension of MDPs dramatically increases the complexity of POMDPs, making exact solutions
virtually intractable. In order to act optimally, an agent might need to take into account all the previous
history of observations and actions, rather than just the current state it is in.

A POMDP is comprised of an underlying MDP, extended with an observation spaceO and observation
functionZ(·).

2.2.1 Observation function

Let O be a set of observations an agent can receive. In MDPs, the agent has full knowledge of the system
state; therefore,O ≡ S. In partially observable environments, observations are only probabilistically de-
pendent on the underlying environment state. Determining which state the agent is in becomes problematic,
because the same observation can be observed in different states.

Z : S × A 7→ ∆(O) is an observation function that specifies the relationship between system states
and observations.Z(s′, a, o′) is the probability that observationo′ will be recorded after an agent performs
actiona and lands in states′:

Z(s′, a, o′) = Pr(Ot+1 = o′ | St+1 = s′, At = a). (4)

Formally, a POMDP is a tuple〈S,A, T, R,O, Z〉, consisting of the state spaceS, action spaceA,
transition functionT (·), reward functionR(·), observation spaceO, and observation functionZ(·). Its
influence diagram is shown in Figure 2.

2.3 Process histories

A history is a record of everything that happened during the execution of the process. For POMDPs, a
complete system history from the beginning till timet is a sequence of state, observation, and action triples

〈S0, O0, A0〉, 〈S1, O1, A1〉, . . . , 〈St, Ot, At〉. (5)

3

The set of all complete histories (ortrajectories) will be denoted asH.
Since rewards depend only on visited states and executed actions, asystem historyis enough to evaluate

an agent’s performance. Thus, a system history is just a sequence of state and action pairs:

〈S0, A0〉, 〈S1, A1〉, . . . , 〈St, At〉. (6)

A system historyh from the set of all system historiesHs provides an external, objective view about the
process; therefore, value functions will be defined on the setHs in the next subsection.

In a partially observable environment, an agent cannot fully observe the underlying world state; there-
fore, it can only base its decisions on theobservablehistory. Let’s assume that at the outset, the agent has
prior beliefs about the world that are summarized by the probability distributionb0 over the system states;
the agent starts by executing some actiona0 based solely onb0. The observable history until time stept is
then a sequence of action and observation pairs

〈A0, O1〉, 〈A1, O2〉, . . . , 〈At−1, Ot〉. (7)

The set of all possible observable histories will be denoted asHo. Different ways of structuring and
representingHo have resulted in different POMDP solution and policy execution algorithms. The concept
of observable history and a closely related notion of internal memory will two central issues discussed in
this survey.

2.4 Performance measures

At each step in a sequential decision process, an agent has to decide what action to perform based on its
observable history. A policyπ : Ho 7→ A is a rule that maps observable trajectories into actions. A given
policy induces a probability distribution over all possible sequences of states and actions, for an initial
distributionb0. Therefore, an agent has control over the likelihood of particular system trajectories. Its
goal is to choose a policy that maximizes some objective function that is defined on the set of system
historiesHs.

Such objective function is called avaluefunctionV (·); it essentially ranks system trajectories by as-
signing a real number to eachh ∈ Hs; a system historyh is preferred toh′ if and only if V (h) > V (h′).
Formally, a value function is a mapping from the set of system histories into real numbers:

V : Hs 7→ R. (8)

In most MDP and POMDP formulations found in AI literature, the value functionV (·) is assumed to
have structure that makes it much easier to represent and evaluate. We will make a common assumption
thatV (·) is additive– the value of a particular system history is simply asumof rewards accrued at each
time step.

If the decision process stops after a finite number of stepsH , the problem isa finite horizonproblem.
In such problems, it is common to maximize the total expected reward. The value function for a system
trajectoryh of lengthH is simply the sum of rewards attained at each stage [Bellman, 1957]:

V (h) =
t=H∑
t=0

R(st, at). (9)

The sum of rewards over an infinite trajectory may be unbounded. A mathematically elegant way to
address this problem is to introduce adiscount factorγ; the rewards received later get discounted, and

4

contribute less than current rewards. The value function for a total discounted reward problem is [Bellman,
1957]:

V (h) =
∞∑
t=0

γtR(st, at), 0 ≤ γ < 1. (10)

This formulation is very common in current MDP and POMDP literature, including the key papers con-
cerning policy-based search in POMDPs [Hansen, 1997, 1998a, Meuleau et al., 1999a,b]. Another popular
value function is the average reward per stage1, used, e.g., in [Aberdeen and Baxter, 2002].

3 Policy representations

Generally, an agent’s task is to calculate the optimal course of action in an uncertain environment and then
execute its plan contingent on the history of its sensory inputs. The criterion of optimality is predetermined;
here, we will use the infinite horizon discounted sum of rewards model, described above. The agent’s
behavior is therefore determined by itspolicyπ, which in its most general form is a mapping from the set
of observablehistories to actions:

π : Ho 7→ A (11)

Given a history
ht = 〈a0, o1〉, 〈a1, o2〉, . . . , 〈at−1, ot〉,

the action prescribed by the policyπ at timet would beat = π(ht); a0 is the agent’s initial action, andot

is the latest observation.
One of the more important concepts is that of anexpected policy value. Taking into account a prior

belief distribution over the system statesb0, a policy induces a probability distributionPr(h|π, b0) over the
set of system historiesHs. The expected policy value is simply the expected value of system trajectories
induced by the policyπ:

EV (π) ≡ V π =
∑
h∈Hs

V (h)Pr(h|π, b0). (12)

The value of the policyπ at a given starting states0 will be denotedV π(s0). Then,

EV (π) =
∑
s∈S

b0(s)V π(s). (13)

The agent’s goal is to find a policyπ∗ ∈ Π with the maximal expected value from the setΠ of all possible
policies.

The general form of a policy as a mapping from arbitrary observation histories to actions is very imprac-
tical. Existing POMDP solution algorithms exploit structure in value and observation functions to calculate
optimal policies that have much more tractable representations. For example, observable histories can be
represented as probability distributions over system states, or grouped into a finite set of distinguishable
classes using finite-suffix trees or finite-state controllers.

3.1 MDP policies

A POMDP where an agent can fully observe the underlying system state reduces to an MDP. Since the
sequence of states forms a Markov chain, the next state depends only on the current state; the history of the
previous states is therefore rendered irrelevant.

1V (h) = limn→∞ 1
n

Pn
t=0 R(st, at).

5

3.1.1 Finite horizon policies

For finite horizon MDP problems, the knowledge of the current state and stage is sufficient to represent the
whole observable trajectory for the purposes of maximizing total reward (discounted or not). Therefore, a
policy π can be reduced to a mapping from states and stages to actions:

π : S × T 7→ A. (14)

Letπ(s, t) be the action prescribed by the policy at stateswith t stagesremainingtill the end of the process.
The expected value of a policy at any state can then be computed by the following recurrence [Bellman,
1957]:

V π0 (s) = R(s, π(s, 0)),

V πt (s) = R(s, π(s, t)) + γ
∑
s′∈S

T (s, π(s, t), s′) V πt−1(s
′). (15)

The value functions in the set{V πt }0≤t≤H are calledt-horizon, or t-step, value functions;H is the horizon
length — a predetermined number of stages the process goes through.

A policy π∗ is optimal if V π
∗

H (s) ≥ V π
′

H (s) for all H-horizon policiesπ′ and all statess ∈ S. The
optimal value function is a value function of an optimal policy:V ∗

H ≡ V π
∗

H . A key result, called Bellman’s
principle of optimality[Bellman, 1957] allows to calculate the optimalt-step value function from the
(t− 1)-step value function:

V ∗
t (s) = max

a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′) V ∗
t−1(s

′)

]
. (16)

This equation has served as a basis for value-iteration MDP solution algorithms and inspired analogous
POMDP solution methods.

3.1.2 Infinite horizon policies

For infinite horizon MDP problems, optimal decisions can be calculated based only on the current system
state, since at any stage, there is still an infinite number of time steps remaining. Without loss of optimality,
infinite horizon policies can be represented as mappings from states to actions [Howard, 1960]:

π : S 7→ A. (17)

Policies that do not depend on stages are calledstationarypolicies.
The value of a stationary policyπ can be determined by a recurrence analogous to the finite horizon

case:
V π(s) = R(s, π(s)) + γ

∑
s′∈S

T (s, π(s), s′) V π(s′). (18)

The agent’s goal is to find a policyπ∗ that would maximize the value functionV (·) for all statess ∈ S.
The optimal value function is

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′) V ∗(s′)

]
. (19)

6

3.1.3 Implicit policies

Equations 15 and 18 show how to find the value of a given policyπ and provide the basis for policy-iteration
algorithms. The calculation is straightforward and amounts to solving a system of linear equations of size
|S| × |S|.

On the other hand, value-iteration methods employ Equation 16 to calculate optimal value functions
directly. Optimal policies can then be defined implicitly by value functions. First, we introduce a notion
of a Q-function, or Q-value:Q(s, a) is the value of executing actiona at states, and then following the
optimal policy:

Q(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′) V ∗(s′). (20)

The optimal infinite horizon policy is a greedy policy with respect to the optimal value functionV ∗(·):

π∗(s) = arg max
a

Q(s, a). (21)

3.1.4 Stochastic policies

A stochastic infinite horizon MDP policy is a generalization of a deterministic policy; instead of prescribing
a single action to a state, it assigns adistributionover all actions to a state. That is, a stochastic policy

ψ : S 7→ ∆(A) (22)

maps a state to a probability distribution over actions;ψ(s, a) is the probability that actiona will be
executed at states. By incorporating expectation over actions, we can rewrite the Equation 18 for stochastic
policies in a straightforward manner:

V ψ(s) =
∑
a∈A

ψ(s, a) R(s, a) + γ
∑
s′, a

ψ(s, a) T (s, a, s′) V ψ(s′). (23)

While stochastic policies have no advantage for infinite horizon MDPs, we will use them in solving
partially observable MDPs. Making policies stochastic allows to convert the discrete action space into a
continuous space of distributions over actions. We can then optimize the value function using continuous
optimization techniques.

3.2 POMDP policy trees

In partially observable environments, an agent can only base its decisions on the history of its actions and
observations. Instead of a simple mapping from system states to actions, a generic POMDP policy assumes
a more complicated form.

As for MDPs, we will first consider finite horizon policies. With one stage left, all an agent can do is
to execute an action; with two stages left, it can execute an action, receive an observation, and then execute
the final action. For a finite horizon of lengthH , a policy is atreeof heightH . Since the number of actions
and observations is finite, the set of all policies for horizonH can be represented by afinite set of policy
trees.

Figure 3 illustrates the concept of at-horizon policy tree. Each node prescribes an action to be taken
at a particular stage; then, an observation received determines the branch to follow. A policy tree for a
horizon of lengthH contains

t=H−1∑
t=0

|O|t =
|O|H − 1
|O| − 1

(24)

7

t−1 stages to go

t stages to go

1 stage to go

o0 o1 oN

o0 oN

A A A

A

A A

A

o1

A

Figure 3:A policy tree for horizont. For each observation, there is a branch to nodes at a lower level. Each node can
be labeled with any action from the setA.

nodes. At each node, there are|A| choices of actions. Therefore, the size of the set of all possibleH-
horizon policy trees is

|A|
|O|H−1
|O|−1 . (25)

We will now present a recursive definition of policy trees using an important notion ofconditional
plans. A conditional planσ ∈ Γ is a pair〈a, ν〉 wherea ∈ A is an action, andν : O 7→ Γ is anobservation
strategy. The set of all observation strategies will be denoted asΓO; obviously, its size is|Γ||O|.

A particular conditional plan tells an agent what action to perform, and what to do next contingent on
an observation received. LetΓt be the set of all conditional plans available to an agent witht stages left:

Γt = {〈a, νt〉 | a ∈ A, νt ∈ ΓO
t−1}. (26)

In this case,νt : O 7→ Γt−1 is a stage-dependent observation strategy. As a tree of heightt can be defined
recursively in terms of its subtrees of heightt − 1, so the conditional plans of horizont can be defined
in terms of conditional plans of horizont − 1. At the last time step, a conditional plan simply returns an
action. A policy tree therefore directly corresponds to a conditional plan. We will use the setΓt to denote
both the set oft-step policy trees and the equivalent set of conditional plans.

Representing policy trees as conditional plans allows us to write down a recursive expression for their
value function. The value function of a non-stationary policyπt represented by at-horizon conditional
planσt = 〈a, νt〉 is

V π0 (s) = R(s, σ0(s)),

V πt (s) = V σtt (s) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)
∑
o∈O

Z(s′, a, o) V νt(o)t−1 (s′), (27)

8

whereσ0(s) is the action to be executed at the last stage.
Since the actual system state is not fully known, we need to calculate the value of a particular policy

tree with respect to a (initial) belief stateb. Such value is just an expectation of executing the conditional
planσt at each states ∈ S:

V πt (b) = V σtt (b) =
∑
s∈S

b(s)V σtt (s). (28)

The optimalt-step value function for the belief stateb can be found simply by enumerating all the
possible policy trees in the setΓt:

V ∗
t (b) = max

σ∈Γt

∑
s∈S

b(s)V σt (s). (29)

Thus, thet-step value function for the continuous belief simplexB can in principle be represented by
a finite (although doubly exponential int!) set of conditional plans and amax operator. The next section
discusses some ways of making such a representation more tractable.

3.3 α-vectors and belief state MDPs

The previous Equation 29 actually illustrates the fact that the optimalt-step POMDP value function is
piecewise linear and convex [Sondik, 1971, 1978]. From Equation 28 we can see that the value of any
policy treeV σt is linear inb; hence, from Equation 29,V ∗

t is simply the upper surface of the collection of
value functions of policies inΓt.

Let ασ be a vector of size|S| whose entries are the values of the conditional planσ (or, values of a
policy tree corresponding toσ) for each states:

ασ = [V σ(s0), V σ(s1), . . . , V σ(sN)]. (30)

Equation 29 can then be rewritten in terms ofα-vectors :

V ∗
t (b) = max

σ∈Γt

∑
s∈S

b(s)ασ(s) = max
α∈Vt

∑
s∈S

b(s) α(s). (31)

Here, the setVt contains allt-stepα-vectors ; these vectors correspond tot-step policy trees and are
sufficient to define the optimalt-horizon value function.

The optimal value functionVt is represented by the upper surface of theα-vectors inVt (see Figure 4).
Although in the worst case any policy inΓt might be superior for some belief region, this rarely happens
in practice. Many vectors in the setVt might bedominatedby other vectors, and therefore not needed to
represent the optimal value function. In Figure 4, vectorα3 is pointwisedominated byα1, whereas vector
α1 is jointly dominated by the useful vectorsα0 andα2 together.

Given the set of allα-vectorsVt, it is possible toprune it down to aparsimonioussubsetV−
t that

represents the same optimal value functionV ∗
t :

V ∗
t (b) = max

α∈Vt

∑
s∈S

b(s) α(s) = max
α∈V−

t

∑
s∈S

b(s) α(s). (32)

In a parsimonious set, allα-vectors (or corresponding policy trees) areuseful[Kaelbling et al., 1998]. A
vectorα is useful if there is a non-empty belief regionR(α,V) over which it dominates all other vectors,
where

R(α,V) = {b | b · α > b · α′, α′ ∈ V − {α}, b ∈ B}. (33)

The existence of such region can be easily determined using linear programming. Various value-based
POMDP solution algorithms differ in their methods of pruning the set of allα-vectorsVt to a parsimonious
subsetV−

t .

9

Vt(b)

α0

α2

α3

[b(s0); b(s1)] [0; 1][1; 0]

α1

Figure 4: For a two-state POMDP, the belief spaceB is a one-dimensional unit interval, sinceb(s0) = Pr(s0) =

1 − Pr(s1). The horizontal axis therefore represents the whole belief spaceB on which the value functionVt(b) is
defined.Vt(b) is the upper surface of fourα-vectors . Only two of them,α0 andα2, are useful.

3.3.1 Implicit POMDP policies

As we already know, an explicitt-step POMDP policy can be represented by a policy tree or a recursive
conditional plan. Given an initial belief stateb0, the optimalt-step policy can be found by going through
the set of all useful policy trees and finding the one whose value function is maximal with respect tob0 (see
Equation 31). Then, executing the finite horizon policy is straightforward: an agent only needs to perform
actions at the nodes, and follow the observation links to policy subtrees.

Instead of keeping all policy trees, it is enough to maintain the set of usefulα-vectorsV−
t for each

staget. As for MDPs, animplicit t-step policy can be defined by doing a greedy one-step lookahead. First,
we will define the Q-value functionQt(b, a) as a value of taking actiona at belief stateb and continuing
optimally for the remainingt− 1 stages:

Qt(b, a) =
∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗
t−1(b

a
o)), (34)

wherebao is the belief state that results fromb after taking actiona and receiving observationo. As we will
see below, it can be calculated using the POMDP model and Bayes’ theorem.

The optimal action to take atb with t stages remaining is simply

π∗(b, t) = argmax
a∈A

Qt(b, a). (35)

3.3.2 Belief state MDPs

A finite horizon POMDP policy now becomes a mapping from belief states and stages to actions:

π : B × T 7→ A. (36)

Astrom has shown that a properly updated probability distribution over the state spaceS is sufficient
to summarize all the observable history of a POMDP agent without loss of optimality [Astr¨om, 1965].

10

Therefore, a POMDP can be cast into a framework of a fully observable MDP where belief states com-
prise the continuous, but fully observable, MDP state space. A belief state MDP is therefore a quadruple
〈B,A, T b, Rb〉, where

• B = ∆(S) is the continuous state space.

• A is the action space, which is the same as in the original POMDP.

• T b : B ×A 7→ B is the belief transition function:

T b(b, a, b′) = Pr(b′|b, a)

=
∑
o∈O

Pr(b′|a, b, o)Pr(o|a, b)

=
∑
o∈O

Pr(b′|a, b, o)
∑
s′∈S

Z(s′, a, o)
∑
s∈S

T (s, a, s′) b(s),

(37)

where

Pr(b′|a, b, o) =

{
1 if bao = b′,
0 otherwise.

(38)

After actiona and observationo, the updated beliefbao can be calculated from the previous beliefb:

bao(s
′) =

Z(s′, a, o)
∑

s∈S T (s, a, s′) b(s)
Pr(o|a, b) . (39)

• Rb : B ×A 7→ R is the reward function:

Rb(b, a) =
∑
s∈S

b(s)R(s, a). (40)

To follow the policy that maps from belief states to actions, the agent simply has to execute the action
prescribed by the policy, and then update its probability distribution over the system states according to
Equation 39.

The infinite horizon optimal value function remains convex, but not necessarily piecewise linear, al-
though it can be approximated arbitrarily closely by a piecewise linear and convex function [Sondik, 1978].
The optimal policy for infinite horizon problems is then just a stationary mapping from belief space to ac-
tions:

π : B 7→ A. (41)

It can be extracted by performing a greedy one-step lookahead with respect to the optimal value function
V ∗:

Q(b, a) =
∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗(bao),

π∗(b) = argmax
a∈A

Q(b, a).
(42)

11

3.4 Finite-state controllers

The optimal infinite horizon value functionV ∗ can be approximated arbitrarily closely by successive finite
horizon value functionsV0, V1, . . . , Vt, ast → ∞ [Sondik, 1978]. While all optimalt-horizon policies
are piecewise-linear and convex, this is not always true for infinite horizon value functions. They remain
convex [White and Harrington, 1980], but may contain infinitely many facets.

Some optimal value functions do remain piecewise linear; therefore, at some horizont, the two succes-
sive value functionsVt andVt+1 are equal, and therefore, optimal:

V ∗ = Vt = Vt+1. (43)

Each vectorα in a parsimonious setV∗ that represents the optimal infinite horizon value functionV ∗ has
an associated belief space regionR(α,V∗) over which it dominates all other vectors (see Equation 33):

R(α,V∗) = {b | b · α > b · α′, α′ ∈ V∗ − {α}, b ∈ B}.

Thus,α-vectors define a partition of the belief space. In addition, it has been shown that for each partition
there is an optimal action [Smallwood and Sondik, 1973]. When an optimal value functionV ∗ can be
represented by a finite set of vectors, all belief states within one region get transformed to new belief states
within the samesingle belief partition, given the optimal action and a resulting observation. The set of
partitions and belief transitions constitute apolicy graph, where nodes correspond to belief space partitions
with optimal actions attached, and transitions are guided by observations [Cassandra et al., 1994].

Another way of understanding the concept of policy graphs is illustrated in an article by Kaelbling
et al. [Kaelbling et al., 1998]. If the finite horizon value functionsVt andVt+1 become equal, at every
level abovet the corresponding conditional plans have the same value. Then, it is possible to redraw the
observation links from one level to itself as if it were the succeeding level (see Figure 5). Essentially, we
can convert non-stationaryt-step policy trees (which are non-cyclic policy graphs) into stationary cyclic
policy graphs. Such policy graphs enable an agent to execute policies simply by doing actions prescribed
at the nodes, and following observation links to successor nodes. The nodes partition the belief space in a
way that, for a given action and observation, all belief states in a particular region map to a single region
(represented by another graph node).2 Therefore, an agent does not have to explicitly maintain its belief
state and perform expensive operations of updating its beliefs and finding the bestα-vector for the belief
state. The starting node is optimized for the initial belief state.

Of course, not all POMDP problems allow for optimal infinite horizon policies to be represented by a
finite policy graph. Since such a graph cannot be extracted from a suboptimal value function, a policy in
such cases is usually defined implicitly by a value function and calculated using Equation 35.

However, limiting the size of a policy provides a tractable way of solving POMDPsapproximately.
Although generally the optimal policy depends on the whole history of observations and actions, one way
of facilitating the solution of POMDPs is to assume that an agent has a finite memory. We can represent
this finite memory by a set of internal statesN . The internal states are fully observable; therefore an agent
can execute a policy that maps frominternalstates to actions.

Theaction selectionfunction determines what action to execute at each internal memory staten ∈ N .
In addition to the mapping from internal states to actions, we also need to specify the dynamics of the
internal process, i.e., describe the transitions from one internal state to another. The internal memory states
can be viewed as nodes, and the transitions between nodes will depend on observations received. Together,
the set of nodes and the transition function constitute a policy graph, or afinite-state controller(FSC).

2Note that this is true only if the optimal infinite horizon value function can be represented by a finite number ofα-vectors.

12

listenlistenlisten listen listen listenlistenleft right

listenlistenlisten listen listen listenlistenleft right

listenlistenlisten listen listen listenlistenleft right

t=103

t=104

t=105

Figure 5:An example from [Kaelbling et al., 1998] that illustrates how policy tree branches can be rearranged to form
a stationary policy.

3.4.1 FSC model

A deterministic policy graphπ is a triple〈N , ψ, η〉, where

• N is a set of controller nodesn, also known as internal memory states.

• ψ : N 7→ A is the action selection function that for each noden prescribes an actionψ(n).

• η : N × O 7→ N is the node transition function that for each node and observation assigns a
successor noden′. η(n, ·) is essentially an observation strategy for the noden, described above
when discussing policy trees and conditional plans.

In astochasticFSC, the action selection functionψ and the internal transition functionη are stochastic.
Here,

• ψ : N 7→ ∆(A) is the stochastic action selection function that for each noden prescribes a distribu-
tion over actions:

ψ(n, a) = Pr(At = a|N t = n). (44)

• η : N × O 7→ ∆(N) is the stochastic node transition function that for each node and observation
assigns a probability distribution over successor nodesn′; η(n, o, n′) is the probability of transition
from noden to noden′ after observingo′ ∈ O:

η(n, o′, n′) = Pr(N t+1 = n′|N t = n, Ot+1 = o′). (45)

13

Rt

At Ot+1

N t

St St+1

N t+1

Figure 6: The joint influence diagram for a policy graph and a POMDP. The sequence of FSC nodes coupled with
POMDP states is Markovian.

3.5 Cross-product MDP

In the way that an MDP policyπ : S 7→ ∆(A) gives rise to a Markov chain defined by the transition matrix
T , a POMDP policy, represented by a finite graph, is also sufficient to render the dynamics of a POMDP
Markovian. The cross-product between the POMDP and the finite policy graph is itself a finite MDP, which
will be referred to as thecross-product MDP. The structure of both the POMDP and the policy graph can
be represented in the cross-product MDP. The influence diagram for such acoupledprocess is shown in
Figure 6.

Given a POMDP〈S,A, T, R,O, Z〉 and a policy graph with the node setN , the new cross-product
MDP 〈S̄, Ā, T̄ , R̄〉 can be described as follows [Meuleau et al., 1999a]:

• The state spacēS = N × S is the Cartesian product of external system states and internal memory
nodes; it consists of pairs〈n, s〉, n ∈ N , s ∈ S.

• At each state〈n, s〉, there is a choice of actiona ∈ A, and a conditional observation strategyν :
O 7→ N , which determines the next internal node for each possible observation. The new action
spaceĀ = A×NO is therefore a cross product betweenA and the space of observation mappings
NO. A pair 〈a, ν〉 is aconditional plan, wherea ∈ A is an action andν ∈ NO is a deterministic
observation strategy.

• T̄ : S̄ × Ā 7→ S̄ is the transition function:

T̄ (〈n, s〉, 〈a, ν〉, 〈n′, s′〉) = T (s, a, s′)
∑

o|ν(o)=n′
Z(s′, a, o). (46)

• The reward function̄R : S̄ × Ā 7→ R becomes:

R̄(〈n, s〉, 〈a, ν〉) = R(s, a). (47)

14

3.5.1 Policy graph value

Given a (stochastic) policy graphπ = 〈N , ψ, η〉 and a POMDP〈S,A, T, R,O, Z〉, the generated sequence
of node-state pairs〈N t, St〉 constitutes a Markov chain [Hansen, 1997, 1998a, Meuleau et al., 1999a]. In
a way analogous to Equation 23, the value of a given policy graph can be calculated using Bellman’s
equations:

V̄ π(s̄) = R̄π(s̄) + γ
∑
s̄′
T̄ π(s̄, s̄′) V̄ π(s̄′), (48)

wheres̄, s̄′ are node-state pairs in̄S, and

• T̄ π is the transition matrix. Given stochastic functionsψ(·) andη(·), the transition matrix is analo-
gous to Equation 23 for MDPs, although now we need to take expectation not only over actionsa,
but also over observationso:

T̄ π(〈n, s〉, 〈n′, s′〉) =
∑
a,o

ψ(n, a) η(n, o, n′)T (s, a, s′)Z(s′, a, o). (49)

• R̄π is the reward vector:
R̄π(〈n, s〉) =

∑
a

ψ(n, a)R(s, a). (50)

4 Exact solution algorithms

4.1 Value iteration

4.1.1 MDP value iteration

Value iteration for MDPs is a standard method of finding the optimal infinite horizon policyπ∗ using
a sequence of optimal finite horizon value functionsV ∗

0 , V
∗
1 , . . . , V

∗
t [Howard, 1960]. The difference

between the optimal value function and the optimalt-horizon value function goes to zero ast goes to
infinity:

lim
t→∞max

s∈S
|V ∗(s) − V ∗

t (s)| = 0. (51)

It turns out that the optimal value function can be calculated in a finite number of steps given theBellman
error ε, which is the maximum difference (for all states) between two successive finite horizon value
functions. Using Equation 16, the value iteration algorithm for MDPs can be summarized as follows:

• Initialize t = 0 andV0(s) = 0 for all s ∈ S.

• While maxs∈S |Vt+1(s)−Vt(s)| > ε, calculateVt+1(s) for all statess ∈ S according to the follow-
ing equation, and then incrementt:

Vt+1(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′) Vt(s′)

]
.

This algorithm results in an implicit policy (which can be extracted using Equation 21) that is within
2εγ/(1 − γ) of the optimal [Bellman, 1957].

15

4.1.2 POMDP value iteration

As described above, any POMDP can be reduced to a continuous belief-state MDP. Therefore, value itera-
tion can also be used to calculate optimal infinite horizon POMDP policies:

• Initialize t = 0 andV0(b) = 0 for all b ∈ B.

• While supb∈B |Vt+1(b)−Vt(b)| > ε, calculateVt+1(b) for all statesb ∈ B according to the following
equation, and then incrementt:

Vt+1(b) = max
a∈A

[
Rb(b, a) + γ

∑
b′∈B

T b(b, a, b′) Vt(b′)

]
. (52)

The previous equation can be rewritten in terms of the original POMDP formulation as

Vt+1(b) = max
a∈A

[∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)Vt(bao)
]
, (53)

wherePr(o|a, b) is

Pr(o|a, b) =
∑
s′∈S

Z(s′, a, o)
∑
s∈S

T (s, a, s′) b(s). (54)

Although the belief space is continuous, any optimal finite horizon value function is piecewise linear
and convex and can be represented as a finite set ofα-vectors (see Section 3.3). Therefore, the essential
task of all value-iteration POMDP algorithms is to find the setVt+1 representing value functionVt+1, given
the previous set ofα-vectorsVt.

Various POMDP algorithms differ in how they compute value function representations. The most naive
way is to construct the set of conditional plansVt+1 by enumerating all the possible actions and observation
mappings to the setVt. The size ofVt+1 is then|A||Vt||O|. Since many vectors inVt might be dominated
by others, the optimalt-horizon value function can be represented by a parsimonious setV−

t . The set
V−
t is the smallest subset ofVt that still represents the same value functionV ∗

t ; all α-vectors inV−
t are

useful at some belief state (see Section 3.3). To computeVt+1 (andV−
t+1), we only need to consider the

parsimonious setV−
t .

Some algorithms calculateV−
t+1 by generatingVt+1 of size|A||V−

t ||O|, and thenpruningdominatedα-
vectors, usually by linear programming. Such algorithms include Monahan’s algorithm [Monahan, 1982,
?], and Incremental pruning [?Cassandra et al., 1997]. Other methods, such as Sondik’s One-pass [Sondik,
1971, Smallwood and Sondik, 1973], Cheng’s Linear Support [Cheng, 1988], and Witness [Kaelbling et al.,
1998], build the setV−

t+1 directly from the previous setV−
t , without considering non-useful conditional

plans. Even the fastest of exact value-iteration algorithms can currently solve only toy problems.
As for MDPs, for a givenε, the implicit policy extracted from the value function is within2εγ/(1− γ)

of the optimal policy value.

4.2 Policy iteration

Policy iteration algorithms proceed by iteratively improving the policies themselves. The sequenceπ0, π1, . . . , πt
then converges to the optimal infinite horizon policyπ∗, ast → ∞. Policy iteration algorithms usually
consist of two stages:policy evaluationandpolicy improvement.

16

4.2.1 MDP policy iteration

First, we summarize the policy iteration method for MDPs [Howard, 1960]:

• Initialize π0(s) = a, for all s ∈ S; a ∈ A is an arbitrary action. Then, repeat the following policy
iteration and improvement steps until the policy does not change anymore, i.e.,πt+1(s) = πt(s) for
all statess ∈ S.

• Policy evaluation. Calculate the value of policyπt (using Equation 18):

V πt(s) = R(s, πt(s)) + γ
∑
s′∈S

T (s, πt(s), s′) V πt(s′).

• Policy improvement. For eachs ∈ S anda ∈ A, compute the Q-functionQt(s, a):

Qt+1(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′) V πt(s′). (55)

Then, improve the policyπt+1:

πt+1(s) = argmax
a∈A

Qt+1(s, a) for all s ∈ S. (56)

Policy iteration tends to converge much faster than value iteration in practice. However, it performs
more computation at each step; policy evaluation step requires a solution of a|S| × |S| linear system.

4.2.2 POMDP policy iteration

For value iteration, it is important to be able to extract a policy from a value function (see Section 3.3.1).
For policy iteration, it is important to be able to represent a policy so that its value function can be calculated
easily. Here, we will describe a POMDP policy iteration method that uses an FSC to represent the policy
explicitly and independently of the value function.

The first POMDP policy iteration algorithm was described by Sondik [Sondik, 1971, 1978]. It used
a cumbersome representation of a policy as a mapping from a finite number of polyhedral belief space
regions to actions, and then converted it to an FSC in order to calculate the policy’s value. Because the
conversion between the two representations is extremely complicated and difficult to implement, Sondik’s
policy iteration is not used in practice.

Hansen proposed a similar approach, where a policy is directly represented by a finite state controller
[Hansen, 1997, 1998a]. His policy iteration algorithm is analogous to the policy iteration in MDPs. The
policy is initially represented by a deterministic finite-state controllerπ0. The algorithm then performs the
usual policy iteration steps: evaluation and improvement. The evaluation of the controllerπ is straightfor-
ward; during the improvement step, a dynamic programming update transforms the current controller into
an improved one. The sequence of finite-state controllersπ0, π1, . . . , πt converges to the optimal policy
π∗ ast→ ∞.

4.2.3 Policy evaluation

In exact policy iteration, each controller node corresponds to anα-vector in a piecewise-linear and convex
value function representation. Since our policy graph is deterministic,ψ(n) outputs the action associated

17

with the noden, andη(n, o) is the successor node ofn after receiving observationo. Theα-vector rep-
resentation of a value function can be calculated using the cross-product MDP evaluation formula from
before (Equation 48):

V̄ π(〈n, s〉) = R(s, ψ(n)) + γ
∑
s′,o

T (s, ψ(n), s′)Z(s′, ψ(n), o) V̄ π(η(n, o), s′). (57)

V̄ π(〈n, s〉) is the value of states of anα-vector corresponding to the noden:

V̄ π(〈ni, s〉) ≡ αi(s). (58)

Thus, evaluating the cross-product MDP for all statess̄ ∈ S̄ is equivalent to computing a set ofα-vectors
Vπ. Therefore, policy evaluation step is fairly straightforward and its running time is proportional to
|N × S|2.

4.2.4 Policy improvement

Policy improvement step simply performs a standard dynamic programming backup during which the
value functionV π, represented by a finite set ofα-vectorsVπ, gets transformed into an improved value
function V ′, represented by another finite set ofα-vectorsV ′. Although in the worst case the size of
V ′ can be proportional to|A||Vπ||O| = |A||N ||O| (where|N | is the number of controller nodes at the
current iteration), many exact algorithms, such as Witness [Cassandra et al., 1994] or Incremental pruning
[Cassandra et al., 1997], fare better in practice.

In the policy evaluation step, a set ofα-vectorsVπ is calculated from the finite-state controllerπ using
Equation 57. Then, the setV ′ is computed using dynamic programming backup on the setVπ. The key
insight in Hansen’s policy iteration algorithm is observation that the new improved controllerπ′ can be
constructed from the new setV ′ and the current controllerπ by following three simple rules:

• For each vectorα′ ∈ V ′:

– If the action and successor links ofα′ are identical to the action and conditional plan of some
node that is already inπ, then the same node will remain unchanged inπ′.

– If α′ pointwise dominates some nodes inπ, replace those nodes by a node corresponding toα′,
i.e., change the action and successor links to those of the vectorα′.

– Else, add a node toπ′ that has the action and observation strategy associated withα′.

• Prune any node inπ that has no correspondingα-vector inV ′ as long as that node is not reachable
from a node with an associated vector inV ′.

If the policy improvement step does not change the FSC, the controller must be optimal. Of course, this
can happen only if the optimal infinite horizon value function does have a finite representation. Otherwise,
a succession of FSCs will approximate the optimal value function arbitrarily closely; anε-optimal FSC can
be found in a finite number of iterations [Hansen, 1998b].

Like MDP policy iteration, POMDP policy iteration in practice requires fewer steps to converge.
Since policy evaluation complexity is negligible compared to the worst-case exponential complexity of
the dynamic-programming improvement step, policy iteration appears to have a clearer advantage over
value iteration for POMDPs [Hansen, 1998a].

Controllers found by Hansen’s policy iteration are optimized for all possible initial belief states. The
convexity of the value function is preserved because the starting node maximizes the value for the initial
belief state. From the next section onward, we will usually assume that an initial belief state is known

18

beforehand, and our solutions will take computational advantage of this fact. Optimal controllers can be
much smaller if they do not need to be optimized for all possible belief states [Kaelbling et al., 1998,
Hansen, 1998a].

5 Gradient-based optimization

Exact methods for solving POMDPs remain highly intractable, in part because optimal policies can be
either very large, or, worse, infinite. For example, in exact policy iteration, the number of controller nodes
might grow doubly exponentially in the horizon length; in value iteration, it is the number ofα-vectors
required to represent the value function that multiplies at the same doubly exponential rate.

An obvious approximation technique is therefore to restrict the set of policies; the goal is then to
find the best policy within that restricted set. Since all policies can be represented as (possibly infinite)
policy graphs, a widely used restriction is to limit the set of policies to those representable byfinite policy
graphs, or finite-state controllers, of someboundedsize. This allows to achieve a compromise between the
requirement that courses of action should depend on certain aspects of observable history, and the ability
to control the complexity of the policy space.

Many previous approaches rely on the same general idea. While Hansen’s exact policy iteration does
not place any constraints on the policy graph structure, other techniques take computational advantage of
searching in the space of structurally restricted FSCs. Littman [1994], Jaakkola et al. [1995], Baird and
Moore [1999] search for optimal reactive, or memoryless, policies; McCallum [1995] considers variable-
length finite horizon memory; Wiering and Schmidhuber [1997] attempt to find sequences of reactive
policies; and, Peshkin et al. [1999] constrain the search to external memory policies. All of these techniques
are special cases of searching in the space of finite policy graphs.

The restricted policy space that we will consider is representable by a limited size stochastic finite-state
controller (see Section 3.4.1). Here, we describe the details of a gradient-based policy search method, in-
troduced by Meuleau et al. [1999a,b]. The main idea of gradient-based POMDP policy search methods is
to reformulate the task of finding optimal POMDP policies as a classical non-linear numerical optimization
problem. If the stochastic FSC is appropriately parameterized so that its value is continuous and differen-
tiable, the gradient of the value function can be computed analytically in polynomial time with respect to
the size of the cross-product MDP (|N × S|), and used to find locally optimal solutions.

5.0.5 Policy graph value

We can rewrite Equation 48, which calculates the value of a stochastic policy graphπ, in a more concise
matrix and vector form:

V̄ π = R̄π + γT̄ π V̄ π. (59)

V̄ andR̄ are vectors of length|N | |S|, andT̄ is an|N | |S| by |N | |S| matrix. SinceT̄ is a stochastic matrix
and the discount factorγ < 1, the matrixI−γT̄ is invertible [Puterman, 1994]; we can thus solve Equation
59 for V̄ :

V̄ π = (I − γT̄ π)−1 R̄π. (60)

Notice thatV̄ π, T̄ π, andR̄π depend on the policy graphπ = 〈N , ψ, η〉. Therefore, for a given number
of nodes|N |, the vectorV̄ π could be optimized by choosing the right functionsψ andη. To convert this
problem to a classical non-linear optimization problem, we need to make sure that the objective function is
a scalar as well as appropriately parameterize the functionsψ andη.

19

5.0.6 Prior beliefs

The value vector̄V π contains the total discounted cumulative reward for each system states and graph
noden. The total expected reward depends on the state and node in which an agent starts; this could
be quantified by an agent’s prior beliefs about the world. Letb̄0 be an|N | |S| vector of probabilities
representing the agent’s prior beliefs about the statesS and policy graph nodesN . That is,∑

n,s

b̄(〈n, s〉) = 1,

b̄(〈n, s〉) ≥ 0 for all n ∈ N , s ∈ S.
(61)

Then, the total expected cumulative discounted rewardEπ is just

Eπ = b̄0 · V̄ π. (62)

To simplify the problem, we will assume that the agent always starts in noden0; it is a valid simplification
if the initial policy graph structure is symmetric for all nodes. The agent’s prior knowledge about the world
is summarized by the belief vectorb0. Therefore,

b̄(〈n, s〉) =
{
b(s), if n = n0,

0, otherwise.
(63)

5.0.7 Soft-max parameterization

To parameterize the functionsψ andη, we will employ a commonly usedsoft-maxdistribution function
[Meuleau et al., 1999b, Aberdeen and Baxter, 2002]. Letxψ andxη be parameter vectors for the respective
functionsψ andη. xψ will be indexed by a noden and an actiona; xη will be indexed by a noden, an
observationo, and the successor noden′. We will use the notationxψ [n, a] to denote theψ parameter
indexed byn, a, andxη[n, o, n′] will be theη parameter indexed byn, o, n′. Then,

ψ(n, a) = ψ(a|n;xψ) =
ex

ψ[n,a]∑
ā∈A ex

ψ[n,ā]
, (64)

η(n, o, n′) = η(n′|n, o;xη) =
ex

η[n,o,n′]∑
n̄′∈N exη[n,o,n̄′] . (65)

Because we use soft-max, the parameterized functionsψ andη still represent probability distributions; that
is, ∑

a∈A
ψ(a|n;xψ) = 1,

∑
n′∈N

η(n′|o, n;xη) = 1,

ψ(a|n;xψ) ≥ 0 for all a ∈ A, n ∈ N ,

η(n′|n, o;xη) ≥ 0 for all n, n′ ∈ N , o ∈ O.

(66)

20

5.0.8 Objective function

Letx denote the combined vector of parametersxψ andxη. By substituting Equation 60 into 62, we finally
get an unconstrained continuous objective functionf(·) of parametersx:

f(x) = b̄0 (I − γT̄ π)−1 R̄π, (67)

where (see Equations 49 and 50)

T̄ π(〈n, s〉, 〈n′, s′〉) =
∑
a,o

ψ(a|n;xψ) η(n′|n, o;xη)T (s, a, s′)Z(s′, a, o), (68)

R̄π(〈n, s〉) =
∑
a

ψ(a|n;xψ)R(s, a), (69)

andb̄0, T (·), R(·), Z(·) are supplied by the POMDP model. The number of parameters|x| depends on the
POMDP model and the size of the policy graph (i.e., the size of the cross-product MDP):

|x| = |xψ| + |xη| = |N ||A| + |N ||O||N |. (70)

This presents two advantages to gradient-based methods of solving POMDPs: the number of parameters
does not depend on the size of the state spaceS, and the size of internal memoryN can be controlled by a
user.

5.0.9 Gradient calculation

Since the objective functionf(x) is a complicated series matrix expansion with respect to its parameters,
function value based optimization techniques will be ineffective. To perform numerical optimization, we
will need to employ first-order information about our objective function.

Because of the soft-max parameterization, the gradient off(x) can be calculated analytically. From
Equation 62,

∂f

∂x
= b̄0

∂V̄

∂x
. (71)

From Equation 60,
∂V̄

∂x
= (I − γT̄)−1

[
∂R̄

∂x
+ γ

∂T̄

∂x
(I − γT̄)−1 R̄

]
. (72)

Partial derivatives with respect tōT andR̄ can be calculated from Equations 68 and 69:

∂T̄

∂xψ
=

∑
a,o

∂ψ(a|n;xψ)
∂xψ

η(n, o, n′)T (s, a, s′)Z(s′, a, o), (73)

∂T̄

∂xη
=

∑
a,o

ψ(n, a)
∂η(n′|n, o;xη)

∂xη
T (s, a, s′)Z(s′, a, o), (74)

∂R̄

∂xψ
=

∑
a

∂ψ(a|n;xψ)
∂xψ

R(s, a), (75)

∂R̄

∂xη
= 0. (76)

21

Finally, we can find the derivatives ofψ andη from the analytical expression of the soft-max function
(see Equations 64 and 65):

∂ψ(a|n;xψ)
∂xψ[n̄, ā]

=




(1 − ψ(n, a))ψ(n, a), if n = n̄, a = ā,
−ψ(n, a)ψ(n̄, a), if n = n̄, a 6= ā,
0, if n 6= n̄.

(77)

∂η(n′|n, o;xη)
∂xη[n̄, ō, n̄′]

=




(1 − η(n, o, n′)) η(n, o, n′), if n = n̄, o = ō, n′ = n̄′,
−η(n, o, n′) η(n̄, o, n′), if n = n̄, o = ō, n′ 6= n̄′,
0, if n 6= n̄ or o 6= ō.

(78)

The search for local minima can be performed using many numerical optimization techniques that em-
ploy the analytically calculated gradient information (such as steepest-descent, quasi-Newton or conjugate
gradient).

22

References

Douglas Aberdeen and Jonathan Baxter. Scalable internal-state policy-gradient methods for POMDPs. In
Proceedings of the Nineteenth International Conference on Machine Learning, pages 3–10, 2002.

K. J. Aström. Optimal control of Markov decision processes with incomplete state estimation.J. Math.
Anal. Appl., 10:174–205, 1965.

Leemon Baird and Andrew Moore. Gradient descent for general reinforcement learning.Advances in
Neural Information Processing Systems 11, 1999.

Richard E. Bellman.Dynamic Programming. Princeton University Press, Princeton, 1957.

Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Acting optimally in partially
observable stochastic domains. InProceedings of the Twelfth National Conference on Artificial Intelli-
gence, pages 1023–1028, Seattle, 1994.

Anthony R. Cassandra, Michael L. Littman, and Nevin L. Zhang. Incremental pruning: A simple, fast,
exact method for POMDPs. InProceedings of the Thirteenth Conference on Uncertainty in Artificial
Intelligence, pages 54–61, Providence, RI, 1997.

Hsien-Te Cheng.Algorithms for Partially Observable Markov Decision Processes. PhD thesis, University
of British Columbia, Vancouver, 1988.

Eric A. Hansen. An improved policy iteration algorithm for partially observable MDPs. InProceedings of
Conference on Neural Information Processing Systems, pages 1015–1021, Denver, CO, 1997.

Eric A. Hansen. Solving POMDPs by searching in policy space. InProceedings of the Fourteenth Confer-
ence on Uncertainty in Artificial Intelligence, pages 211–219, Madison, WI, 1998a.

Eric J. Hansen.Finite-memory control of partially observable systems. PhD thesis, University of Mas-
sachusetts Amherst, Amherst, 1998b.

Ronald A. Howard.Dynamic Programming and Markov Processes. MIT Press, Cambridge, 1960.

Tommi Jaakkola, Satinder P. Singh, and Michael I. Jordan. Reinforcement learning algorithm for partially
observable Markov decision problems. In G. Tesauro, D. Touretzky, and T. Leen, editors,Advances in
Neural Information Processing Systems, volume 7, pages 345–352. The MIT Press, 1995.

Leslie Pack Kaelbling, Michael Littman, and Anthony R. Cassandra. Planning and acting in partially
observable stochastic domains.Artificial Intelligence, 101:99–134, 1998.

Michael L. Littman. Memoryless policies: Theoretical limitations and practical results. In Dave Cliff,
Philip Husbands, Jean-Arcady Meyer, and Stewart W. Wilson, editors,Proceedings of the Third Inter-
national Conference on Simulation of Adaptive Behavior, Cambridge, MA, 1994. The MIT Press.

Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic planning and infinite-
horizon partially observable decision problems. InProceedings of the Sixteenth National Conference on
Artificial Intelligence, pages 541–548, Orlando, 1999.

R. Andrew McCallum. Instance-based utile distinctions for reinforcement learning with hidden state. In
Proceedings of the Twelfth International Conference on Machine Learning, pages 387–395, Lake Tahoe,
Nevada, 1995.

23

Nicolas Meuleau, Kee-Eung Kim, Leslie Pack Kaelbling, and Anthony R. Cassandra. Solving POMDPs
by searching the space of finite policies. InProceedings of the Fifteenth Conference on Uncertainty in
Artificial Intelligence, pages 417–426, Stockholm, 1999a.

Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim, and Leslie Pack Kaelbling. Learning finite-state con-
trollers for partially observable environments. InProceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence, pages 427–436, Stockholm, 1999b.

George E. Monahan. A survey of partially observable Markov decision processes: Theory, models and
algorithms.Management Science, 28:1–16, 1982.

Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of Markov decision processes.Mathe-
matics of Operations Research, 12(3):441–450, 1987.

Leonid Peshkin, Nicolas Meuleau, and Leslie P. Kaelbling. Learning policies with external memory. In
Proceedings of the Sixteenth International Conference on Machine Learning, pages 307–314, San Fran-
cisco, CA, 1999.

Martin L. Puterman.Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New
York, 1994.

Richard D. Smallwood and Edward J. Sondik. The optimal control of partially observable Markov pro-
cesses over a finite horizon.Operations Research, 21:1071–1088, 1973.

Edward J. Sondik.The optimal control of partially observable Markov Decision Processes. PhD thesis,
Stanford university, Palo Alto, 1971.

Edward J. Sondik. The optimal control of partially observable Markov processes over the infinite horizon:
Discounted costs.Operations Research, 26:282–304, 1978.

C. C. White and D. Harrington. Application of Jensen’s inequality for adaptive suboptimal design.Journal
of Optimization Theory and Applications, 32(1):89–99, 1980.

Marco Wiering and Juergen Schmidhuber. HQ-learning.Adaptive Behavior, 6(2):219–246, 1997.

24

