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Abstract

This is an overview of partially observable Markov decision processes (POMDPs). We describe
POMDP value and policy iteration as well as gradient ascent algorithms. The emphasis is on solution
methods that work directly in the space of policies.
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1 Introduction

Partially observable Markov decision processes (POMDPSs) provide a natural model for sequential deci-
sion making under uncertainty. This model augments a well-researched framework of Markov decision
processes (MDPs) [Howard, 1960, Puterman, 1994] to situations where an agent cannot reliably identify
the underlying environment state. The POMDP formalism is very general and powerful, extending the
application of MDPs to many realistic problems.

Unfortunately, the generality of POMDPs entails high computational cost. The problem of finding
optimal policies for finite-horizon POMDPs has been proven to be PSPACE-complete [Papadimitriou and
Tsitsiklis, 1987], and their existence for infinite-horizon POMDPs — undecidable [Madani et al., 1999].
Because of the intractability of current solution algorithms, especially those that use dynamic program-
ming to construct (approximately) optimal value functions [Smallwood and Sondik, 1973, Cassandra et al.,
1997], the application of POMDPs remains limited to very small problems.

Policy-based solution methods seadiftectly in the space of policies for the best course of action.
Constraining the policy space facilitates the search and may lead tractable (although approximate) POMDP
solution algorithms Finite-state controller§FSCs) are the policy representation of choice in such work,
providing a compromise between the requirement that action choices depend on certain aspects of observ-
able history and the ability to easily control the complexity of policy space being searched.

While optimal FSCs can be constructed if no restrictions are placed on their structure [Hansen, 1998a],
it is more usual to impose some structure that one hopes admits a good parameterization, and search
through that restricted space. One way is to consider the problem of finding the beef B$fven size
for a completely specified POMDP. Even with the FSC size restriction constraint, the problem remains NP-
hard [Littman, 1994, Meuleau et al., 1999a]; therefgmdient ascent (GAhas proven to be especially
attractive for solving this type of problems because of its computational properties [Meuleau et al., 1999a,
Aberdeen and Baxter, 2002]. Unfortunately, gradient-based approaches can converge to arbitrarily bad
local optima.

2 Seguential decision processes

A sequential decision process involvesaentthat interacts synchronously with the extereavironment

or system; the agent’s goal is to maximizevard by choosing appropriate actions. These actions and the
history of the environmerstatesdetermine the probability distribution over possible next states. Therefore,
the sequence of system states can be modeled as a stochastic process.

2.1 MDP framework

The most commonly used formal model of fully-observable sequential decision processes is the Markov
decision process (MDP) model. An MDP can be viewed as an extension of Markov chains with a set of
decisions (actions) and a state-based reward or cost structure. For each possible state of the process, a
decision has to be made regarding which action should be executed in that state. The chosen action affects
both the transition probabilities and the costs (or rewards) incurred. The goal is to choose an optimal action

in every state to increase some predefined measure of performancgedisienprocess for doing this is

referred to as the Markadecisionprocess.

2.1.1 Actions and state transitions

A state is a description of the environment at a particular point in time. Although we will deal with
continuous state and action spaces when describing preference elicitation problems, we generally assume
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Figure 1: Causal relationships between MDP states, actions, and rew#&dss reward received at stagei.e.,
R(St, A").

that the environment can be in a finite number of states, and the agent can choose from a finite set of actions.
LetS = {so,s1,..., sy} be afinite set of states. Since the process is stochastic, a particular state at some
discretestage or time stept € 7, can be viewed as a random varialSfewhose domain is the state space
S.

For a process to b®larkovian the state has to contain enough information to predict the next state.
This means that the past history of system states is irrelevant to predicting the future:

Pr(StS0 8 .. St = Pr(StTYSY). (1)

At each stage, the agent can affect the state transition probabilities by executing one of the available
actions. The set of all actions will be denoted Ay Thus, each action € A is fully described by a
|S| x |S| state transitionmatrix, whose entry in afth row and;jth column is the probability that the
system will move from state; to states; if actiona gets executed:

pij = P7"(St+1 = sj|St =s5;, A" = a). (2)

We will assume that our processes sti@ionary i.e., that the transition probabilities do not depend on the
current time step.

The transition functio’(-) summarizes the effects of actions on systems stétesS x A — A(S)
is a function that for each state and action associates a probability distribution over the possible successor
states (\(S) denotes the set of all probability distributions ogr Thus, for eachs, s’ € S anda € A,
the functionT' determines the probability of a transition from statt states’ after executing action,
ie.,

T(s,a,s') = Pr(S'™™ =5'|S' =5, A" = a). (3)

2.1.2 Rewards

R :S x A~ Ris areward function that for each state and action assigns a numeric reward (or cost, if
the value is negative)R(s, a) is an immediate reward that an agent would receive for being in statel
executing actiom.

The causal relationships between MDP states, actions, and rewards are illustrated in Figure 1.
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Figure 2:Causal relationships between POMDP states, actions, rewards, and observations.

2.2 POMDP framework

A POMDRP is a generalization of MDPs to situations in which system states are not fully observable. This
realistic extension of MDPs dramatically increases the complexity of POMDPs, making exact solutions
virtually intractable. In order to act optimally, an agent might need to take into account all the previous
history of observations and actions, rather than just the current state it is in.

A POMDP is comprised of an underlying MDP, extended with an observation gpacel observation
functionZ(-).

2.2.1 Observation function

Let O be a set of observations an agent can receive. In MDPs, the agent has full knowledge of the system
state; therefore) = S. In partially observable environments, observations are only probabilistically de-
pendent on the underlying environment state. Determining which state the agentis in becomes problematic,
because the same observation can be observed in different states.

Z : S x A~ A(0O) is an observation function that specifies the relationship between system states
and observationsZ(s’, a, o) is the probability that observatian will be recorded after an agent performs
actiona and lands in state’:

Z(s',a,0') = Pr(O"T =o' | ST =&, A" = a). 4)

Formally, a POMDP is a tupléS, A, T, R, O, Z), consisting of the state spa¢g action spaceA,
transition function?’(-), reward functionR(-), observation spac@, and observation functio@(-). Its
influence diagram is shown in Figure 2.

2.3 Process histories

A historyis a record of everything that happened during the execution of the process. For POMDPs, a
complete system history from the beginning till titnis a sequence of state, observation, and action triples

(8°,0° A% (St O Ay, ... (St O A"). (5)

w



The set of all complete histories (vajectorieg will be denoted agt.
Since rewards depend only on visited states and executed act&ys$em historis enough to evaluate
an agent’s performance. Thus, a system history is just a sequence of state and action pairs:

(S0, A%), (ST, ALY, ..., (8!, A"). 6)

A system historyh from the set of all system historiég, provides an external, objective view about the
process; therefore, value functions will be defined on théfsah the next subsection.

In a partially observable environment, an agent cannot fully observe the underlying world state; there-
fore, it can only base its decisions on thigservabléistory. Let's assume that at the outset, the agent has
prior beliefs about the world that are summarized by the probability distribbgioner the system states;
the agent starts by executing some actiBiased solely oh,. The observable history until time stejs
then a sequence of action and observation pairs

(4°,0), (41, 0%),... (A7, 0"). (7)

The set of all possible observable histories will be denote@as Different ways of structuring and
representingt,, have resulted in different POMDP solution and policy execution algorithms. The concept
of observable history and a closely related notion of internal memory will two central issues discussed in
this survey.

2.4 Performance measures

At each step in a sequential decision process, an agent has to decide what action to perform based on its
observable history. A policy : H, — A is a rule that maps observable trajectories into actions. A given
policy induces a probability distribution over all possible sequences of states and actions, for an initial
distributionby. Therefore, an agent has control over the likelihood of particular system trajectories. Its
goal is to choose a policy that maximizes some objective function that is defined on the set of system
historiesH.

Such objective function is calledwaluefunctionV'(-); it essentially ranks system trajectories by as-
signing a real number to eaéhe H,; a system history. is preferred taw’ if and only if V(h) > V(R').
Formally, a value function is a mapping from the set of system histories into real numbers:

V:iHs; —R. (8)

In most MDP and POMDP formulations found in Al literature, the value functign is assumed to
have structure that makes it much easier to represent and evaluate. We will make a common assumption
thatV(-) is additive— the value of a particular system history is simplguanof rewards accrued at each
time step.

If the decision process stops after a finite number of stépthe problem isa finite horizonproblem.
In such problems, it is common to maximize the total expected reward. The value function for a system
trajectoryh of length H is simply the sum of rewards attained at each stage [Bellman, 1957]:

t=H
V(h)= ) R(s',a"). 9

t=0

The sum of rewards over an infinite trajectory may be unbounded. A mathematically elegant way to
address this problem is to introduceliscount factory; the rewards received later get discounted, and



contribute less than current rewards. The value function for a total discounted reward problem is [Bellman,
1957]:

V(h) = Z'yt R(s',a"), 0 <~y < 1. (10)
t=0

This formulation is very common in current MDP and POMDP literature, including the key papers con-
cerning policy-based search in POMDPs [Hansen, 1997, 1998a, Meuleau et al., 1999a,b]. Another popular
value function is the average reward per stagsed, e.g., in [Aberdeen and Baxter, 2002].

3 Policy representations

Generally, an agent’s task is to calculate the optimal course of action in an uncertain environment and then
execute its plan contingent on the history of its sensory inputs. The criterion of optimality is predetermined;
here, we will use the infinite horizon discounted sum of rewards model, described above. The agent'’s
behavior is therefore determined by itslicy 7, which in its most general form is a mapping from the set
of observabléistories to actions:

i Ho— A (12)

Given a history
ht = (a®, 0", (a*,0?%),..., {a'" !, o',

the action prescribed by the poliayat timet would bea’ = 7(h?); a” is the agent’s initial action, anef
is the latest observation.
One of the more important concepts is that ofeapected policy valueTaking into account a prior

belief distribution over the system statgsa policy induces a probability distributid?r(h |, by) over the
set of system historiel ;. The expected policy value is simply the expected value of system trajectories
induced by the policyt:

EV(x)=V™ =Y V(h)Pr(h|r,bo). (12)

hEH,

The value of the policyr at a given starting state will be denoted/™(sq). Then,

EV(m) = bo(s) V7 (s). (13)

seS

The agent’s goal is to find a poliey* € I with the maximal expected value from the $ebf all possible
policies.

The general form of a policy as a mapping from arbitrary observation histories to actions is very imprac-
tical. Existing POMDP solution algorithms exploit structure in value and observation functions to calculate
optimal policies that have much more tractable representations. For example, observable histories can be
represented as probability distributions over system states, or grouped into a finite set of distinguishable
classes using finite-suffix trees or finite-state controllers.

3.1 MDP policies

A POMDP where an agent can fully observe the underlying system state reduces to an MDP. Since the
sequence of states forms a Markov chain, the next state depends only on the current state; the history of the
previous states is therefore rendered irrelevant.

W(h) = limp—oo = o7 R(st, at).

n



3.1.1 Finite horizon policies

For finite horizon MDP problems, the knowledge of the current state and stage is sufficient to represent the
whole observable trajectory for the purposes of maximizing total reward (discounted or not). Therefore, a
policy 7 can be reduced to a mapping from states and stages to actions:

T:SxTr— A (14)

Letn (s, t) be the action prescribed by the policy at stavgth ¢ stagesemainingtill the end of the process.
The expected value of a policy at any state can then be computed by the following recurrence [Bellman,
1957]:

Vo (s)
Vi (s)

R(s,7(s,0)),

R(s,m(s,t)) +~ Z T(s,m(s,t),s") V/1(s). (15)
s'eS

The value functions in the s¢V" } o<.< i are called-horizon or¢-step value functionsH is the horizon
length — a predetermined number of stages the process goes through.

A policy 7* is optimalif V" (s) > V7 (s) for all H-horizon policiest’ and all states € S. The
optimal value function is a value function of an optimal poligf; = V7 . A key result, called Bellman’s
principle of optimality[Bellman, 1957] allows to calculate the optimiaktep value function from the
(t — 1)-step value function:

Vi (s) = max | R(s,a) + %T(ws') V(s - (16)

This equation has served as a basis for value-iteration MDP solution algorithms and inspired analogous
POMDP solution methods.

3.1.2 Infinite horizon policies

For infinite horizon MDP problems, optimal decisions can be calculated based only on the current system
state, since at any stage, there is still an infinite number of time steps remaining. Without loss of optimality,
infinite horizon policies can be represented as mappings from states to actions [Howard, 1960]:

m:S— A @an

Policies that do not depend on stages are callationarypolicies.
The value of a stationary policy can be determined by a recurrence analogous to the finite horizon
case:
V™ (s) = R(s,7(s) +7 Y T(s,m(s),s") V7(s"). (18)
s’eS
The agent’s goal is to find a poliey* that would maximize the value functidri(-) for all statess € S.
The optimal value function is

V*(s) = max R(s,a) + 7 gZE;T(S,a,s') V(s . (19)



3.1.3 Implicit policies

Equations 15 and 18 show how to find the value of a given paliagd provide the basis for policy-iteration
algorithms. The calculation is straightforward and amounts to solving a system of linear equations of size
|S] x |S].

On the other hand, value-iteration methods employ Equation 16 to calculate optimal value functions
directly. Optimal policies can then be defined implicitly by value functions. First, we introduce a notion
of a Q-function, or Q-valueQ(s, a) is the value of executing actianat states, and then following the
optimal policy:

Q(s,a) = R(s,a) +v »_ T(s,a,s) V(). (20)
s'eS
The optimal infinite horizon policy is a greedy policy with respect to the optimal value funkticn:

7*(s) = arg max Q(s,a). (21)

3.1.4 Stochastic policies

A stochastic infinite horizon MDP policy is a generalization of a deterministic policy; instead of prescribing
a single action to a state, it assigndistributionover all actions to a state. That is, a stochastic policy

bS8 A(A) (22)

maps a state to a probability distribution over actiofi$s, a) is the probability that actiom will be
executed at state By incorporating expectation over actions, we can rewrite the Equation 18 for stochastic
policies in a straightforward manner:

VU(s) = t(s,a) R(s,a) +v Y _1(s,a) T(s,a,s") V(). (23)

acA

While stochastic policies have no advantage for infinite horizon MDPs, we will use them in solving
partially observable MDPs. Making policies stochastic allows to convert the discrete action space into a
continuous space of distributions over actions. We can then optimize the value function using continuous
optimization techniques.

3.2 POMDP policy trees

In partially observable environments, an agent can only base its decisions on the history of its actions and
observations. Instead of a simple mapping from system states to actions, a generic POMDP policy assumes
a more complicated form.

As for MDPs, we will first consider finite horizon policies. With one stage left, all an agent can do is
to execute an action; with two stages left, it can execute an action, receive an observation, and then execute
the final action. For a finite horizon of length, a policy is atreeof heightH. Since the number of actions
and observations is finite, the set of all policies for horiZércan be represented byfiaite set of policy
trees.

Figure 3 illustrates the concept oft&horizon policy tree. Each node prescribes an action to be taken
at a particular stage; then, an observation received determines the branch to follow. A policy tree for a
horizon of lengthH contains

t=H-1 |O|H 1

t__
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Figure 3:A policy tree for horizort. For each observation, there is a branch to nodes at a lower level. Each node can
be labeled with any action from the sét

nodes. At each node, there dr4| choices of actions. Therefore, the size of the set of all posgible

horizon policy trees is
|0

o=t (25)

Al

We will now present a recursive definition of policy trees using an important notiaoioditional
plans A conditional plary € T" is a pair{a, v) wherea € A is an action, and : O — T is anobservation
strategy The set of all observation strategies will be denoteB@sobviously, its size isT'|I€!.

A particular conditional plan tells an agent what action to perform, and what to do next contingent on
an observation received. LEf be the set of all conditional plans available to an agent wittages left:

Ft:{<a,ut> |Cl€./4, l/tergl}. (26)

In this casey; : O — T';_; is a stage-dependent observation strategy. As a tree of heightbe defined
recursively in terms of its subtrees of height 1, so the conditional plans of horizancan be defined
in terms of conditional plans of horizan— 1. At the last time step, a conditional plan simply returns an
action. A policy tree therefore directly corresponds to a conditional plan. We will use tie tetenote
both the set of-step policy trees and the equivalent set of conditional plans.

Representing policy trees as conditional plans allows us to write down a recursive expression for their
value function. The value function of a non-stationary poligyrepresented by &horizon conditional
plano, = (a, 1) is

Vo' (s) = R(s, 00(s)),

Vi (s) = Vi (s) = R(s,a) +7 Y T(s,a8’) Y Z(s',a,0) V() @7)
s'eS 0eO



whereoy(s) is the action to be executed at the last stage.

Since the actual system state is not fully known, we need to calculate the value of a particular policy
tree with respect to a (initial) belief state Such value is just an expectation of executing the conditional
plano; at each state € S:

VI (b) = V7 (b) = > b(s) Vi (s (28)
seS

The optimalt-step value function for the belief stabecan be found simply by enumerating all the
possible policy trees in the sEf:

Vi (b) = max 3 b(s) V7 (s)- (29)

Thus, thet-step value function for the continuous belief simplg&xan in principle be represented by
a finite (although doubly exponential it) set of conditional plans andaax operator. The next section
discusses some ways of making such a representation more tractable.

3.3 «a-vectors and belief state MDPs

The previous Equation 29 actually illustrates the fact that the optirstgp POMDP value function is
piecewise linear and convex [Sondik, 1971, 1978]. From Equation 28 we can see that the value of any
policy treeV,? is linear inb; hence, from Equation 29" is simply the upper surface of the collection of
value functions of policies ifir;.

Let a” be a vector of sizéS| whose entries are the values of the conditional pigjor, values of a
policy tree corresponding @) for each state:

a? =1[Vi(s0),Vo(s1),..., V(sn)] (30)
Equation 29 can then be rewritten in termswefectors :

V7 (6) = max Y b(s) a” (s) = max 3 b(s) as). (31)
sES sES

Here, the sel; contains allt-step a-vectors ; these vectors correspondtistep policy trees and are
sufficient to define the optimathorizon value function.

The optimal value functiolly; is represented by the upper surface ofdheectors inV, (see Figure 4).
Although in the worst case any policy iy might be superior for some belief region, this rarely happens
in practice. Many vectors in the s&f might bedominatedoy other vectors, and therefore not needed to
represent the optimal value function. In Figure 4, veetgis pointwisedominated byy;, whereas vector
a1 is jointly dominated by the useful vectatg anda, together.

Given the set of alh-vectors), it is possible topruneit down to aparsimonioussubset); that
represents the same optimal value functign

V(b)) = max » b(s) = max Z b(s (32)

cv -
Gt s aev; ses

In a parsimonious set, all-vectors (or corresponding policy trees) aiseful[Kaelbling et al., 1998]. A
vectora is useful if there is a non-empty belief regi®{«, V) over which it dominates all other vectors,
where
R(a,V)={b|b-a>b-a, o' €V —{a}, be B} (33)
The existence of such region can be easily determined using linear programming. Various value-based
POMDP solution algorithms differ in their methods of pruning the set afralectorsy, to a parsimonious
subset/; .



[1;0] [b(s0); b(51)] [0;1]

Figure 4: For a two-state POMDP, the belief spaSds a one-dimensional unit interval, sinbéso) = Pr(so) =
1 — Pr(s1). The horizontal axis therefore represents the whole belief sBame which the value functioi; (b) is
defined.V;(b) is the upper surface of four-vectors . Only two of themyo andae, are useful.

3.3.1 Implicit POMDP policies

As we already know, an explicitstep POMDP policy can be represented by a policy tree or a recursive
conditional plan. Given an initial belief stabg, the optimalt-step policy can be found by going through

the set of all useful policy trees and finding the one whose value function is maximal with regpecse
Equation 31). Then, executing the finite horizon policy is straightforward: an agent only needs to perform
actions at the nodes, and follow the observation links to policy subtrees.

Instead of keeping all policy trees, it is enough to maintain the set of usefattors), for each
staget. As for MDPs, arimplicit ¢-step policy can be defined by doing a greedy one-step lookahead. First,
we will define the Q-value functio®, (b, a) as a value of taking actiom at belief staté and continuing
optimally for the remaining — 1 stages:

Qu(b,a) = > b(s)R(s,a) +v > Pr(ola,b)V;" (b2)), (34)

sES 0eO

whereb? is the belief state that results froafter taking actiom and receiving observatian As we will
see below, it can be calculated using the POMDP model and Bayes’ theorem.
The optimal action to take atwith ¢ stages remaining is simply

7*(b,t) = arg max Q+(b,a). (35)

3.3.2 Belief state MDPs

A finite horizon POMDP policy now becomes a mapping from belief states and stages to actions:
m:BxTr— A (36)

Astrom has shown that a properly updated probability distribution over the state Spiacsufficient
to summarize all the observable history of a POMDP agent without loss of optimalityofAstt965].

10



Therefore, a POMDP can be cast into a framework of a fully observable MDP where belief states com-
prise the continuous, but fully observable, MDP state space. A belief state MDP is therefore a quadruple
(B, A, T® RY), where

e 3= A(S) is the continuous state space.
e A s the action space, which is the same as in the original POMDP.
e T': B x A Bis the belief transition function:
Tb(b, a,b') = Pr(b'|b,a)
= Z Pr(t'|a,b,0) Pr(o|a,b)

ocO (37)
= Z Pr(¥|a,b,0) Z Z(s',a,0) ZT(S, a,s')b(s),
ocO s'eS seS
where
1 ifpe=0
Pr(t'la,b,0) = "% =7 (38)
0 otherwise
After actiona and observation, the updated beligf? can be calculated from the previous belief
Z(slv (l, 0) Z €S T(S, av S/) b(s)
a / — S 39
bo(s) Pr(o|a,b) (39)
e R’: B x A~ Ris the reward function:
R'(b,a) =) "b(s) R(s,a). (40)
seS

To follow the policy that maps from belief states to actions, the agent simply has to execute the action
prescribed by the policy, and then update its probability distribution over the system states according to
Equation 39.

The infinite horizon optimal value function remains convex, but not necessarily piecewise linear, al-
though it can be approximated arbitrarily closely by a piecewise linear and convex function [Sondik, 1978].
The optimal policy for infinite horizon problems is then just a stationary mapping from belief space to ac-
tions:

m:B— A (41)

It can be extracted by performing a greedy one-step lookahead with respect to the optimal value function
V.

Q(b,a) =Y b(s)R(s,a) +7 Y Pr(ola,))V*(b),
ses 0€0 (42)
7w (b) = arg max Q(b,a).

11



3.4 Finite-state controllers

The optimal infinite horizon value functidri* can be approximated arbitrarily closely by successive finite
horizon value functiondy, V1, ..., V4, ast — oo [Sondik, 1978]. While all optimai-horizon policies
are piecewise-linear and convex, this is not always true for infinite horizon value functions. They remain
convex [White and Harrington, 1980], but may contain infinitely many facets.

Some optimal value functions do remain piecewise linear; therefore, at some hgtizetwo succes-
sive value function¥; andV;,, are equal, and therefore, optimal:

V =V, = Vit (43)

Each vectory in a parsimonious sat* that represents the optimal infinite horizon value funclionhas
an associated belief space regi®fxy, V*) over which it dominates all other vectors (see Equation 33):

R(a,V*)={b|b-a>b-a', o' e V" —{a}, be B}.

Thus,a-vectors define a partition of the belief space. In addition, it has been shown that for each partition
there is an optimal action [Smallwood and Sondik, 1973]. When an optimal value fuictiman be
represented by a finite set of vectors, all belief states within one region get transformed to new belief states
within the samesingle belief partition, given the optimal action and a resulting observation. The set of
partitions and belief transitions constitutpalicy graph where nodes correspond to belief space partitions
with optimal actions attached, and transitions are guided by observations [Cassandra et al., 1994].

Another way of understanding the concept of policy graphs is illustrated in an article by Kaelbling
et al. [Kaelbling et al., 1998]. If the finite horizon value functiols andV;.; become equal, at every
level above the corresponding conditional plans have the same value. Then, it is possible to redraw the
observation links from one level to itself as if it were the succeeding level (see Figure 5). Essentially, we
can convert non-stationatystep policy trees (which are non-cyclic policy graphs) into stationary cyclic
policy graphs. Such policy graphs enable an agent to execute policies simply by doing actions prescribed
at the nodes, and following observation links to successor nodes. The nodes partition the belief space in a
way that, for a given action and observation, all belief states in a particular region map to a single region
(represented by another graph notidjherefore, an agent does not have to explicitly maintain its belief
state and perform expensive operations of updating its beliefs and finding the-bestor for the belief
state. The starting node is optimized for the initial belief state.

Of course, not all POMDP problems allow for optimal infinite horizon policies to be represented by a
finite policy graph. Since such a graph cannot be extracted from a suboptimal value function, a policy in
such cases is usually defined implicitly by a value function and calculated using Equation 35.

However, limiting the size of a policy provides a tractable way of solving POM&#soximately
Although generally the optimal policy depends on the whole history of observations and actions, one way
of facilitating the solution of POMDPs is to assume that an agent has a finite memory. We can represent
this finite memory by a set of internal stat®s The internal states are fully observable; therefore an agent
can execute a policy that maps framiernal states to actions.

Theaction selectiorfunction determines what action to execute at each internal memory:staf§’.
In addition to the mapping from internal states to actions, we also need to specify the dynamics of the
internal process, i.e., describe the transitions from one internal state to another. The internal memory states
can be viewed as nodes, and the transitions between nodes will depend on observations received. Together,
the set of nodes and the transition function constitute a policy grapHjmteastate controlle(FSC).

2Note that this is true only if the optimal infinite horizon value function can be represented by a finite numbeedibrs.
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Figure 5:An example from [Kaelbling et al., 1998] that illustrates how policy tree branches can be rearranged to form
a stationary policy.

3.4.1 FSC model
A deterministic policy graphr is a triple (N, ¢, ), where
e N is a set of controller nodes also known as internal memory states.
e ¢ : N — Ais the action selection function that for each naderescribes an actiofi(n).

en : N x O — N is the node transition function that for each node and observation assigns a
successor node’. n(n,-) is essentially an observation strategy for the nadelescribed above
when discussing policy trees and conditional plans.

In astochastid=SC, the action selection functignand the internal transition functiopare stochastic.
Here,

e 1) : N — A(A) is the stochastic action selection function that for each mogeescribes a distribu-

tion over actions:
Y(n,a) = Pr(A" = a|N' = n). (44)

e n: N x O +— A(N) is the stochastic node transition function that for each node and observation
assigns a probability distribution over successor nedes(n, 0,n’) is the probability of transition
from noden to noden’ after observing’ € O:

n(n,o',n') = Pr(N'™ = p/|N* = n, O =0). (45)
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Figure 6: The joint influence diagram for a policy graph and a POMDP. The sequence of FSC nodes coupled with
POMDP states is Markovian.
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3.5 Cross-product MDP

In the way that an MDP policy : S — A(.A) gives rise to a Markov chain defined by the transition matrix
T, a POMDP policy, represented by a finite graph, is also sufficient to render the dynamics of a POMDP
Markovian. The cross-product between the POMDP and the finite policy graph is itself a finite MDP, which
will be referred to as theross-product MDPThe structure of both the POMDP and the policy graph can
be represented in the cross-product MDP. The influence diagram for stanlpéedprocess is shown in
Figure 6.

Given a POMDPR(S, A, T, R, O, Z) and a policy graph with the node séf, the new cross-product

MDP (S, A, T, R) can be described as follows [Meuleau et al., 1999a]:

e The state spacg = N x S is the Cartesian product of external system states and internal memory
nodes; it consists of paifs:, s), n € N, s € S.

e At each statdn, s), there is a choice of actiom € A, and a conditional observation strategy.
O — N, which determines the next internal node for each possible observation. The new action
spaced = A x N9 is therefore a cross product betwedrand the space of observation mappings
NO. A pair (a,v) is aconditional plan wherea € A is an action and € N'© is a deterministic
observation strategy.

e T:8 x A~ Sisthe transition function:

T((n,s),{a,v),(n,s")) =T(s,a,s) Z Z(s',a,0). (46)

olv(o)=n'

e The reward functio® : S x A — R becomes:

R((n,s),{(a,v)) = R(s,a). (47
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3.5.1 Policy graph value

Given a (stochastic) policy graph= (N, ,n) and aPOMDRS, A, T, R, O, Z), the generated sequence

of node-state pairéN*, S*) constitutes a Markov chain [Hansen, 1997, 1998a, Meuleau et al., 1999a]. In
a way analogous to Equation 23, the value of a given policy graph can be calculated using Bellman’s
equations:

V7™(5) = R™(5) +WZT”(§, §YVT(s), (48)

wheres, 5 are node-state pairs &, and

e T is the transition matrix. Given stochastic functians) andn(-), the transition matrix is analo-
gous to Equation 23 for MDPs, although now we need to take expectation not only over agtions
but also over observations

T™((n,s),(n,s")) = Z Y(n,a)n(n,o,n’)T(s,a,s") Z(s',a,o). (49)

e R™ is the reward vector:

R™((n,s)) = Y _t(n,a)R(s,a). (50)

4 Exact solution algorithms

4.1 Value iteration
4.1.1 MDP value iteration

Value iteration for MDPs is a standard method of finding the optimal infinite horizon pelicysing
a sequence of optimal finite horizon value functidgs Vi, ..., V;* [Howard, 1960]. The difference
between the optimal value function and the optiryélorizon value function goes to zero agoes to
infinity:

lim max |[V*(s) — V;*(s)| = 0. (51)

t—oo se8S
It turns out that the optimal value function can be calculated in a finite number of steps givgellthen
error ¢, which is the maximum difference (for all states) between two successive finite horizon value
functions. Using Equation 16, the value iteration algorithm for MDPs can be summarized as follows:

e Initializet = 0 andV;(s) = 0forall s € S.

e While maxses [Vit1(s) — Vi(s)| > e, calculatelyy (s) for all statess € S according to the follow-
ing equation, and then increment

Vira(s) = max | R(s,a) + 7 %ﬂs,a,s') Vi(s)

This algorithm results in an implicit policy (which can be extracted using Equation 21) that is within
2¢7v/(1 — ~) of the optimal [Bellman, 1957].
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4.1.2 POMDP value iteration

As described above, any POMDP can be reduced to a continuous belief-state MDP. Therefore, value itera-
tion can also be used to calculate optimal infinite horizon POMDP policies:

e Initializet = 0 andV,(b) = 0 forall b € B.

e Whilesup,c |Vi41(b)—Vi(b)| > ¢, calculateV; 1 (b) for all state$ € B according to the following
equation, and then incremeint

Vig1(b) = max |R¥(b,a) +7 > T°(b,a,b) Vi(V')] - (52)
aeA beB
The previous equation can be rewritten in terms of the original POMDP formulation as
Vig1(b) = max [Z b(s)R(s,a) + Z Pr(o|a,b)Vi(b2) | , (53)
€S 0€O
wherePr(ola, b) is
Pr(ola,b) = Z Z(s',a,0) ZT(S, a,s'’)b(s). (54)

s'eS s€S

Although the belief space is continuous, any optimal finite horizon value function is piecewise linear
and convex and can be represented as a finite setvefctors (see Section 3.3). Therefore, the essential
task of all value-iteration POMDP algorithms is to find theggat; representing value functidr 1, given
the previous set afi-vectors);.

Various POMDP algorithms differ in how they compute value function representations. The most naive
way is to construct the set of conditional plans ; by enumerating all the possible actions and observation
mappings to the séf;. The size oV, ;; is then|A|[V;|!!. Since many vectors ik, might be dominated
by others, the optimal-horizon value function can be represented by a parsimonioug;setThe set
V; is the smallest subset o} that still represents the same value functigfy all a-vectors inV; are
useful at some belief state (see Section 3.3). To comgute (andV,, ;), we only need to consider the
parsimonious sey, .

Some algorithms calculalg, ; by generating/; , of size|A||V," | 191 and thempruningdominatedh-
vectors, usually by linear programming. Such algorithms include Monahan’s algorithm [Monahan, 1982,
?], and Incremental prunin@Cassandra et al., 1997]. Other methods, such as Sondik’s One-pass [Sondik,
1971, Smallwood and Sondik, 1973], Cheng’s Linear Support [Cheng, 1988], and Witness [Kaelbling et al.,
1998], build the seV, , directly from the previous sé,, without considering non-useful conditional
plans. Even the fastest of exact value-iteration algorithms can currently solve only toy problems.

As for MDPs, for a given, the implicit policy extracted from the value function is withery /(1 — )
of the optimal policy value.

4.2 Policy iteration

Policy iteration algorithms proceed by iteratively improving the policies themselves. The seayence. ., m;
then converges to the optimal infinite horizon polic¥, ast — oo. Policy iteration algorithms usually
consist of two stagegiolicy evaluatiorandpolicy improvement
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4.2.1 MDP policy iteration
First, we summarize the policy iteration method for MDPs [Howard, 1960]:

e Initialize my(s) = a, for all s € S;a € A is an arbitrary action. Then, repeat the following policy
iteration and improvement steps until the policy does not change anymore; i.€.s) = m(s) for
all statess € S.

e Policy evaluation. Calculate the value of policy(using Equation 18):

V7™ (s) = R(s,m(s)) + v Z T(s,m(s),s") V™ (s").
s'eS

e Policy improvement. For eache S anda € A, compute the Q-functio®(s, a):

Qi4+1(s,a) = R(s,a) + v Z T(s,a,s") VT(s"). (55)
s'eS

Then, improve the policy41:

m1(s) = arg max Qi11(s,a)forall s € S. (56)

Policy iteration tends to converge much faster than value iteration in practice. However, it performs
more computation at each step; policy evaluation step requires a solutid§|okdS| linear system.

4.2.2 POMDP policy iteration

For value iteration, it is important to be able to extract a policy from a value function (see Section 3.3.1).

For policy iteration, it is important to be able to represent a policy so that its value function can be calculated
easily. Here, we will describe a POMDP policy iteration method that uses an FSC to represent the policy
explicitly and independently of the value function.

The first POMDP policy iteration algorithm was described by Sondik [Sondik, 1971, 1978]. It used
a cumbersome representation of a policy as a mapping from a finite number of polyhedral belief space
regions to actions, and then converted it to an FSC in order to calculate the policy’s value. Because the
conversion between the two representations is extremely complicated and difficult to implement, Sondik’s
policy iteration is not used in practice.

Hansen proposed a similar approach, where a policy is directly represented by a finite state controller
[Hansen, 1997, 1998a]. His policy iteration algorithm is analogous to the policy iteration in MDPs. The
policy is initially represented by a deterministic finite-state contretferThe algorithm then performs the
usual policy iteration steps: evaluation and improvement. The evaluation of the contr@lstraightfor-
ward; during the improvement step, a dynamic programming update transforms the current controller into
an improved one. The sequence of finite-state controtigrs, ..., m; converges to the optimal policy
7 ast — oo.

4.2.3 Policy evaluation

In exact policy iteration, each controller node corresponds t@-gector in a piecewise-linear and convex
value function representation. Since our policy graph is deterministic) outputs the action associated
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with the noden, andn(n, o) is the successor node ofafter receiving observatiom The a-vector rep-
resentation of a value function can be calculated using the cross-product MDP evaluation formula from
before (Equation 48):

V™ ((n,5)) = R(s,9(n)) + 7> _T(s,9(n),s') Z(s',1)(n),0) V™ (n(n,0), ). (57)

V™ ((n, s)) is the value of state of ana-vector corresponding to the node
V™ ((n;, s)) = ai(s). (58)

Thus, evaluating the cross-product MDP for all states S is equivalent to computing a set afvectors
V™. Therefore, policy evaluation step is fairly straightforward and its running time is proportional to
IV x SI%

4.2.4 Policy improvement

Policy improvement step simply performs a standard dynamic programming backup during which the
value functionV'™, represented by a finite set afvectorsY™, gets transformed into an improved value
function V', represented by another finite set@vectors)’. Although in the worst case the size of
V' can be proportional tgA|[V™|!€! = |A||N|I€! (where|N| is the number of controller nodes at the
current iteration), many exact algorithms, such as Witness [Cassandra et al., 1994] or Incremental pruning
[Cassandra et al., 1997], fare better in practice.

In the policy evaluation step, a set@fvectorsy™ is calculated from the finite-state controlleusing
Equation 57. Then, the s#&t is computed using dynamic programming backup on thé’8etThe key
insight in Hansen'’s policy iteration algorithm is observation that the new improved controltam be
constructed from the new s¥t and the current controller by following three simple rules:

e For each vectot’ € V':

— If the action and successor links @f are identical to the action and conditional plan of some
node that is already in, then the same node will remain unchanged'in

— If o’/ pointwise dominates some nodesitjreplace those nodes by a node corresponding,to
i.e., change the action and successor links to those of the vgctor

— Else, add a node t@' that has the action and observation strategy associatedwvith

e Prune any node irr that has no correspondingvector in)’ as long as that node is not reachable
from a node with an associated vectonih

If the policy improvement step does not change the FSC, the controller must be optimal. Of course, this
can happen only if the optimal infinite horizon value function does have a finite representation. Otherwise,
a succession of FSCs will approximate the optimal value function arbitrarily closetypptimal FSC can
be found in a finite number of iterations [Hansen, 1998b].

Like MDP policy iteration, POMDP policy iteration in practice requires fewer steps to converge.
Since policy evaluation complexity is negligible compared to the worst-case exponential complexity of
the dynamic-programming improvement step, policy iteration appears to have a clearer advantage over
value iteration for POMDPs [Hansen, 1998a].

Controllers found by Hansen’s policy iteration are optimized for all possible initial belief states. The
convexity of the value function is preserved because the starting node maximizes the value for the initial
belief state. From the next section onward, we will usually assume that an initial belief state is known
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beforehand, and our solutions will take computational advantage of this fact. Optimal controllers can be
much smaller if they do not need to be optimized for all possible belief states [Kaelbling et al., 1998,
Hansen, 1998a].

5 Gradient-based optimization

Exact methods for solving POMDPs remain highly intractable, in part because optimal policies can be
either very large, or, worse, infinite. For example, in exact policy iteration, the number of controller nodes
might grow doubly exponentially in the horizon length; in value iteration, it is the numberwctors
required to represent the value function that multiplies at the same doubly exponential rate.

An obvious approximation technique is therefore to restrict the set of policies; the goal is then to
find the best policy within that restricted set. Since all policies can be represented as (possibly infinite)
policy graphs, a widely used restriction is to limit the set of policies to those representdbi@dpolicy
graphs, or finite-state controllers, of sobmundedsize. This allows to achieve a compromise between the
requirement that courses of action should depend on certain aspects of observable history, and the ability
to control the complexity of the policy space.

Many previous approaches rely on the same general idea. While Hansen’s exact policy iteration does
not place any constraints on the policy graph structure, other techniques take computational advantage of
searching in the space of structurally restricted FSCs. Littman [1994], Jaakkola et al. [1995], Baird and
Moore [1999] search for optimal reactive, or memoryless, policies; McCallum [1995] considers variable-
length finite horizon memory; Wiering and Schmidhuber [1997] attempt to find sequences of reactive
policies; and, Peshkin et al. [1999] constrain the search to external memory policies. All of these techniques
are special cases of searching in the space of finite policy graphs.

The restricted policy space that we will consider is representable by a limited size stochastic finite-state
controller (see Section 3.4.1). Here, we describe the details of a gradient-based policy search method, in-
troduced by Meuleau et al. [1999a,b]. The main idea of gradient-based POMDP policy search methods is
to reformulate the task of finding optimal POMDP policies as a classical non-linear numerical optimization
problem. If the stochastic FSC is appropriately parameterized so that its value is continuous and differen-
tiable, the gradient of the value function can be computed analytically in polynomial time with respect to
the size of the cross-product MDR\( x S|), and used to find locally optimal solutions.

5.0.5 Policy graph value

We can rewrite Equation 48, which calculates the value of a stochastic policy grépla more concise
matrix and vector form: B B -
VI=R"+~T"V". (59)

V andR are vectors of lengthV| |S|, andT is an|\/| |S| by |V |S| matrix. Sincel is a stochastic matrix
and the discount factor < 1, the matrix/ —~T is invertible [Puterman, 1994]; we can thus solve Equation
59 for V:

V™ =(—-~T")"* R". (60)

Notice thatV’™, T™, andR™ depend on the policy graph= (N, ). Therefore, for a given number
of nodes| V|, the vector’™ could be optimized by choosing the right functiansind,. To convert this
problem to a classical non-linear optimization problem, we need to make sure that the objective function is
a scalar as well as appropriately parameterize the functicargds.
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5.0.6 Prior beliefs

The value vectol/™ contains the total discounted cumulative reward for each systemsstate graph

noden. The total expected reward depends on the state and node in which an agent starts; this could
be quantified by an agent’s prior beliefs about the world. Hgebe an|A/||S| vector of probabilities
representing the agent’s prior beliefs about the st&tasd policy graph node§”. That is,

> bl(n,s) =1,

(61)
b((n,s)) >0foralln € N,s €S.
Then, the total expected cumulative discounted rewirds just
E™=by- V™. (62)

To simplify the problem, we will assume that the agent always starts inmgdeis a valid simplification
if the initial policy graph structure is symmetric for all nodes. The agent’s prior knowledge about the world
is summarized by the belief vecthy. Therefore,

i) = { "0 eras (63)

0, otherwise.

5.0.7 Soft-max parameterization

To parameterize the functionsandn, we will employ a commonly usesloft-maxdistribution function
[Meuleau et al., 1999b, Aberdeen and Baxter, 2002] ¥Yeandx” be parameter vectors for the respective
functionsy andn. x¥ will be indexed by a node and an actior; x” will be indexed by a node, an
observatior, and the successor noaé We will use the notatiox?[n, ] to denote the) parameter
indexed byn, a, andx"[n, o, n'] will be then parameter indexed hy, o,n’. Then,

x¥[n,ad]

e

Y(n,a) = ¢(a|”;xw) = Wa (64)
x"[n,0,n’]

n(n,o0,n') = n(n'|n, 0;x") = =— (65)

SIS CEE

Because we use soft-max, the parameterized functicarsdy still represent probability distributions; that
is,

> dlalnx?) =1,

acA
n'lo,n;x") =1,
nze;vﬂ( | ) (66)
Y(aln;x¥) >0 foralla e A,ne N,
n(n’|n,0;x7) >0 foralln,n’ € N,o€ O.
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5.0.8 Objective function

Letx denote the combined vector of parametefsandx”. By substituting Equation 60 into 62, we finally
get an unconstrained continuous objective funciién of parameters:

f(x) =bo (I =~T™)"* RT, (67)

where (see Equations 49 and 50)
T ((n, s) Zw (aln; x¥) n(n/|n, 0;x") T(s,a,s') Z(s', a,0), (68)
s)) =) ¥laln;x") R(s, a), (69)

andby, T(-), R(-), Z(-) are supplied by the POMDP model. The number of paramgtédepends on the
POMDP model and the size of the policy graph (i.e., the size of the cross-product MDP):

x| = |x*[ + x| = [N]|A] + IV[OIV]. (70)

This presents two advantages to gradient-based methods of solving POMDPs: the number of parameters
does not depend on the size of the state spa@ad the size of internal memaory can be controlled by a
user.

5.0.9 Gradient calculation

Since the objective functiofi(x) is a complicated series matrix expansion with respect to its parameters,
function value based optimization techniques will be ineffective. To perform numerical optimization, we
will need to employ first-order information about our objective function.

Because of the soft-max parameterization, the gradieritef can be calculated analytically. From
Equation 62,

of . ov
or = "o (1)
From Equation 60, ~
ov _ ., [oR oT
%—(I—VT) {8_ +Va (I—-~T)"'R (72)

Partial derivatives with respect I and R can be calculated from Equations 68 and 69:

or op(aln; x¥ , ) )

oxv Z%W’O»n)ﬂs,aasﬂ(s,avo» (73)
[ n

% = ana g;,,ox)T(S,a75’)Z(s’,a7o), (74)
OR op(aln;x¥)

D Dy e COR (75)
OR

o = (76)
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Finally, we can find the derivatives of andn from the analytical expression of the soft-max function
(see Equations 64 and 65):

, (1 —9(n,a)v(n,a), fn=na=
ovalnx?) _ —(n, a) (n, a), if n=mn,aa, (77)
Oz [n,a) 0, if n # n.
In(n'|n, 0;x7) _ —n(n,o,n")n(n,o,n’), ifn=n0=0n#n (78)

(I =n(n,o,n"))n(n,o,n'), ifn=n, o—on:ﬁ’
xR, 0, 7] 0, if n £noro#o.

The search for local minima can be performed using many numerical optimization techniques that em-
ploy the analytically calculated gradient information (such as steepest-descent, quasi-Newton or conjugate

gradient).
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